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ON TWO DIMENSIONAL-8UPHRHYSABLE FLOWS
By C. DNGHILDYAL

InTRODUOTION. The present paper aims at discussing two
dimensional fluid motions mutually superposable. The case of
finding a rotational flow superposable on a given irrotational flow
is capable of being solved easily. This problem has already been
discussed by Ballabh (1943 ; 1952). In this paper we have derived
results which are more general than Ballabh’s and have given
simpler proofs.

1. General derivation. The equations of motion of a viscous
homogensous incompressible fluid in two dimensions can be
written as

ou ox’ 9
M _pr=—X %
ot vs . oy
and . (1.1)

ov oy ol
M +ul= —@ +v 2

where the symbols have their usual meanings.
To these we add the equation of continuity

ou . ov
D B G 1.2
5t 5 (12)

Let (uy, vy, {;) and (uy, v, 5) be the two solutions of (1.1).
Using the definition of superposability as given by Ballabh (1940),
after some calculation we get ‘

5% (w18e + uply) + a—ay (n1e +9301) =0, (1.3)

as the condition of superposability. Let i; and i, be the stream
functions for these two flows. The above equation can then be
written as

(1.4)

2

g ) | Wb _ g
(=, y) o(x, y)
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since ur_—_——_a%, = aat' =1,2.
Two flows (¢, {;) and (s, ;) are therefore superposable if and
only if the sum of the Jacobians of (i, {;) and (,, {;) vanishes.

2. Let the flow whose stream function is ¢, be irrotational.

For convenience we denote ¢, by ¢ and ¢, by . We have to find the
rotational flow superposable on the given irrotational flows. From
equation (1.4), we get

W0 _ g 2.1
o y) -

since {; = 0 and {, = {. This gives
L= f{h)- (2:2)

A rotational flow is therefore superposable on a given irrotational
flow if and only if the vorticity of the former is constant along the
stream lines of the latter.

The condition of integrability for steady flow is

d . J .
% (<8 + 5?/ (0 = VVZC’ (2.3)
where
2% o2
2__ 9 , o
V= + oy

Substituting the value of { from (2.2) and using the equation of

continuity, we get,
g oy af oy {( ¢)2 n (%)2} ), (2.4)

— 1L 1L =y

ox 0y oy ox ox
since ’
-_ W -_ %
v “ oy’ v ox
and
af
F() = log .
g dy

Here we are assuming that i # 0,
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Following Ballabh. (1952), we get

b =v$ F()) + GY), (2.5)
where ¢ is the velocity potential of the irrotational flow.

This value of z/_; obtained from (2.5) has to satisfy the equation
L=V =f),

son={(2) + ()} {rorw + ow).

where dashes denote differentiation with respect to .

i.e.

Now the above equation can be written as

1 1 _ T, W)
¢ (Y L (H) Yo Trwe
NE

ox
o o\ 2 . .
where ) (8_3} ) +# 0, i.e. we assume that the velocity of the
irrotatlona} flow does not vanish anywhere.

Assuming F”() = 0, Ballabh obtained a general expression for
¢ and {. In this way the velocity of the irrotational flow becomes a
function of ¢ alone. In ome of his earlier papers he (1943) has
discussed -this very problem for non-viscous homogeneous incom-
pressible fluids and finds the same results for the stream function
of the irrotational flow in the case of viscous fluid also. He, however,
gives no reason for assuming F"($) = 0. We shall see that F”(i)
must necessarily vanish. We shall further see that steady irrotational
flows on which a steady rotational flow is superpcsable consist either
of uniform streaming or of motion outside a rectilinear vortex
filament.

3. Using a well-known property of conjugate functions equa-
tion (2.6) can be written as

dfx + ) 2:\ dzt+a) F_, FW)  EW) g
dg -+ ld(— ¢ +ef) f(sb) T
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where ¢« = 4/(— 1). Also, we have

diz +w) _ 1 -1 (3.2)
—$+u) =4+ ) i
d(x + )

dlx + ) . .
Also, d_ T analytic functions of (— 4 ¢ ).
0 (x4 y) an d(_¢+b¢)are nalyti (—f+d

Therefore we can write

[o4)

—Z “n(_‘l‘”r"’qs

fn=

v +
The right hand sude is equivalent to
g+ (—¢+p)o+ ... +(—¢+ ) a,+....

Putting H = X (—)* a, ", we can write above expansion as
n=0 .

< (=) () d*H
z Y i ’

or
d (___ ¢2)n dZn _)n ¢2n —2 dZn——IH
+21T27i>7d¢2" ”’2 Ol T

Taking the square of the modulus, we get

1_ < (— )" d>H 2J_ S (— 1)p g2 gt H 2
qz—ﬂ{H_l_Z—(%)T W} I¢2{n=1 (277',_'1)! d¢2n—1}
1 ¢ @H 20 (dH\? ‘
s IR

L # (g PH 4 AHBHY 4l (BHY)
4'{ gyt 11314y d¢3> z!f(?l@/?”
¢6{( d°H 6! dH&H | 6! *HIH\
s 1181 dy d¢5+2!4!d—¢5W)
6! [d*H\?
—G’)—!TZ(W) }+...+
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Wb D, t(2n)! FHETH
122, e @ a

F(— )n(zn) (dﬁ)z} + oo

=1

where n is a positive integer.
But from (2.6), we have
1 F'(p) |, 6"
= V(}S -+
9 N
From these two equations we easily get
d*F 1 2@ d*H dH\?
e =0 —— =H?  H - — <__) =0, ete.
dy? f) dyg? dy? dy
From the first equation, we have

F(p) = 7} tog & df — Ay + B,

giving
f=K j v+ BPRA Gy | K

where A‘ B, K, and K are constants. This determines the vortlcﬂ,y
of the rotational flow. From the equation -

g d?H dH )
aF \dp ’
we have
H =aeM,

where g and A are arbitrary constants.

It is easy to see that the coefficients of ¢, ¢% ..., ¢™, ..., also
vanish identically for this value of H.

Also the value of G(s) is
Qi) = KaZJ [J { ezwj oAt BR2A gy 4 } d¢] dp +
+ Byt Ky

4. Now we wish to determine the possible form of streamlinos
of the irrotational on which a rotational flow is superposable. We
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have already seen that the velocity of the irrotational flow is constant
along its streamlines. Thus equation (2. 6) merely reduces to

2 __ f(ﬂl‘ 4.1
vl = @) Hz, (4.1)

lv¢|2=qz=(§§)2+(§y"—’)2-.

The radius of curvature p of any curve yi(x, ) = constant, at any
point (%, y) of the curve, is given by the relation

v (l‘é‘L ;3’

wherey =14 % ] % ; ¢ and j are the unit veotors in x and y direc-

where

tions respectively.
Expanding the above equation, we get

1 v-(v¥) _ vvved
plvdl [l

Using the relation (4.1) and condition of irrotationality y>¢ =0,
we get

1 d
H?

m

b’

1
P

D

where H = 1/q #0.

Two cases arise
. dH

i) — =0;
@) a5

(ii) % is a function of ¢, different from zero.

In the first case the curvature of the streamlines of the irrota-
tional flow is zero which are therefore straight lines -with constant
velocity everywhere. In this case stream function is given by

=02+ By +y,

where «, B, and y, are constants.
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In the second case the curves i = constant, represent the curves
of constant curvature, and are therefore circles. The velocity is
constant along the streamlines. In this case stream function is
given by

y=A,logr+ B;.

Jeffery (1915) studied the steady two dimensional flow of a
viscous homogeneous liquid by using the orthogonal curvilinear
coordinates without assuming the motion to be slow. The coordinate
.system is defined by conjugate functions «, B of « and y. He further
assumed that either the streamlines or the lines of constant vorticity
are identical with one family of the coordinate curves. He obtained
some exact solutions of the equations of motion of a viscous
homogeneous incompressible fluid. His results are similar to those
obtained above by using the principle of superposability.

Jeffery’s procedure seems to be more involved than what we have
given above.

, My thanks are due to Dr. Ram Ballabh for guidance and to the
Scientific Research Committee, U.P. for financial assistance.
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NOTE ON AN ENTIRE EUNCTION OF INFINITE
ORDER

By S. M. SHAH

1. Let 0(x) satisfy the following conditions

(i) O(z) is positive and non-decreasing for x > %,, and tends to
infinity with x, '

(). I®) = j t—g_zt«) tends to infinity with x,

(i) 260'@)0@) <c<1 forz>
Let N be an integer such that I(N) > 1, and

fl@) = 2 (I—(%))" (1)

It is known [1]that f(z) is an entire function of infinite order such that
> V(T, f)

Further if 8(x) also satisfies the condition

2

O(n+ 1)’

where p is some (fized) integer, for all large n, then
i Iog M(r, £)6(log M(r, /) _ o @
r—yo0 v('r s f)

The purpose of this note is to show that a modified form of (iv)

(see lemma below) follows from (i)-(ii1) and this.modified form of

(iv) is used to deduce (3). Thus we show that condition (iv) is super-

fluous. Clunie [2, pp 180-2] deduced (3) from (i)-(iii) and also his

theorem [2, p. 175].

2. Lemma. If O(x) satisfies (i)-(iii) then for any (fized) p > 1,

lim inf {0n + 1) {Z(n?) — Itn + 1D} > —; @

(iv) I(n?) —I(n) >
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lim inf [8(n 4+ 1) {Z(pn)e—I(n + 1)} > 1 _cp L)

n—>a0

The following proof of the lemma is due to W. K. Hayman. We
have from (iii)

8(,)

a 3
o ge( ! < log (é) , Xy < By
Hence
9(¢)<9(n+1)(ﬁ—f—{_—l)c, t>n+1;
T @
n+1
1 (n + 1)°
> fm+ D I e
1 _(n+ 1)¢
o_o(n+1){1 et
8 +1) {I(n?)~I(n -+ 1)} > % +_0( E%:?’ ) ()

and (4) follows. Similarly

1
— i - 7
o+ VI T+ 0}> 2 (1= L) +0(7) @
and (5) follows.
3. We have in the notation of {1, p. 84]

log M(r) < (1 + o(1)) log (r) + 2 log v{ v+ aﬁm)
Now u(r) ==nfor B, <r<R,,,, where

_ (n
R,,—I(mexp{f@(f I(g)} n1<g<n.

Further, for » in the range (0 1), e <1+ + (e — 2)a®. Henco

Bu<Tto) + iy (02 () I(n))
and so from: (6)
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Bpp — Boyy >I") —I(n + 1) — 9(%1_—_%—1—) +0(m)

> (5 =) gy O (e )
+0((97(E;T(;)‘

Hence for alllarge n, B, — R,, > 1/n?, and so

Ry + - <Rn,,—7%2(1—i) <R,

n* R, R,
1
Hence
log M(r) < (1 +0(1)) log p(r) + 2 log v( B, .+ ﬁ_)

< (1 +0(1))log p(r) + 2 p logn
and so we get [1, p. 85], log M(r)= (1+ o(1)) log u(r), and (3) follows.

4. To show that when } <¢ <1, (iv) need not follow from (i)-(iii),
we construct #(x) which satisfies (i), (ii) and (iii) except at an
enumerable set of points where the right and left derivatives of
0(x) exist and satisfy (iii). We define 0(x) as follows.

[
Let a, =10!, b, =e¢%, ak+1=exp{(z—k) loga,c}, where
: &
}<e<l andk=1,2,3,.. Let

0w) = B % 4 <z<by,

(ak)c .
= l?f;kbg, by <% < Gyyp k=1, 2, 3,...
(3

Then (x) is positive, non-decreasing for 2 > a,, and tends to
infinity with . Further
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z
and so I(x) = ji tends to infinity with z. Also

t0(t)
Jﬁo—’—(@ =0, when b, <x <@,
() i
=¢, when q, <z <b,
and when x = a,(or b;), w_@_éa(%;)i_;_O) =cor 0.

Now given an integer p > 1, choose K so large that af < % for
allk 2> K.

Let [6;] = n. Then when k> K,

n?

nd
. at (a,)° dt
on =T+ = | g = | ey
n+1 +1

Hence

B(n + 1) {(I(n?) —I(n + 1)} = % {1 — (_”_il_)f}

n?e

1

c
as k (and so n) tends to infinity.

Hence if {<e< 1, {I(n?)—1I(n+ 1)} 6(n+ 1) is not greater
than 2, for all large =.
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SOME CONGRUENCES INVOLVING RAMANUJAN’S
FUNCTION ~(n)

By P. J. McCCARTHY

RAMANUIAN’S function v(n) is defined by

o]

Damer=a[ Q- (z<1)
1 1

Our purpose is to obtain certain congruences involving 7(n). Such
congruences have been obtained by several authors, and in
particular, by Lahiri [1]. The congruences which he obtained for
modulus 11 and modulus 13 were not true congruences for =(n), for
the coefficient of () contains, in the respebtive cases, the factor
11 or 13. In this note we obtain congruences for ~(n) for the moduli
11 and 13, and in addition obtain a congruence for 7(n) for the
modulus 17.

Our method is standard. We make use of the expressions

P=1— 24 a(n) 2™,
2

o0

Q=1+ 240 > oy(m) ",

1

R=1-504 Y ayn)a"
2

which were introduced by Ramanujan [3, p. 120]. Here o,(n) is
the sum of the kth powers of all the positive divisor of 7 : e(n) =
o,(n). Ramanujan proved the identity [3, p. 144]

C@®— R:=1728 > T{(n)a™
2

From relations 3 and 5 of Table II on page 142 of [3] we have
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C

5.1008 z n og(n)z". Q = 5Q® — 5PQR
1

= 2(Q® — R + 1584 i n ayo(n) &,
1

Hence,
0 X «w

2.1728 > r(n)a" =5.1008 > nog(n)a™. Q — 1584 > noy(n)a". (*)
> > 2

If we now use the fact that 2.1728.6 = 1 (mod 11), and reduce all -
coeflicients modulo 11, we have

i T(n)a" = i n o5(n) 2 ( 149 i 03(”')'7"”) (mod 11).
1

1 1
If we now eompare the coefficients of 2 we obtain

7(n) =nog(n) + 9 S;4(n) (mod 11),
where

n—1
8, o(n) = Z ko (n)ofn—k),n>1; S, (1) =0.
1

To obtain such a congruence for the modulus 13, we use the
relation

6(R2 — I) _=—3ZT(n-)x"+131,
1

where I is a power series in z with integral coefficients. This relation
may be found on page 886 of [2]. Now,

BE=1-17) oyn)a"+9 Z T¢(n)a* (mod 13),
. 1 1
where

n—-,l

T (n) = Z a,(n) o — k), m > 1, T(1) = 0.

1
Using the fact that — 3.4 =1 (mod 13), we have

x

i (n)z" = 24 ( -1 Z ag(n)z” +9 i Tﬁ(n)x") (mod 13).
1 1 1
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Then, upon comparing coefficients of 2", and reducing these modulo
13, we obtain

7(n) == ag(n) + 8T 5(n) (mod 13).
From the sixth relation in Table III on page 888 of [2] we have

8(Q® — R?) + 14R* +3 = Z 0y1(n) 2*(mod 17).

1
Hence, using the fact that 8.15 = 1 (mod 17),

> a(n) 7" =11E* 46 + 15 > oy(m) a"mod 17),
1 1
Since

R=1-5 Z og(m) 2" + 2 > Ty(n) a"(mod 17),
1 1

we have

«©

2 r(n)a" =13 i og(n) a* + 6 i Tg(n) o™ +
1 1

1
+15 E ay1(n) 2"(mod 17).
A 1

Comparison of coefficients of 2" gives
7(n) = 13 o5(n) + 16 oy,(n) + 5T(n) (mod 17).

Another interesting congruence can be obtained from the relation
(*). If we use the fact that 5.1008.240 = 28.3%,5%.7, we obtain

24 7(n) = 36m o5(n) — 11n oy(n) (mod 2¢.3.5%.7).
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ODD PERFECT NUMBERS
By M. SATYANARAYANA

1. Imtroduction. It is well known that an even number is perfect
if and only if it is of the form

on—1(gn — 1),

where 2" — 1 is a prime. It is not yet known if odd perfect numbers
exist. Jacques Touchard [2] has shown that if odd perfect numbers
exist, they must be found among numbers of the form 12n 41
and 36n 4 9.

In this note, I show that if any odd perfect number exists it must
be of the form

p4lc+1 N2,
where p is a prime of the form 4j + 1 and (N, p) = 1.

We deduce Touchard’s result from this with the help of a congru-
ence property of o(n) due to Ramanathan [1].

2. In what follows p’s denote odd primes. Let
phple ... Pl
be the canonical form for an odd perfect iumber M. Then
o( M) = o(p). obe ... o(pfr) =2M.

Since o(M) = 0(mod 2) but 7 O(mod 4) all the o’s on the right
except one, say o(pft), must be odd.

Now
o{pf) =1+ p+p? + ... + 9° =B+ I+(mod 2).
Therefore Bs, ..., B, must be even.
Since o(pf) = 0(mod 2) bub 3£ 0(mod 4), B, is odd. Also because
phrl —1
(pr—1)

we must have p, + 1 = 0(mod 2) but == 0(mod 4) and

= (p, + 1)(1+p: + ot + ... 087D,
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1+ pi+ o, +pht
must be odd.

: X —1 .
Hence p, must be of the form 45 4+ 1 and B 5 = 0 (mod 2),i.e.

By =1 (mod 4).
This proves the statement in § 1.
3. BEvidently M in §2 is of the form 4 - 1.
The only admissible forms for M are, therefore,
120 + 1, 120 -5, 12n 4+ 9.
Ramanathan has shown that
o(3m — 1) =0 (mod 3) for m > 1.

No perfect number can thus be of the form 3m — 1, for if it were
80 then we would have

o(3m — 1) = 2(3m — 1) = 1 (mod 3).
Hence numbers of the form 12n + 5 are ruled out.

Moreover in the canonical decomposition of M, primes of the
form 45 + 3 occur only in even powers, therefore if
£ 2

M = 0(mod 3), it must be = 0 (mod 9).

Hence M must be of the form 12n 4+ 1 or 36n 4+ 9. Since odd
powers of numbers of the form (12§ + 5) are also of the form
12 4 5, while even powers of all numbers prime to 12 ‘are of the
form 12j + 1, in the canonical decomposition of M, as in §2,

p, = 1(mod 12), when M = 1 (mod 12).
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SOME PROPERTIES OF ‘FIBONACCI NUMBERS, II
By K. SUBBA RAO

IN this paper, I follow the notation of my recent papers ([2], [31).
It is known [1] that if u, is the nth Fibonacei number, then

Vy =ty + (— 1P %,_, =0 (mod u,), = v, u,, say. (1)
Putting p = 1, 2, 3, ... we see that V|, V,, V3, V,, ... are respec-
tively equal to w,, 3u,, 4u,, T4,,..., which is the series of Lucas.
That this is a recurring series of the Fibonacci type can be easily
proved by using (1) and by induction on p.  Further, it is easily
seen that the pth term of the Lucas series 1, 3,4, 7, ... is equal to

14 4/8.2 1 —4/5\?
(=7)+ (=)

More generally, considering the Fibonacci series of the type @, b,
a+b,a+2b, 20+ 3b,..., where ¢ and b are arbitrary positive
integers and denoting the nth term of this series by U,, we can
show that

Upip+ (=17 ;U”"” =, Uy
Many results analogous to those proved in ([2], [3]) hold good in
respect of the Lucas series.

I now prove some theorems of a general nature concerning Lucas
numbers.

TarorEM 1. If v, be the n-th Lucas number, then for k>1
and m > my,
(i) Vatm < Vhm < Va1 + (2)
Vatm k-1 < Vomt1 < Vdkmik > (3)
(i) there lie exactly (k — 1) Lucas numbers between vk, and v§,
and (k + 1) Lucas numbers between vk, . | and v}, , -

Proor oF (i). We have v, = (1 + \/5>” + (1 —2\/5>ﬂ _

2
a" + b, say ; where a is therefore positive, b is negative and |5 | <.
* Therefore
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k
1

k om p2(k—1ym
+"'+(k l)a b R

,Ugm — (“2111, + b2m)7c — a'2km + b2km + ( ) a2(7c—1)m b2’m +

2km 2km — p2Zkm+1 2km-+1
Vopm = &= + 0™, vy =0 +b .
k
Thus 9§, — v, > 0, and

Vobma1 a2km+1 + b2km+1

hm adkm (70) gRe—Dmpem | pom
1 1 |

R C
OO O

—¢ >1,a8m — ©.

Therefore ’L’zkk—"”l > 1for m > m,. Hence (2) is proved. Similarly
Uom
(3) can be proved for m > m,. Thus for m > my, = max (m,, my), (2)

and (3) are true.

Proor or (ii). We have, by, (i), for m > m,, that (2) and (3)
hold. Replacing m by m + 1 in (2) we get

Vopm 2k < U’2°m+2 < Vogma gkl (4)
From (2), (3) and (4), (ii) follows.

CorROLLARY. Between vf, and vk ,, (m > my), there lie exactly 2k
Lucas numbers and, more generally, between of, and v (m > my),

m+2p?
there lie 2kp numbers.

THEOREM 2. Given a prime p, there arve infinitely many Lucas
numbers each of which = 1 (mod ).

Proor. TFrom the identity

o [ ()

n—2Y\ (& +b)"*
+( 9 =3 (ab)z—...J,
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where n is a positive integer, putting
— V5 ,nd therefore a +b =1, ab=

_ 1+, 1
9 '
we have
7 n—1 {n~2 n—3
N PG B N B
n—1 n—2
B e I e |
Therefore
p*—1 p*—2
”m=l+p°‘{((pml_l))+((paz_2))+...]’

where p is the given prime and « is an arbitrary positive integer
is an integer,

W[(f"“fm(? W

(p* — 1) (p* —2)

Since »
pd

should be an integer.
Since the highest power of p which can divide the denominators

of the several terms in the square brackets is p*~%, it follows that

Pt = 1)
P ( ! +

*—1
is divisible by p. Hence v , =1 (mod p) and the theorem is proved
Ve =0,8 (mod p) for arbirary positive iniegers

COROLLARY. ¥,

o and B.
To find the last digit of a Lucas number, we use the fact that
the residues of the Lucas numbers modulo 10 recur periodically, in

the order :
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1,3,4,7,1,8:'9,7,6, 3,9, 2.

The length of the period is thus 12 and the last digit of any Lucas
number can be obtained from the following table :

Rank of [(12n +1) (12n+2) (12n+4) (12n+7)
Lucas and 12n and |(12n+3){(12n+9)| and |[(12n+6)! and
Number |(12n+5) (12n+10) (1274 8) (12n--11)
*
Last digit
of Lucas 1 2 3 4 6 ) 7 8 9
Number

It is curious to note that no Lucas number is divisible by 5.
I give now a new proof of the following well-known
THEOREM 3. The number of primes is infinite.

In proving this I require the following

Lemma. No two Lucas numbers of rank 2" have a common factor
greater than 1.

Proor. The Lucas numbers v,, v,, ..., Uy, are all odd. Also, on
account of the identity

we have, if v;n = 0 (mod p), where p is any odd prime,
Vymt1 = — 2(mod p), vym4r = 2(m0(i D),

where k is a positive integer > 1. It follows that any common odd
prime factor of vy, and vym+1 should divide 2 and also that of
Vgm and Vpmi1 should divide 2. Since w,, v,,... are odd; it
follows that no two numbers ot the form w,, have a common_
divisor other than 1. 4

Proor or THOrREM 3. By the above lemma, each of the numbers
Vg, Vg, ..., Ugn, 18 divisible by an odd prime which does not divide
any of the others. Therefore there are at least » odd primes not
exceeding vyn. This proves the theorem.
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ON AN ENTIRE FUNCTION DEFINED BY A GAP
DIRICHLET SERIES

By K. N. SRIVASTAVA

IntrODUCTION. The sequence {A,} will have, throughout the
present paper, the following properties :

@ {4} 1 >0
(b) hnliann«i—l"ﬁknl_“’">0‘
f—>0

(¢) Let v(x) be the greatest of n such that A, < 2. Then v(z) will
be called the distribution function of the sequence {A,}. It is such
that v() = 0, for # < A,. The quantity

lim sup i D
T €
is called the upper density of the sequence {A,}. We suppose that
D is finite, |

Let f(s) = E @, 6xp (A, s), where s = o 4 it, be a Dirichlet series
n=1

convergent in the whole plane. It is interesting to note that, since
D < 1/h, the series which represents f(s) will be absolutely convergent
in the whole plane, since, according to a well-known result, a Dirichlet
series whose exponents form a sequence of finite upper density hasits
abscissa of convergence equal to its abscissa of absolute convergence
(1]. Therefore, f(s) is an entire function. For this class of functions,
for any given Re(s) = o, lim sup | f(o i) | has a finite value M (o, f).

—00 <P

After Ritt [3], we define the order of f(s) in the following way :

p — lim sup loglog M(o, f) ,
g0 o

and the lower oxder of f(s) is defined as

A=limsup}—(§—lgjg—p£(:—’£) .

o—>® o
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Since the series f(s) is absolutely convergent in the whole plane,
for any given Re(s) = o, there is at least one term of the series
whose modulus is greater than that of all the other terms. We denote
this term by (o, f). When more than one term of the series are in
modulus equal to w{a, f), we shall agree to regard the term with the
greatest value of A, amongst them as the maximum term ; with this
convention Ay, » = Ay will be called indicative index, as it
denotes the index N{(c, f) of the maximum term.

1. An entire Dirichlet series of order infinity.

1.1, If p = oo, the function f(s) is of infinite order.

Following a procedure similar to Hoing [2], it may be proved
that in this case there always exists a function W(o) with the
following properties :

1 ,
W{ - log W(o‘)} < W),

where ¢(o) tends to zero as o tends to infinity, and

lim sup loglog M (o, f) _ 1

a0 log W(o) ’
and finally log W(o) is a convex function of ¢. Any function with
the above properties is called an order of f(s).

In another note [4] 1 have proved

hm1nf10g:l“' f) z /]imsuplogﬂ(a’f)
oo Ay, DD Bl Ao,
Hence for a function of infinite order we have
lim inf 8 #(2:f) _ 4.
g3w ’\N(s,f)
Moreover, according to Sugimura ([5], Theorem 5), as D is finite,
log u(a, f) = (1 — &(0)) log M(o, f),

and consequently we shall have
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S .
lim inf Mo:’_'f_) = (.
o> Nia,f)

It is possible to refine this result and to prove
TaporeM 1. If M(o, f¥) = lim sup |f?(c + it)|, where f?(s)

~o<<+©

denotes the p-th derivative of f(s) and p is any function of

)‘N(o,f) = AN(a)a P(Ay) =o (/\N/log Ax)s

then
lim inf P8 M (0. f% _ (1.1.1)
=300 )\N(c,f)

Before coming to the proof, we shall establish a result that we
require for its proof.

1.2. THE ORDINARY INTERVALS. The argument of this section
is similar to that of Valiron ([5], pp. 93-95).

The absolute convergence of f(s) in the whole plane requires

lim suplo_g.ﬂ_‘ = — oo,

R—>0
As pointed out by Yung [7], we can construct a Newton’s
polygon with the help of the coefficients. We shall compare it with
a polygon corresponding to a function of simple growth. This
amounts to the comparing of the coefficients of the two functions.

Let F(u) be a Dirichlet series in the real variable » with positive
unbounded coefficients,

o0

F(u)-= Z exp [H(),) + A, u]. (1.2.1)

n=1
This series is convergent for % < 0, where the numbers H(A)
tend to infinity and H(z)/x tends to zero as z tends to infinity.
It is clear that the points 4, x, = A,, y, = —H(Q,) are the
vertices of a polygon concave in the positive direction of y-axis.
Let this polygon be denoted by =(F); for every w < 0, F(u) has
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a maximum term which can be determmed by finding the tangent
to «#(F) of slope u.

Y

= (f]

WW) Flo - D]

1
]
1
\
i
[}
L}
H
1
1]
t

n[F(o D]

F(o
< — X

1
'
1
1
1
1
|
1
1
AJ
1

[ F)

Now let | be any number and ¢ be & quantity less than I, such that
o —1 < 0. To the series F(c—1) there corresponds a polygon obtained
by adding A,l to the ordinates of 4,. The slope of the sides of
#[F(s —1)] is an increasing function tending to I. Since the slope
of the sides of #(f) tends to infinity, the polygon =[F(c —1)] lies
below =(f), hence as is evident from the figure, a translation of
w{F(c —1)] parallel to QY can be effected, so that, in this new
position no vertex of #[F{oc —1)] lies above the corresponding
vertex of #(f), while the two polygons have at least one common
vertex. If we denote this translation by [— log ¢(f)], the polygon
in its new positior corresponds to the coefficients of [¢(1) F(o —1)]
regarded as a function of o, it will be denoted by w[¢(l) F(c — )]

The polygons m(f), w[4(!) F(c — I)] have one or more common
vertices. Let A,; m be the greatest of the abscissa of these vertices.
Now at the common vertex every tangent to = [¢(l) F(o —1)] i8

also a tangent to m(f). In particular the line of slope given by the
equation
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ol) =1 — H'[Agp],
where

B = L 8@,

will be a common tangent to #[ $(l) F(o —1)] and #(f) at the point
of abscissa A,; z,. For this value o(l) of o the maximum terms of the
two functions f(s) and [¢()F(oc —1)] are equal and of the same order
of magnitude and have the same indicative index A, ;, while the
second function dominates the first.

If 1 increases steadily, A,; » is non-decreasing, for the slope of
sides of [¢(l) F(oc —1)] increases indefinitely with I. Thus A,q m
cannot be bounded. Similarly ¢(f) cannot be bounded, hence it is an
unbounded increasing function. H'(d,; ) is thus a decreasing
discontinuous function of ! which tends to zero as ! tends to
infinity. Hence it follows that ¢(l) is an unbounded non-decreasing
function of I and its only discontinuities are those of H'({). These
occur where } is such that ), , is discontinuous and correspond to
those values of I for which the ploygons #(f) and =[¢() F(c —1)]
have several common vertices. The total number of such
discontinuities between 0 and o(l) cannot exceed the total variation
of H'(x) and this is finite. Hence we have

THEOREM 2. Given an entire Dirichlet series f(s) and a series
F(u), we can, in general find two numbers I and $(l) corresponding
to & given value of o, such that for this value of o, the maximum terms
of the two functions f(s) and [$(l) F(oc —1)] are equal and have the
same indicative index, and the first function dominates the second.
The values of o in the segment (0, o) for which this property does not
hold good, constitute a set of not more than N (o) indervals, where N(a)
corresponds 10 Ay = Ay, ond the measure of these intervals is
finite.

Those values of o, for which this property holds, shall be called
ordinary values. It is of course understood that they are ordinary
with respeet to a giveu function F(u). Values which are not
ordinary are called exceptional.
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1.3. We are now in a position to prove Theorem 1. We require
the following lemmas :

Lemma 1. If ulo, f) is the maximum term of f(s) for Re(s) = o,
then

lim inf 08 f) _ o
G~>® ‘N(s,f)

(1.3.1)

Lemma 2. If f(s) = §I anexp(A,ls)tke%‘ﬁ(s):;l [@,/A, exp(A,8)],
n=1 n=1

ts also an integral function, whose central indicative indices are o

sub-sequence of those of f(s). If p(A,) =o(A,/log },), then for some
large p

M(p, f?) < K1AZ pip, )], (1.3.2)
where Ay (p, f) = Ay is also the central indicative index of ¢(s).

ProoF. It is clear that ¢(s) is also an integral function, so that,
we have for Ay = Ay(a, ¢),

lanl eXP (’\n O')/An < aN exp (AN 0)/’\1\7’

or

|a, | exp A,0) _ A

L PR N D D

lay|exp (Ayo) Ay
Choose B < 0, such that

)(n eXP (’\n 'R) < A.N exp ()‘N 'R)

which is possible for all A,. Hence we have

|4, oxp [X, (7 + B)] _ A, exp (A, R)
leylexp A, (0 + R)] " Ayexp(Ay R)

So that if

%o
F(s)) = > A, exp (M, s)), where s, — R - it, B < 0
n=1

we have

plo+ B, f)= [y | exp [)\N (G+R)] = (o, ¢) © (&, F);

hence it follows that the central indices of ¢(s) form a sub-sequence
of those of f(s). Hence
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2 [0, ] exp [Ay (o + B)] _ X+ exp (A, )
% lay [ oxp [y (o + B)] ~ B exp Oy 2)

and the lemma is proved, if we show that

Z Aotlexp(), R) <K[X? wp(R.F)]. (1.3.3)
=1

To prove this, we see that since p(A,) = o(),/log A,) the series
(1.3.8) is convergent for B < 0. We express this as a definite integral
in the following way :

0
( n)p—l—l B — J.xz)+lezkdv(x).
0

Let R= — 7, 0, then

o0}

(A,)PT1 OnB) — jxf’“ ¢~ %Y dy(x).
1 0

M ¥ 3 iMs

=

I

If ¢ is the value of z for which [ —2Y +log 2] is a maximum,
so that [ € — A, | < 0, then with p(A,) = o(A,/log A,), we have

Jx”“ exp (— 2Y) dv(z) = jv_(_x_) [2712 ¥ —(p +1)2?%1] oY, da
0 0

X

@22 Y —(p+ 1) 2?1 e~ du

)
o8

_D.(p+1)
=

< K [X¥ p(B. F)]

= D.(p + 1)1 ¢z +2

since ¥ = 1/¢, lim sup v@) _ D (finite). The lemma is thus proved.
x

Z—>c0
LEMMA. 3. If A.N(c‘,tﬁ) - AN(R,F) - AN(G‘-[— Rf) then
lim inf 2842 ¢) _ ¢
g—>0 N(o,$)

The result now follows immediately, for choose Re(s) = o to
which Lemma 3 applies, then we have



32 K. N. SRIVASTAVA
lim inf 2829 1)  fim inf 2218 Ay | iy ing 108 O F)
g—>© A N (s, 1) N> N c—>0 A N(o, f)
This is zero by the choice of p and Lemma 3.
1.4. THEOREM 3. Glven any increasing function ¢(x) tending to

infinity (however rapidly) with z then there are entire Dirichlet series
f(s) and F(s) both of infinite order, such that

lim inf #(@) 108 Mo, /) _ o (1.4.1)
g—>w N(o,f)

lim sup =222 2/ log M (o f) (1.4.2)
g—>0 \N(c, )

Yim sup 28 (e F) _ (1.4.3)

>0 ¢[ g AN(c F)]

Proor. We may suppose that ¢(z) > 2 for x > 1 and
8@, 255 co.
X

Let p; =14 ¢ p,,; = exp exp(y,) and let B, be a rapidly increas-
ing sequence of positive numbers such that 8, — 1, and

1
B.>2 M.”’_n) + Bu—1, Op = 0xp [, log tln=1,2,..

Hn
o o
=21

It is easily seen that f(s) is an entire Dirichlet series of order infinity.

Let
= log [P”{I+QVJT‘_;L;}]’

then fOI' n > no, AN = AN(Gn,f) = O'IL’

Cqn C’n n— - %) 'n
[g_;l] < .M( f)<n(eaﬂ)0n 2 +( )C' 1 + (6—_)0 .
f f“n 1 ey

and
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Hence log M(a,, f)~C,/é(2 u,) il 4,, hence
$(cn) log M(oy, ) $(2p)
AN("n:f) ¢(2 F'n) i Hn
where llz = log log 2.
Further it can be shown that log M(c, f) ~ log u(s, f) and for

0= Myt
log M(o, f) -~ Colttns1 —log py)
Avio.p) Hnti-Van
To prove 1.43, let £, = n”, 0, = 2, k, = exp [nd {(0, log &,.1)/v/ n}],
0,=explk, +6,+1),n=12,.
1

,—*0asn— o0,

—1 as n—> 0.

nam T ’ = 13 [EEE) ’
o = G gy D
= §n+1. __1
o Vol —a,,

and

e 5 N\ Op s \ 140, s \EptO,

Flo) = > [(3) +(3~) +...+( € ) ]
nel fn an,l an,kn

The function F(s) is an entire Dirichlet series of order infinity.
Further for o =log(£,,1/v/n), we have

Mo, F) > [( RSN +9n))1+0n+...+

(- emETm)

S el 4 e~ UkntntD S = 1in
hence

log M(o, ) _ log k, + o(1)
¢ Ayio, ;) PO log (énta/ V)]

—> cO a8 7 —>C0.

2. On the growth of an entire Dirichlet series.

2.1. In this part we prove two theorems on the growth of an
entire funotion defined by a gap Dirichlet series.
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“

THEOREM 4. Let f(s) = § 6, exp(A,s) be an enfire Dirichlet
=1

series and « be any positive number. If [A,.,/A1% |a,/a, 4| s
ultimately an increasing function of n, then

Mo, f)<D(1 +o(1)) &7 €* p(o, f) Ay, p)- (2.1.1)
TarorEM 5. If f(s) satisfies the conditions of Theorem 1, then

lim sup log M(s,f) <1 ay—l
o> log u(o, f)

2.2. These theorems follow easily from Theorem 2. If f(s) satisfies”
the conditions of Theorem 1, then

(2.1.2)

$uls) = Z ( ;;) exp (A,9)

is also an entire Dirichlet series, for which all A, beyond some
definite A, are central indicative indices.

Let Ay = Ay, 4, then

lanle‘ﬂ°< |ay | ervo

XN

or

Iaﬂle)\nc A:
lay| erve - i

For any Ay, an R < 0 can be chosen, such that for all A, the inequality
(A,)% B < (Ay)* 7B g trye.

Hence
19, exp A, (0 + B) _ (A)% exp (A, B)
lay Lexp Ay (¢ + R) < (Ay)* exp (Ay R)’ (22.1)
which gives :
Aw (0, 9q) = Ay (0 + B, f) = Ay (R, F), (2.2.2)

where F(B) = S (\)* &R,
n=1

Further
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p(o + B, f) = |ay| exp [, (o + R)]

]“Nl

RS
— o, 4,) (R, F,). (223)

Since all A, in turn become central indicative indices of both ¢,(s)
and F (R), it follows that the values ¢ 4 R include all the numbers
exceeding some definite bound. From (2.2.1) we have

I M8

o«
|a, | elin(o+R)} = (A% eMR
1 =1

n < n
|| PN () &

Nowlet R = — Y, Y > 0, then

[=s]

D, () ea®

(A)* e~ 2n¥

I
iMs

3
[
-

a* e~ dy(z)

Il

Ot 8 °=——'oé

oy

(Yx"‘“ __xa) 2~ %Y o

< D (a + 1)/ Y41,
Hence
Z |a, | cxp{A, 0+R)}< D(L + ! .
I Pyc LB}~ Yerle WAL

Now d(« log 2 + Rz)/dx = o + E. Hence z* exp (zR) increases
steadily till :v.R — — o and & =2 = — «/R and then decreases
steadily. Hence, if Ay = Ay(R, F), then |Ay — §| <O. Therefore

(2.2.4)

§1 la,| exp{A(c + B)}

x| exp {Ay(o + B)}
Since, as has been observed, all large values are assumed by
o + R, from (2.2.2), (2.2.3) and (2.2.5) we get the result.

<D +a)! e a1 Ay, (2:2.5)
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Also from (2.1.1)

1i 10gM(0,f)<1+1- u log {AN(O':f)}_
1I"?j‘}'}plog (o, f) g log { u(o, )}

From (2.2.2) and (2.2.3)

log {Ay(c + B, )} _ log {Ay(g, re}

log { p(c + B, f)} log { u(R, F,)} + log{n(c, ¢,)}
< log Ay(R, F',)
" log (B F,)

But

__log \y(R, F,) R
li o TN\ o) limsup ———F = 1/a.
oy log (B F,) ~ wow alogiy fa

Hence

[

o

1.

. log M(o, f)

limsuyp. =2~ 172

g~ P log p(a, f)

I am thankful to Prof. P. L. Srivastava for his helpful criticism.

<1 +a L.
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ON THE SEQUENCE (R}, V,= = &7

n_p
1<k

By U. V. SATYANARAYANA

Ler {V,}, n > 1, be a sequence defined by the recurrence- relation

V. =1<§]<k o; V,_; where o, V,, 1 <i<k are given real numbers
1%
with oy ;é 0.

For the case, wherc k=2, V, =1, V,=2, o, =y =1,
K. Subba Rao [3] proved that if u be an integer > 1, there exist
integers L and Ny(u) such that

(a,) v “ § H Vnzi v Zng

ng y_
( )-% 1€i<u (1<i<ﬂ

1€i<p )-Z+1

according as r Z 1 for n; > N (p), 1 <i<p; and

(b) m being any integer > 1, there are exactly mu members
of the sequence lying between V% and Vi, for n > Ny(u).
Theorem B below presents an extension of the results for k > 2 and
asimultaneous widening of the context to sequences {V,} satisfying
(1), (2), (3) and (4) of Theorem A below :

THEOREM A. ;S’uppose that numbers r, Gy, Gg, ..., Gy_q €Xist Such
that

(1) o<r#1;

(2) 2F—oyatl— ... —oy = (x—r)[f(x), where

fle) =2F"1 42" 2. Fa_y;

(8) 7 is greater than the modulus of every root of flx) = 0;

and
4) 8=Vy+ Z &V, ;>0

1<i<E—1

Then the sequence {V,} is ultimately positive and increases
strictly to + oo or decreases strictly to O according as v >1orr < 1
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TavorEM B. Suppose further that

(5) misaninteger > 1and is such that (i:%a———él;)gf% , where A =
1—p)l
5 is not an integer or zero, and let L(u) stand for I: (A —plog 4
r f(7) log »
+ 1.

Then integers L and Ny(p) exist such that

@ (a) (1 Ing \_yg, ; IT Vni><’ V(lflﬂi

. —L+1
<isp 1SS <i<n)

according as r 2 1 for ny > Ny (n), 1 <1 < 3
(b) L is unique and is equal to L(w) ;
and

(II) m being any integer > 1, there are exactly mu members of the
sequence lying between Vi, and Vi . for n > Ny(w).

It may be noted that Subba Rao’s proof of results I(a) and II
depends implicity on the conditions (1) to (5) above.

M. Perisastry [2], attempting to generalize the results of Subba
Rao, gave a proof in [2] of I(a) and II for the case k = 2, a; > 0,
ap >0, ¥y >0, V> 0 subject to conditions (1) to (4). His disregard
of condition (5) vitiates the left part of the inequality in I(a) (and
consequently the truth of IT) as can be seen by the following example.

Take V, = 4(2)" + (— 1)*, for n > 1 and let x be even. Then it
v

np—1

can be easily verified that < lifnisodd and > 1if » is even,

for n > .N O(‘lL). <
We shall first prove a lemma.

Levma. Let ry, 75, ..., 7, be the distinct roots of flx) =0 with

multiplicities @y, dg,..., d, respectively. Also let A(x) denote the
determinant of order k whose first row is

(L 2% ., 1)
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and whose i-th row, where § =1 +dye-d; + ... +d,+0,0<8<t—1,
1 <o<dy, withd,=0,is
(ke k3, (kB — 1)1 e NI L rrl ..., 20t Tey1s 1).
Then
A@) =@ — ) (3 —r)% ... (@ — )% =v f(2),
where
¢ @-1)
L[ -] T m}] 20
1<ist j=i+1

Proor. For any integer & > 2 let G (x, ¢y, ..., ¢,_,) denote the
determinant of order £ whose first row is

(1,252 ..., 2, 1)

and whose ith row, 2 <7 <kis
E—1  _E—2
(€§21> €1 +ovs €15 1),

where the ¢’s are all distinet. Now on subtracting the first row
from each of the remaining rows, it follows that

-

G(x, 61, ceny Ek__l) = G(el, erey €k__1) 1—_[ (x — 67')'
1S7<k—1
Hengce it follows that
-1
@, e ces )= I (6 —¢) H1 (# —¢,).
r=

ISr<8<k—1

Now carrying out the operation

2 -1 P i-1 2 )

(5—;;16(11) ces (-a—e‘iei) ...(5:2 2
on ((z, €, ..., _;) and setting ¢, = 3 = ... = ¢ = 71, Wo obtain
the determinant G(z, €y, ..., ¢_;) with the sth row, 2 <i<d; + 1
replaced by that of A(z). Continuing in a similar way with the
corresponding operators (¢ — 1) times more, we obtain the identity

under consideration.

Proor oF THEOREM A. Since none of the roots of f(x) is zero, it
follows from the above lemma and the usual methods of solving
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recurrence equations that there exist constants (real or complex)
B, 0,1 <i<t1<j<d,such that

i=1 i1
By.the above lemma, we can verify that B = r_fs(r_) = A of (5)
which shows that B > 0 by (1), (3) and (4) of the hypotzlesis.
Now, since
limYE":A>O and lim Vy =r=£l,
N R0

n—1

there exists a positive integer N, such that {V,} is positive and
strictly monotonic (increasing to + oo if > 1 and decreasing to
zero if r < 1) for n > N,.

We now prove Theorem B.

Proor or (I) (a). Taking L to be equal to L(u), we have 7

(1—p)log 4 L<(l—y)logA
log r log r

+1 @)

by virtue of (5) of the hypothesis.

Now it can be easily verified that

@
I Vs
Iim ————i=1 == A"-l rL_l’

Nj—>c0 V —-’n;) I 1
Ii<p  M<i<a +

which is S 1 according as r Z 1, by virtue of (i).
Hence there exists a positive integer N,(u) such that

I v,

1<i<a <1<¢\,.) —L+1

according asr Z 1, for n; > Ny(pn), 1 < i < p.
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Similar argument shows Atha’s_there exists an integer N,(u)
such that )
M 7,27,

Xng
1<i<n i )-L

1<i<n
according as 7 Z 1, for n; > Ny(u),1 < i < p.
Now, taking Ny(n) = max (N, Ny(u), Ny(u)), we have

|4 Zng s I Vn,,g v Ing

(1<‘i<u)_ >1<i<u 1<i<“)

(i)
"\'

~according as r Z 1 for n; > Ny(u), 1 <t < p.

Proor oF (I) (b). Suppose an integer L satisfies the inequalities
(ii). For definiteness, let # > 1. Then

IT V.,
Ar=pl=1 = lim sup IS L1, (iif)
j—>0 p ]
s Ggig, )T
and
I Vy,
Ar=1pl — Jim inf 1S%e  ~ 7, (iv)
Ng=>0 ( Zng )—L
1<i<e  Mi<i<p

Incqualities (iii) and (iv) show that

(A—mlogd , (A—plgd ,
log r log r
and by virtue of (5) of the hypothesis, we have L — L{u).
This completes the proof.

Proor or (II). For this we need only take n; =n,=...=n, ==
in (I)(2) and apply Theorem A.

Cororrary. If V,, a, 1 <1<k are all positive and condition (5)
of Theorem B is satisfied, then both the conclusions (I) and (II)
hold for the sequence {V,}.

Proor. Obviously conditions (1), (2) and (4) of Theorem A arc
satisfied ; and by Kakeya’s theorem [1], condition (3) is also
satisfied.
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I am thankful to Dr. V. Ramagwami for his valuable suggestions
and criticisms.

REF¥FERENCES
1. F. W.Levi: Algebra, Vol. I, 210, Calcutta (1942).

2. M. PzrisastRy: On the sequence{V,}, V, =aV,_; + BV, s
Math. Student, 25 (1957), 162.

3. XK. SueBarAO : Some properties of Fibonacci numbers, American
Math. Monthly, 60 (1953), 682.

Andhra University
Waltair



ON THE SOLUTION OF PARTIAL DIFFERENTIAL
EQUATIONS OF FIRST ORDER

By OMAR ALI SIDDIQI

1. Generalized method of parameters in the solution of non-linear
partial differential equations. In the method of parameters given by

Srinivasiengar [1] the substitutions p = filw, a) g = hy. )
, 4 )’ 4e )
the partial differential equation of the 1st order f(p, q, z, ¥, z)=0 an
indentity and the solution is determined on integrating dz = pdx +gdy.
This method applies to a large number of equations of allthe standard
forms and some general linear and non-linear partial differential
equations of the 1st order in two variables. The scope of the
applications can however be increased if the equation becomes an
identity on substituting p = ¢(z, y, 2, a) and q = Y(y, y, 2, 6).
Now dz = ¢ dz + §dy is an integrable total differential equation if

make

g—j = %f . The solution will be of the form F(z, y, 3, a, b) = 0 which
isa ‘complete: integral containing two necessary arbitrary constants
a and b. Srinivasiengar’s method of parameters is a particular case
of this. Many non-linear partial differential equations of the Ist
order which are not standard forms and to which Charpit’s
method does not apply are integrable by this generalized method

of parameters.

Exaweres. (1) Solve (p + y)" = Ug + )", where I, m, n are
constants.

This reduces to an indentity if
p=—y+aandqg= —z+ @/
Now dz = pde +qdy = (—y +a)dz + { —z + (a™/1)*} dy
giving 2 = — 2y +ax + (@™/)"*y + b as the complete integral.
(2) Solve zp +2q = — (2 + 7).
We put p = (— z/z -+ a/z), ¢ = (— ¥*/x — a/z).
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Now from dz = pde +qdy, zdz = (—z +a) dx — (y* + a) dy,
we get xz + 1 9° = ax —ay + b as the complete integral.
(3) Solve pja® +¢° = — /2.
3

—a° —2 !
,q =a'z.

We put p =
x

3 - a
Nowde = — % “*da+ 2 dy, or (edz +2dz) = — a’dx + ady
x

x
giving zz = — a®x + ay + b as the complete integral.
2. The generalized method of parameters can be extended to

partial differential equations of the second order as well.

Let f(z,9,2,p,¢,7,8t) =0Dbe a partial differential equation
of the socond order and let
r :fl(xa Y,%, 0,4, 0),

S :fz(w, y; Za .p, 93 “)1
and

t —_~f3(-7), Y,2,D0,9, a’)

satisfy it. If dp = rdx 4 sdy and dg = sdx + idy are integrable
then the integral of dz = pdx + ¢dy is a complete integral of the
differential cquation.

Examrres. (1) Solver —ty? = cosx.

Put r=a 4+ cos x and t = a/y®. The equation reduces to an
identity. Further ’

dp = (@ + cosx) dz, dg = (afy?)dy,
80

p:om+sinx+b, qg= —aly +c.
Now dz=pdx+qdy and hence dz =(ax -+ sinx+b) dz+(— a/y +¢)dy,
802 =} ax® — cosz + br —alogy + oy + d is the solution.
(2) Solve xr+ 2p =0.

Here r = — 2p/x satisfies the equation and 9p/dz = — 2p/x, hence,

logp = —2log@ + §(y) or p = f(y)/a? or z = — f(y)/w + F(y).
(3) Nolve pt—gs =g
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Here s = —¢?, t = 0 satisfy thesequation.

Now dg — sdz + tdy,so dg/(— ¢®) =dzor 1/g =2 + & —x + i(z) or

% =& + (z) or y = xz + f(z) + F(z).

This equation is otherwise worked out by Monge’s method.
3. Example (1) of §1 is a particular case of the partial differential
equation ¢(p, ¥) = %(g, ).

Let » = fi(y, a), ¢ = fo(x, @) be the values of p and ¢ which

ox’
and f, must be linear in y and z respectively, and so p =ky +1
and ¢ =kx +1’, or the equation is of the form .

H(p +ky) = (g + k=).

Hence ¢(p, y) = (g, ) occurs as an integrable partial differential
equation only in the form ¢(p + ky) — (g + kx).

4. The form fy(p, 2 %) =f(q, 2 9)- [y, %) =Fo(g, y) is one of the
standard forms; we find that f,(p, z,2) = f, (¢, 2, ¥) can as well
be treated as a standard form under certain conditions.

satisfy the eqﬁation. Now from dz = pdx + qdy, ’a@ _ % so f;
Y

Putting f,(p, 3, ) = f»(q, 2, ¥) = 6, an arbitrary constant, we get
P = (}S(.’I,‘, 2, @) and q= ‘/’(?/: z, a)'

Now the condition g]—O = Z_q is satisfied and so dz = pdr + qdy
Y x

gives the general solution.
ExampLes. (1) Solve 2% = pgxy.
‘We write this as z/pr = qy/z = 6, s0 p = z/ax and ¢ =azly.

Hence dz = (z/ax) dz + (az/y) dy, and dz/z = dx/ax + ady/y giving
2 = bx'/% y* as the general solution.

(2) Solve 2z (z%¢® + 1) = p=2.

N az 1 a_2 1/2
Here%z=2(z2€lz+1)=“glmgp:_z_andQZi—Z( 2)
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Hencezdz=axdx;|:(a2 ) dy and 2= a2’ 4+ /(2(6 — 2))y+b

or 22 = 2(a® 4 1) 2* 4 2 ay + b is the general solution.

(38) Solve p’zx +q2y = 2.

2 —
]096 =2 qy:a,weget
%y

—p'w
( )ﬂzandq—((l _:,a) )1/2.
(g fam) = (aiay) @

Writing it as

Hence dz =

and the solution is
V(A +a)z) = v/(ax) + vy +b.
Thesc are otherwise solved by Charpit’s method or by that of
Srinivasiengar. ’
I thank Dr. 8. M. Shah for checking the results.
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ON THE ASYMPTOTIC BEHAVIOUR OF SOLUTIONS
OF THE PERTURBED DIFFERENTIAL EQUATIONS

By PAVMAN MURTHY

1. Introduction. N. Levinson [2] and Hermann Weyl [4] con-
sidered the asymptotic behaviour of the solutions of the perturbed
linear systems where the perturbations could be majorised by linear
functions. Viswanatham [3] considered the case where the
perturbations could be majorised by functions w(z, {) which have a
monotonic character. The aim of this note is to consider, in a way,
a more general case where the majorising functions need not have
any monotonic character.

Viswanatham [3] assumed every solution of the original
unperturbed equations to be bounded as { — co and considered the
behaviour of the solutions of the perturbed equations as ¢ — c0. We
shall assume that every solution of the unperturbed cquations is
bounded as t — oo and ¢ — — oo, and consider the behaviour of the
solutions of.the perturbed equations as ¢ — co.

2. Asin [3] let the perturbed equation be

2".5= z aijzj’ +fi(z1, sesy zn, t) (’l;=]., ceny n), (A)

j=1
where a;; are all constants.

We can write these equations symbolically as 2’ = Az -+ flz,t),
where 4 = (a;) is the n X n constant matrix and f(z, f), # are

column vectors with components fi, ..., f, and 2, ... 3, respec-
tively. We shall say that a variable matrix P(t) = (p;) is bounded

ifits norm | P|| = X |p,;| is bounded.
ol ;

t,J=
Any solution of the equations (A) with 2(0) = y, is a solution
of the integral equation

z = exp(t4) yo + .[ exp((t — 8)4) f(2, 5) ds. (B)
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Suppose now that the followisg conditions are satisfied :

(i) [lexp(t4) || < ¢ for every value of ¢, i.e. every solution of 3’ = Az
1s bounded.

(i) [fexp(d)a, 1) || < w(||exp(td)]. |z (], t) where w(x,t) is con-
tinuous, non-negative in the region R defined by — oo <t < + o
ond x > 0.

(iii) The maximal solution b(t) of ' = cw(||exp(A4)| z, t) through
0, 1o |1} 7s bounded as t — 0.

Then every solution of (A) is bounded as t — co.

ProoF. Define y(t) = exp(— t4) z, then from (B) it follows that

|3

y() =0 + j exp(— s4) f(exp(s ) y(s), ) ds. (©)

0
Suppose b(f, €) is the solution of ' = cw(|jexp(td) |l =, t) +
through (0, [ly,l1), where € is a small positive quantity. The maximal

solution of 2’ = cw([|exp(t4)| z, ¢) through (0, [y, ll) is given by
lim b(¢, €) =b(@)[1].
e—>0

We shall first show that

ly@ Il < b, €).
Now this inequality is satisfied at (0, ||y, ).
Suppose at & point ¢ > 0, the inequality is not satisfied. Then on

account of the continuity of the fumctions involved, there is a

greatest interval in which the inequality is not satisfied. Let this
interval be 0 < a <t < e.

At g this relation reduces to equality. In other words
ly(@) | = b(a, €) and [[y(t) || > b(t, ¢) for & < t < e.

Taking the right hand derivative at ‘g’ we get

1y @i > lly@) I > b'(e, €),
i.e.

lexp(— a4) flexp(ad) y(@), 8) || > ow([ explad) . | y(a) |, &) + ¢
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1L.e.
cw ([lexp (@A) ||. | y(@)ll, 6) > cw(||exp(@A)|. [|y(a) [, 8) + <

(since (ii) is satisfied). This is obviously a contradiction.
Therefore || y(t) || < b(¢, €) for every value of £.

Therefore [|2() || = llexp(t4) y(1)l| < ¢ |9() | < cb(t, €)-

Making ¢ — 0, we get [|2(t) || < cb(®), ie. [z(t)]| is bounded
as t—ro0.

Note. Instead of condition (i), Viswanatham [3] imposed the
condition | f(z, t)|| < w(||2], ), where w(z, t) is continuous, non-
negative and non-decreasing in . Condition (i) is obviously a less
restrictive condition and our result is therefore in a way a
generalization of the corresponding theorem in [3].

In the end, I thank Dr. B. Viswanatham for his encouragement
and interest shown in this work.
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FLOW OF A COMPRESSIBLE VISCOUS FLUID
ROUND A CORNER

By J. N. KAPUR

1. Introduction. In arecent paper [4], Ray has studied Prandtl’s
problem of expansion of a uniform supersonic stream of gas flowing
round a corner. He takes both conductivity and viscosity into
account, but in spite of starting with non-adiabatic conditions, he
finds that the equations lead to an adiabatic flow and that the
transverse component of the velocity is equal to the local velocity
of sound. In spite of this similarity, he finds that the expressions for
the components of velocity and for pressure and density are analytic-
ally different from those obtained by the other methods.

In the present paper, we have examined the reason for this
difference and we find that it is due to the additional assumption
about u, as being proportional to some power of the enthalpy ¢,
that Ray has introduced. We find that this assumption is inconsistent
with the rest of his equations and assumptions, and in a fluid which
follows this law, p, p, 4, u, v cannot be functions of # alone. The
inconsistency is easily seen by verifying that the final expressions
for u, », p, p which Ray obtains do not satisfy all his equations.
We have found the correct law of variation of u which makes the
equations consistent and find that for this law the flow is the same

as for inviscid fluids. 3 5T 34
2. The baéic equations and their solution. As deduced by Ray
[4], these are :

@—fu:() (1)
dae
put L (pv)=0 (2)
ae
dv . @ 3)
P”(”+Eé T, (
di _dp 4) |

Pae ~ a8
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ip="""—p (5)
y —1
d (;.c de ) 0 (6)
a9\ db
A 2p=0. (7
¥rom (4) and (5), eliminating ¢ and integrating, we get
P _ ( L )7, (8)
», Ps
For (2) and (3) to be consistent, either
. dv dp dp
—_— = O, _— = 07 _— = O
@ vt a6 a6

which together with (1) give a stream with wuniform velocity,
pressure and density. This may be the original stream or the stream
that may be reached after the expansion is over; or

(ii) 2P _ (9)
dp
From (1) (3) and (8), we get
2 | .2 vy p _1 4 v » _ 1 10
(u +v)+ 1 p 2 +'y_—-_—l P - ZQmax) ( )
which is Bernoulli’s equatlon for steady adiabatic flow.

Equations (8), (9) and (10) have been obtained by Ray by malking
use of his assumption

@/ = const. (11)
but it is obvious that they can be obtained independently of this

agsumption.

In fact from (1), (2), (3), (4) and (5), we can solve for u, v, D, P
and ¢ as functions of ¢ giving : (Howarth 2n

U =Gmex S (M), v = Agp,, cos(A6) (12)
P =cos (M), P — coszir2(ng). (13)
Ps Dy
e _ 2 - Y D 2
a cos® (M9), ¢ = i cos? (A9), (14)
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where
_y—1 1
= 15
y+1’ B= y—1 (i8)
and the suffix s refers to the sonic conditions.
Now from (6)
[ X b = — A
T const. (16)

say, so that assuming Prandtl number ¢ to be constant and using
(5) and (14),
Ao Ac

'u,=— —_— et
di 2—2—& A cos Af sin A6

a6 y—1p,

L ! (17)
2,(2B + 2) sin A cos AG’

From (14) and (17)
1
| V=)

This is different from the form (11) assumed by Ray. If Ray’s
assumption is replaced by (18), it is obvious and can be easily
verified that we get Meyer’s [3] results (12) to (15).

Knowing p, (7) determines A.

3. Componjents of stress and strain, With the assumption of «, v,
p, P, %, being functions of @ alone, we have
—2 ﬁ‘ —0 ‘ (19a)

2 au 2u _ 2 [ + _ gqu(l —X)sinAd  (19Db)
a

@@ty

10u dv v 1fdu ]
—_ - - _— — e = — P . /4 = 0. 190)
e r 06 + or ¢ rLdf (

Also divergenee is

10w dv 1 o s
A — + + = U+ — | = = Qmax(1 —AY)sinA8. (20
7 rod I: a r ( ) (20)
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Therefore stress components are :

Pp=—DP+AA+pe, |

AO‘PS I— X Tmax
2(B+1) r cosAl’
Pog=—P+AA Fpeg=—p+AA+2pA = — p,cos®2r0, (21b)

= —p, 00sFTZ A 9 — (21a)

Pro = g = O.\ (21¢)

4. Conclusion. We find in the light of the above discussion of
Ray’s treatment that—

(i) if the equations of motion, continuity, energy and state hold
and

(i) wu, v, p, p, ¢ are functions of 9 alone, then it follows that

(a) the adiabatic conditions hold, the dissipation function is
zero and the radii vectors are the Mach lines;

(b) either the viscosity is absent or it follows the law (18);

(¢) if A+4-2u # 0, then the only flow which is possible with
the above assumptions is that of a stream with uniform
pressure, density and velocity.

Further for the flow of a Fermi-Dirac gas [1], the above treat-
ment holds with y = 5/3.
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MATHEMATICAL NOTE

Triangular numbers which are also squares
By M. N. Kuatri, University of Baroda

A triangular number is of the form n(n + 1)/2 and a square number
is of the form m? We consider the solutions of the diophantine
squation

n(n + 1) = 2m?, ie. (2n + )2 — 2(2m)? = 1.
Evidently the solutions are provided by the convergents of /2, viz.

1 1 17
01 2 5 1227777

e«
-3

In fact, if we denote these convergents by Ny/Dy, & > 0; my, = N.D,
and n, = 2D? or N? according as k is even or odd. Thus we have

ng = 0= 2.02 my = 0= 00

ny = 1= 1 my = |

g = §= 222 - 6= 23

ng = 9= T my= 3 = 5.1

Ty = 288 = 2.12% My = 204 = 12.17

g = 1681 = 41 mg = 1189 = 2941

fig = 9800 = 2,702 Mg = 6930 =  70.99

n— 57121 = 239° my= 40391 = 169.239 '

ng— 332028 —  2.408% mg— 235416 = 408.577

ng = 1940449 = 1393 my = 1372106 = 985.1393
The following properties are noteworthy :

My — Mgy =My + g1 (1)

If n, —my, =1, thenmy_ymy=(+ 1) t = 2A¢. (2

My My = 2 (M1 + 1) (3)
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. 1
> gy = (). @
=1
anmk (nt_*—m‘) : (5)
My My g — My, Mgy = Mgy + g (6)
(2my, + )% + (2my, + 1y, 4+ 1)? = (g q — )%, (7)
¢
Z(Zn%+1)_s then 82 + (8 + 1)2 = (n, + &+ 1)2. (8)
k=1

n, +m, =q, n, + 2m, = s,

2 A, = A, where A, = 2@+ 1) o5 usual. (9)
2

t .
> Moy = 2 Ay + my) = A{2(m,) + my}. (10)

k=1



CLASSROQOM NOTES
An interesting property of numbers
By K. SusBa Rao, Maharajah’s College, Vizianagram

D. R. Kaprekar has enquired if numbers
(s O 15 Gy_gs -+ 5 gy Gy, Gg) = 1076, + 10" @, _; +...+ 106;+ ay,
where
o # 0,0, #0,and 0 <a; <9,j #0ormn,
exist, such that
(Bgs v+ es Gpy_gs By_15 Oy)
(@5 -+, Gg, Gy, Go)

Evidently 1 <k <9.

=k, an integer.

If such numbers exist, we must have

kay, — a, = 0 (mod 10)

and
a6, =ka, +1,0 <r<9. (L
Hence
(¥ — 1) a,, + kr = 0 (mod 10). (2)
Since
@ 9
0<a0<9,aﬂ<[769:l<[];], (3)

these three relations can be shown to hold only in the following
three oases :

k=1a,=1,2,3,..,9;
k=4,a,=2;
k=9a,=1

Fork =1, we must have a, ;=a; 0<j<n.
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Kork=4,4,=2,0, ;=1,6,=8,a, =7 and a; =9 for j other
than 0, 1,7 — 1 or #.

York=9,6,=1,8, 1, =0,0,=9,a, =8 and a; =9 for j other
than 0, 1, n — 1 or n.

Thus there are an infinity of numbers satisfying the given
condition. It is noteworthy that a number of type 2 is double the
corresponding number of type 3, thus

21978 is double of 10989.

In conclusion I am indebted to the referee for his help in
drafting the note in its present form.



BOOK REVIEWS

Functional analysis and semi-groups. By E. Hille and R. 8. Phillips
(American Math. Soc. Colloq. Publ. Vol. 31, revised edition)
American Mathematical Society, Providemce R. I. (1957), xii
+ 808 pp. $13.80.

Ta1s revised edition of a very popular book on Functional analysis
brings to the reader a wealth of information and presents the same
in & lucid manner. Much of the older material has been recast,
developed more extensively and modified in the light of later work.

An idea of the extensive coverage of the book may be obtained
from the following listing of the chapter headings :—

Part One: (Functional analysis): Abstract spaces, Linear
transformations, Vector-valued functions, Banach algebras, Analysis
in a Banach algebra, Laplace integrals and Binomial series.

Part Two: (Basic properties of semi-groups): Subadditive
functions, Semi-modules, Addition theorems in a Banach algebra,
Semi-Groups in the strong topology, Generator and resolvent,
Generation of semi-groups.

Part Three ; (Advanced analytical theory of semi-groups): Pertur-
bation theory, Adjoint theory, Operational Calculus, Holomorphie
semi-groups, Applications to ergodic theory.

Part Four : (Special semi-groups and applications) : Translations and
powers, Trigonometric semi-groups, Semi- -groups. in L,(— oo, ).
Semi-groups in Hilbert space, Miscellaneous applications.

Part Five : (Extensions of the theory) : Notes on Banach algebras,
Lie semi-groups, Functions vectors to vectors.

A welcome feature of the book is the summary given at the
beginning of each part, and the orientation prefixed to each chapter.
These prov1de the reader with & good idea of the coming section of
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the chapter. An extensive biblidgraphy and a general index add
to the facilities of reference and study. In short, it is a valuable
book on the subject, and is likely to be the basic work of reference
for many years to come.

V. 8. KRISHNAN

Tables of Partitions. By H. Gupta, C. E. Gwyther and J. C. P.
Miller, (Royal Society Mathematical Tables No. 4) Cambridge :-
At the University Press, (1958), xxxix + 132 pp. 63 sh.

THESE tables are a welcome addition to the literature of tables on
Arithmetical functions. They were initiated by H. Gupta and were
caloulated independently by H. Gupta at the Panjab University,
and Gwyther, Miller and their associates ab the Cambridge
mathematical laboratory.

The tables consist of four parts :—Tables I give the values of
p(n, m), the number of partitions of » into at most m parts for the
following values of » and m :—

n=1-—-200 201 — 400
O<m<n 50.

These are fundamental for combinatorial analysis because various
types of partitions can be expressed in terms of p(n, m}.

Define p,(n, m), p,(n) by the relations :

Zp,(n,m)t" H s ﬂ e

r=1 r= m+1
i pim) 1" = lwl ——177;
n=0 ra=l (1—7)

(Pg11(n, 0) =py(n), py(n, 0) = p,(n) = p(n), the number of unres-
tricted partitions of n). Tables II give py(n, m) for

n=1-50 51—100 101 —150 151 —200 201 — 250
o<m< n 23 . 20 12 11
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n= 251 —300 301 —350 351 —400 401 —450 451 — 500

0<m< 7 6 5 4 3
n= b0l —550 551 — 1000
0<m< 1 0

These tables contain the value of p(n) upto 1,000.

In Tables 11T py(n, m) is given for
7= 1-50 51 —100 ° 101 — 150 151 — 200
0<m< n 19 6 0
while Tables IV give ps(n) = p, (n, 0) for » < 200.

In addition to the tables there is a useful introduction by Gupta
and Miller. Starting with historical remarks on the tables of partition
functions in §1, the authors define various types of partitionsin §2.
They show how a simple graphical argument gives various inter-
réelationships between these functions. In particular, they show how
various partition functions can be expressed in terms of p(n, m).
 In §3, entitled generating functions, they start with the generating

functions for p(n), p(n, m) and introduce the fundamental function

<«

>(ITs)

m=0

[=+]
1
O(a, t) = H e
r=0 =
= p(n, m) a™ ",
nm=_0

Various formulae can be derived by taking a and ¢ of special forms.

. . e 1
In this section the authors also introduce identities for qm

®(t™, t) and mention various other identities idcluding those of
Roger-Ramanujan. §4 is introductory to the next three sections.
In § 5, starting with

m

n (1—_1_tf') _ Z (— Ly grem+ir+8) @, t)(ﬂ (—l_l_—t;))

r=1

they deduce
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p(n, m) = py(n, 0) — po(n —m = 1, 1) + po(n —2m — 3,2) — ...
This formula provides a valuable check on Tables I in terms of

entries of Tables II, and can also be used to extend the function
for many values outside the range of Tables I. A similar formula

pa(m, m) = ps(m, 0) — py(n —m — 1,1) 4 ...

is useful for Tables II. In §6 the authors describe various methods
of deriving formulas for p(n, m) for fixed small m and general # in
terms of circulators and binomial ccefficients due to Cayley,
(laisher, the authors and others. In §7 some asymptotic results for
large n are mentioned. §8 describes the tables, while in §9 they give
the formulae used for actual calculations, and various checks applied
by them. In §10 they describe the thoroﬁgh reading of proofs
carried out at two places independently. The introduction ends with
an exhaustive bibliography.

R. P. BamBan



NEWS AND NOTICES

Tz following have been admitted to the life-membership in the
Society : N. A. Khan, and 8. Rajan.

The following persons have been admitted to membership in the
Society.

G. L. Bakshi, V. B. Buch, B. N. Deo, V. M. Deshpande, W. Hahn,
‘K. Krishna, M. Leela, N. K. Mehta, S. Mukerji, Muthulakshmi
Iyer, M. Parthasarathy, D. M. Patel, M. S. Rajajee, B. N. Sahaney,
A. C. Shamihoke, V. Srinivasa Upadhyaya, S. K. Srinivasan,
M. L. Srivastava, B. N. Tagore and B. S. Yadav.

The council of the Society has been reconstituted as follows for
the Session 1959-1961. Prof. B. S. Madhava Rao (President), Prof,
8. Mahadevan (Secretary), Prof. R. P. Bambah (Editor), Prof. P. L.
Bhatnagar (Treasurer), Prof. C. T. Rajagopal (Librarian). Other
members are: Prof. G. L. Chandratreya, Prof. V. Ganapathy Iyer,
Prof. V. 8. Krishnan, Prof. S. Minakshisundaram, Prof. N. S.
Nagendranath, Prof. V. V. Narlikar, Prof. B. N. Prasad, Prof. Ram
Behari, Prof. N. R. Sen and Prof. N. G. Shabde.

Dr. S. M. Shah is extending his stay in America and is now
visiting professor, North Western University, Evanston for the
Session 1959-60.

Dr. S. M. Shah has resigned the editorship and the Council has
appointed Prof. R. P. Bambah (Chief Editor) and Prof. P. L.

Bhatnagar as editors.

Members of the Society intending to present papers for the 25th
Conference of the Society to be held in Allahabad from December
25-27, 1959, are requested to send their papers in full along with
two copies of abstracts (in special forms obtainable from the
Secretary) to Prof. R. P. Bambah, Panjab University, Chandigarh-3
to reach him on or before 1st November 1959,
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Sri M. V. Jambunathan has been awarded the Ph.D. degree by
the University of Mysore for his thesis on ‘Some studies in Statitical
Sampling and Sample Survey.’

Miss Abha Mitra who was in London for further studies has been
awarded the Ph.D. degree by the London University for her thesis
on ‘ Generalized Nilpotent Groups.’

Sri Sahib Ram has been awarded the Ph.D. degree by the Indian
- Institute of Technology, Kharagpur, for his thesis on ‘Triangles,
and Tetrahedra, Circles and Spheres, Conics and Quadrics.’

Dr. 8. Swaminathan has been appointed lecturer in Mathematios,
Madras University.

Dr. J. N. Kapur has been appointed Reader in Mathematics,
Delhi University.

Dr. M. 8. Ramanujan and Dr. 8. C. Saxena are joining the
Universities of Michigan and Atlanta respectively.

The next International Congress of Mathematicians will be held
in Stockholm in 1962,

The Fifth Congress on Theoretical and Applied Mechanics will be
held in the University of Roorkee under the presidentship of its
Vice-chancellor Dr. A. N. Khosla from December 23-26, 1959.
This will be preceded by a symposium on ¢ Non-linear Physical

Problems’ under the joint sponsorship of the Society and the
UNESCO on December 21 and 22, 1959.

o

The second Summer School of Mathematics under the auspices
of the Mathematics Seminar and the University of Delhi was held
in Ramjas College, Delhi, for s month from the 11th May, 1959.
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THE INDIAN

Receipts and Payments Account for the

RECEIPTS
Subscriptions and Memberships ...
Life Memberships

Grant-in-Aids :

Bombay University -

Osmania University ; Hyderabad (Dn )

Madras University :

Others . . o .
_ National Institute of Sclences of India, New

Delhi

Golden Jubilee Publication :

Grants from various Universities (kept in
Deposit as Speclal Grant for the expenses of
the publication) .. . . e

Sale of Publications

Interest on Bank Balances
Advances Received Back
Associate Society Memberships
Suspense

Opening Balance :
Cash on hand
In Current A/c with Indla,n Ba,nk Mylapore

In Saving Bank A/c with Indla.n Bank,
Mylapore .

In Current Aje Wlth Sa,ngh Ba,nk Ltd
Wellingdon College Branch Sangli ..

Total Rs...

Bombay,

Dated : 22nd August, 1959,

Rs. nP,

200 00
100 00
150 00
100 00

2,000 , 00

10 54
579 89

947 68

371 44

Ps. nP.

8,783
935

2,550

7,350
861

2,092

278
80

1,909

64
50

00

00
91
68
31
65
00

56

24,850 24

B e



MATHEMATICAL SOCIETY

year ending 31-3-1959.

PAYMENTS Rs. nP. Rs. nP.
By A. Narsing Rao Gold Medal Expenses ... ' 202 00
, Printing and Stationery ... - 923 15
., Office Expenses ... 32 50
., Aundit Fees 50 00
,» Postage and Railway Freight for Journals 1,304 32
,» Office Postage 938 91
,, Library Purchases ... 3,302 44
., Advances Made ... 1,877 82
,» Outstanding Bills Paid ... 217 99
»» Travelling and Conveyance 141 42
,» Book Binding Charges ... 043 94
»» Honorariums and Remunerations 445 00
»» Bank Commission 24 21
,» Printing of Journals 9,400 65
,» Closing Balance :
Cash on hand ... . . 12 33
In Current Ajc with Indla.n Bank Ltd.,
Mylapore, Madras ... 175 47
In Saving Bank Account with Indlan Ba,nk
Ltd., Mylapore, Madras . 47 68
In Current A/e with Sangli Bank Ltd
Wellingdon College Branch, Sangli e 4,810 41
- 5,045 89
Total Rs.... 24,850 24

Examined and founi correct.
P. G. BHAGWAT

Chartered Accountants.
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SUCCESSION LIST Of OFFICE-BEARERS

PRESIDENTS :

B. Hanumantaa Rao (1907-12), R. N. Apre (1912-15), E. W.
MippreEmasT (1915) R. RamacEanDRA Rao (1915-17), A. C. L.
WiLRINsoN (1917-21), H. BAragrraMm (1921-26), V. Ramaswawmr IvER
(1926-30), M. T. NaranNiENGAR (1930-32), P. V. Smseu IvEr
(1932-34), H. G. GHARPURY (1934-36), R. P. ParaNsPYE (1936-40),
R. Vampvavataaswamy (1940-42), F. W. Levr (1942-47), M. R.
SippiQr  (1947-49), A. Narasivea Rao (1949-51), T. Visava-
RAGHAVAN (1951-53), Ram BEHARI (1953-57), V. GANAPATHI IYER
(1957-59), B. S. MabpHAVA RaO (1959- ).

SECRETARIES :

V. Ramaswami Iver (1907-10), D. D. Kapapia (1910-22), P. V.
Sesau Iyer (1922-26), N. M. Smam (1926-28), G. S. CHOWLA
(1928-29), Murunpa Lan (1929-32), S. B. BerLEgar (1932-36),
Ram Brmarr (1936-43), M. R. Siopiqr (1943-47), T. Visava-
RAGHAVAN (1947-51), S. MAHADEVAN (1951- ).

TREASURERS :

K. J. Sanyana (1907-10), C. Porrarp (1910-14), S. NARAYANA
" Iver (1914-28), S. R. RaNeanNaTEAN (1928-33), L. N. SuBRA-
MANIAN (1933-44), A. NarasiNca Rao (1944-47), Ram BrHARI
(1947-53), C. N. SRINIVASIENGAR (1953-55), G. L. CHANDRATREYA
(1955- ).~

EDITORS : JOURNAL

M. T. NARANIENGAR (1907-27), R. VAIDYANATHASWAMY (1927-50),
K. CHANDRASEKHARAN (1950-58), S. M. Suam (1958- ).

EDITORS : STUDENT
A. Narasinea Rao (1933-50), C. N. SRINIVASIENGAR (1950-53),
K. CHANDRASEKHARAN (1953-58), S. M. Smam (1958- ).

LIBRARIANS :

R. P. PARANJPYE (1907-22), V. B. Namx (1922-36), R. P. SHINTRE
(1936-44), D. D. KosamsI (1944-50), T. VIJAYARAGHAVAN (1950-55),
C. T. RATAGOPAL (1955- ).



MESSAGES

Messages wishing the Golden Jubilee Session success were
received from :

Vice-President of India, Governor of Bombay, Minister of -
Education, Bombay ; Minister of Public Health, Bombay ;
Vice-Chancellors of the Universities of Baroda, Bombay,
Gujarat, Karnatak, Jammu and Kashmir, Jadhavpur,
Marathwada, Nagpur, Peshawar, Panjab, Rangoon, Venkates- .
wara ; Registrar, Womens’ University ; Principal, Chathrapati,
Shivaji College ; Dr. C. D. Deshmukh of University Grants
Commission ; Prof. P. C. Mahalanobis ; Prof. M. S. Thacker ;
Dr. P. V. Shukatame ; Dr. M. R. Jayakar ; Dr. C. P. Ramaswami
Iyer; Dr. A. Narasinga Rao; Dr. B. R. Seth; Dr. S. R.
Ranganathan ; Dr. M. R. Siddiqi ; Professor D. D. Kosambi.

Messages of congratulations were received from the Cambridge
Philosophical Society (a fascimile copy of the message appears in
the opposite page), American Mathematical Society, London
Mathematical Society, Moscow Mathematical Society, 10th British
Mathematical Colloquium, National Research Council of Japan,

Caleutta Mathematical Society and National Institute of Sciencos
of India.



The CambridgiPhilosophical Sociee
Teamswith grmrysl?a;m thar !
3bhe ShdianMathemarical Socicty®
isthis year celchruting the Golden Jubilee

We like to remember at thus time the long connection
that India has with Cambridge mathematicsthrough
the many students whohave come here from your country
for study and research, andn partiardar we recallwith,
pleasiire that From its inception the Indian Mathematical
Society hasbeen in contunuous communication with the
Cambridge Philosophical Soctety through the interchange

of our respective publications.

We Tuope that the contact between our two Socteties will
Qrow and strengthenn the years to com,and we wisho
the lndian"Mathematcal Society all prosperity on this

&ED ausprcious occasion. <53

?rmdmf/ m ouoleer
“Mathemationl
Steretazy P Sivmerlom - Dges

—T T

December (1558
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, Sitting: V. 8. KRISHNAN, Y. MUSIELAK, MRS. LEHMER, B. N. PRASAD, V. V. NARLIKAR, 8. MINAKSHISUNDARAM, RA} BEHARI,
D. H. LEHMER, 8. MAHADEVAN (Secretary), 8. V. RAMAMURTY, V. GANAPATHEY IYER (President), R. P. PARANJPYE (Vice-Chancellor), M. V. BHIDE,
H. G. GHARPURE, D. D. KAPADIA, K. 8. KRISHNAN, V. §. HUZURBAZAR (Local Secretary), N. G. SHABDE, MUKUND LAL, G. L. CHANDRATREYA,
E. R. GUNJIKAR, P. L. BHATNAGAR, HANSRAJ GUPTA, C. N. SRINIVASIENGAR.

Standing 1st Row: V., N. SINGH, N. SANKARAN, B. D. AGRAWAL, 5. RAMAKRISHNAN, P, TIWARI, M. M. LAL, D. R. KAPREKAR, G. C.
NIWAS, P. N. VIJAYVERGIA, 8. L. MALURKAR, K. M. SHAH, M. N. KHATRI, C. B. L. VERMA4, §. 8. SUBRAMANIAM, B. R. BHONSLE, J. DUTTA,
D. V. RAJALAKSHMAN, T. VENKATARAYUDU, M. N. BHAT, V. LAKSHMI KANT, P. 8. V. NAIDU, M. VENKATESWARA RAO, J. RAMAKANTH,
SAHIB RAM, 8. PARAMESWARA IYER, P. D. 8. VARMA.

Standing 2nd Row: M. N. VARTAK, S. P. BANDYOPADHYAY, A. C. CHOUDHARI, NARAYAN SINGH, 8. L. GUPTA, D. L. SHARMA, O. P.
GUETA, P. 8. VENKATESAN, K. MARKANDESWARA RAQ, P. 8. RAU, P. C. JAIN, B. B. MEHRA, 8. C. SAXENA, B. 8. K. R. SOMAYAJULU, M. RAGHAVA-
CHARYALU, M. L. CHANDRATREYA, K. K. DESHPANDE, P. K. SRINTVASAN, J. N. PANDA, A. KAMESWARA RAQ, T. B. SAWHONEY, D. K. GADRE;
M. 8. LUTHAR, SHANTI NARAYAN, C. 8. VENKATARAMAN, R. VENKATARAMAN.

Standing 3rd Row : M.V.SUBBA RAOQ, J. D. GUPTA, J. N. PATNAIK, REV. GONSALVES, M. RANGANATHAN, J. A, SIDDIQT, M. BHASKARAN,
A. AHMED, 8. C, MALIK, D. N. VERMA, R. MANOHAR, J. M. GANDHT, L. N. KAUL, L. V. SUBRAMANIAN, V. K. BALACHANDRAN, W. F. KIBBLE,
P. 8. SUBRAMANIAN, 8. 8. CHEEMA, H. G. 8. SHARMA, T. J. BALWANTI, P. D. GUPTA, K. M. GARDE, R. K. JAGGL R. 8, MISHRA.

Standing 4th Row : K. V. SHANKARANARAYANAN, P. V. RANGANATHAN, Y. R. PHATAK, M. K. AGRAWALA, A, V. RANGARAJAN, P. R
SREENATH, 8. VISWANATHAN, R. 8. REDDY, K. KISHAN RAO, B. VISWANATHAN, A. G. LELE, V. VENUGOPAL RAO, M. RAJAGOPALAN, R.
BOJANIC, A. K, DESHMUK, B. N. SREENIVASA RAO, C. JAGANNATHA CHARI, V, D. GOPALAKRISHNAN, 8. SWETHARANYAM, M. S. RAMANUJAN,
8. SWAMINATHAN, 8. R. SINHA, §. K. HINDI, A. SHAMIHOKE, J. N. KAPUR, G. BANDYOPADHYAY, M. K. SINGAL.

Sitting on ground : MRS. MARAKATHA KRISHNAN, MISS PADMAVALLI, MRS, KAMALAMMA, MRS. N. PRAKASH, MRS. JYOTI LUTHAR,
MISS GIRIJA KHANNA, MISS K. SAVITRI, MRS, VYDEHI VENKATARAMAAN,






10-00 A.M.

12-00 NooNw

12-10 p.M.

1-00 »p.M.

2-15 p.M.

2-45 p.M.

PROGRAMME

Wednesday, December 31, 1958

Inaugural Function
Prayer Song
Reading of Messages

Welcome Speech by Dr. Sir R. P. Paranjpye,
President,  Reception = Committee, and Vice-
Chancellor, University of Poona.

Inauguration of the Conference and opening of the
Mathematical Exhibition by Shri Y. B. Chavan,
Chief Minister, Bombay State.

Report by Prof. 8. Mahadevan, Hon. Secretary.
Presentation of Medals.

Jubilee Address by Dr. K. S. Krishnan, r.R.S.,
Director, National Physical Laboratory, New Delhi.

Presidential Address by Prof. V. Ganapathy Iyer,
Speech by Prof. Ram Behari—past President.

Photo (Delegates only).

Visit to the Mathematical Exhibition.

Lunch to delegates.

Business Meeting of the Council of the Society.

Annual General Meeting of the Society.
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3-15 r.Mm.

4-45 P.M.

5-30 P.M.

8-00 Pp.M.

9-00 P.M.

9-00 A.M.

11-00 A.M.

12-00 Noon

12-30 p.M.

1-00 p.m,

2-15 p.M.

3-15 p.mM.

5-30 p.mMm.

PROGRAMME

Sympos;ium on Ordered Structures led by Dr. V. 8.
Krishnan. Other participants: Dr. V. K. Balachand-
ran, Dr. S. Swaminathan, Shri R. Venkatraman,
Shri N. Sankaran, Miss Igbal Unnisa.

Tea.

Popular lecture on . Parity in Nature by Dr. B. 8.
Madhava Rao.

Dinner to delegates.

-Entertainment.

Thursday, Jﬁtm’gry 1, 1959
Reading of Papers.

Invited Address by Prof. D. H. Lehmer on ‘Some
Sfunctions of Ramanujan.’

Invited Address by Dr. J. Musielak on ‘Some remarks
on modular spaces.’

Invited Address by Prof. Ram Behari on ¢ New ideas
in mathematical education in Europe and the United

States.’
Lunch to delegates.

Visit to the Mathematical Exhibition.

Symposium on Boolean Algebra. Opening remarks
by Mr. C. H. Smith. Other participants : Dr. V. 8.

Krishnan, Dr. B. 8. Ramakirshnan, Dr. B. S.
Madhava Rao. '

Popular lecture on Sputniks by Prof. V. V. Narlikar.



6-45

8-00

9-00

10-00 A.M.

11-00 A.m.

11-30 A.M.

1-00

2-30

8-00

9-00

9-00

11-00 A.M.

P.M.

P.M.

A.M.

P.M.

P.M.

P.M.

P.M.

A.M.

PROGRAMME 7

‘Glimpses of the Poona University Campus '’
(Film Show)

Jubilee Dinner (By invitation)
Friday, January 2, 1959
Reading of Papers.

Invited Address by Dr.R. Bojanic on ¢ Slowly oscillai-
ing functions and their applications’.

Invited Address by ‘Dr. V. 8. Huzurbazar on
* Remarks on Induction ’.

Symposium on ° Research n Statistics’, led by
Dr. V. 8. Huzurbazar. Other participants: Dr. A. R.
Kamat, Shri D. S. Rangarao, Shri G. M. Panchang,
Dr. (Mrs.) Vatsala Mukherjee, Shri S. R. Adke,
Shri B. Raja Rao, Dr. D. V. Rajalakshman.

Lunch to delegates.

Excursion to the National Chemical Laboratory and
the National Defence Academy, Kharakwasla.

Dinner to delegates.

Entertainment.

Saturday, January 3, 1959

Reading of Papers.

Invited. Address by Dr. V. Venugopal Rao, on
¢ Lattice-point problems and quadratic forms.’
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11:30 a.m.

1-00

2-15

2-45

3-15

4-15

8-00

P.M.

P.M.

P.M.

P.M.

P.M.

P.M.

PROGRAMME

Symposium on ‘Magneto-hydrodynamscs’ led by P. L.
Bhatnagar. Other participants : J. De, J. D. Gupta
R. K. Jaggi, J. N. Kapur, P. C. Jain, K. S. Raja
Rao, and B. 8. Madhava Rao.

Lunch to delegates.

Address by Prof. Mukund Lal, on ¢ New approach- to
Jundamentals of arithmetic’.

Address by Sir S. V. Ramamurty, on *Science,
Religion and Mathematics’ .

Reading of papers.
Tea.

Dinner to Delegates.



REPORT OF THE GOLDEN JUBILEE SESSION

INaAvGURATION

THE twenty-fourth Conference and the Golden Jubilee celebrations
of the Indian Mathematical Society were held in Poona from the
28th December, 1958 to January 3, 1959, on the invitation of the
University of Poona. More than one hundred and fifty delegates
were present.

The Conference was held in the spacious quadrangle attached to
the Department of Mathematics, where a special pandal was put
up and tastefully decorated for the occasion. The inaugural function
began at 10 A.M, with a prayer and a sloka from Ganita-sara-
Sangraha of Mahaviracharya. The Secretary read messages wishing
the Session success, from prominent persons and mathematical
societies in India and abroad. Dr. R. P. Paranjpye, the Chairman
of the Reception Committee and Vice-Chancellor of the University
of Poona in welcoming the delegates expressed his pleasure that the
Jubilee session was held in Poona which had been the headquarters
of the Society for a number of years and where the Library of the
Society was located of which he was the Librarian. He recalled his
connection with the Society and its growth and observed ‘ research
in mathematics is getting more and more difficult on account of the
extensive front on which progress is being made......Facilities in
the form of extensive mathematical libraries have to be amply
provided by the Universities and Governments. I hope that they
will not be backward in providing sufficient funds for these-

purposes’.

The Conference was formally inaugurated by Shri Y. B. Chavan,
the Chief minister of Bombay. He paid a warm tribute to the great
progress made by the Society during the last 50 years and wished a
brighter future in the coming years. He also declared the
mathematical exhibition open.
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SECRETARY’S ‘ANNUAL REPORT

Professor S. Mahadevan, Secretary of the Society then presented
the report of the Society for the year 1958. He conveyed the thanks
of the Society to the University of Poona for its kind invitation to
hold the Conference and for the excellent arrangements the
University had made for the same and for celebrating the Golden
Jubilee also. He welcomed all the delegates and was grateful to
Dr. J. Musielak of the University of Poznan and Dr. R. Bojanic of
the University of Belgrade who were members of the Tata Institute
and to Prof. D. H. Lehmer and Mrs. Lehmer of the University of
California for their active participation in this Conference.

He referred to the loss sustained by the Society by the death of
Sir V. Ramesam, a retired judge of the High court of Madras, one
of the oldest members of the Society and an ardent devotee of

mathematics. He conveyed the society’s condolences to the members
of the bereaved family.

He traced the history of the Society for the last fifty-one years
ever since its foundation in 1907 by V. Ramaswami Iyer. It was in
the fitness of things, he stated, that the Golden Jubilee was celebrated
in Poona which had been the headquarters for the last forty years.
He was glad that two of the foundation members Dr. R. P.

Paranjpye and Prof. D. D. Kapadia were able to participate acﬁvely
in the celebrations.

Recounting the activities of the Society, the Secretary said that
from 1907, progress reports were published which contained among
other things mathematical notes and questions. The first mathe-
matical note was by Principal Paranjpye On the cardioide’ in
1908 and the first Question to be published was from Balak Ram.
Continuing, the Secretary said “ Encouraged by contributions, the
Society started the Journal in February 1909 under the editorship
of M. T. Naraniengar of Bangalore with the collaboration of Principal
Paranjpye and A. C. L. Wilkinson of Bombay. It is a pleasure to
recall that the early contributions of Ramanujan appeared in- the
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Journal from 1911 and his first pdper on * Bernoulli’s numbers ”’
attracted great attention.

Procecding, the Secretary mentioned that after the Silver Jubilee
in 1932 it was decided to start a new periodical Mathematics Student
containing short papers, notes and questions and book-reviews,
etc. He observed further, ‘ M. T. Naraniengar continued to be the
editor till 1927 when Dr. R. Vaidyanathaswami took up the work
till he retired in 1950. Prof. A. Narasinga Rao was the editor of the
Student from the beginning till 1950. Both these periodicals were
afterwards under the able guidance of Prof. K. Chandrasekharan
who was helped by a well-chosen team of referees and workers and
also by the Commercial Printing Press which spared no pains to
improve the get up of the periodicals. Owing to pressure of work
Prof. Chandrasekharan had to resign early this ycar and Prof.
S. M. Shah of Aligarh has becn appointed as Editor. I wish to thank
Prof. Vaidyanathaswami and Prof. Chandrasekharan for their
unselfish and hard work. I wish to thank Prof. A. Narasinga Rao
for the able manner in which he guided the Student for the last
18 years .

Tracing the history of the Conference, the Secretary stated that
the first Conference was held in Madras in 1917 and since then
Conferences were held in University centres every two years. From
1950, the Sécretary said, the Conference was held annually. He
recalled that the 4th Conference was held in Poona in 1924 when
Balak Ram presided and Principal Paranjpye welcomed the delegates.

Coming to the work of the Library, the Secretary stated that
much valuable work had been done by the first Librarian Principal
Paranjpye and his associates. He said that the Library was trans-
ferred from Poona to the Ramanujan Institute in Madras in 1951,
to help the growing institute. e also stated that there were about
1000 books and 4000 bound volumes of periodicals. He pleaded for
a liberal grant by the Government of India for the Library. The
Secretary thanked the various librarians for the care they bestowed
in maintaining the Library in good condition.
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He thanked the Universitios ‘of Madras, Bombay and Osmania,
the Tata Institute of Fundamental Research, the National Institute
of Sciences of India and the Government of India for their annual
grants towards the publications. He pleaded for a more generous
grant from the Government to meet the heavy cost of paper and
printing.

Referring to mathematical research the Secretary welcomed the
recognition by the Government of India of the Tata Institute of
Fundamental Research as a national centre for research and pleaded
for the Government strongthening the Ramanujan Institute. He
also pressed on the Government to open at least two more institutes
one in Calcutta and another in Delhi.

Concluding he observed: “ We have every reason to be proud of
our work for the last 50 years in creating the necessary climate for
research at various centres of learning and encouraging research
by publishing these in our periodicals which have attained inter-
national reputation. We are conducting our conferences on a par
with international congresses. We will be publishing soon a sumptu-
ous Jubilee Volume covering various aspects of mathematical
research. If we have reason to be proud of these achievements,
they are due to the unselfish work of the various presidents and
secretaries and to the diligent care bestowed by the editors and
members of the council all these years, and above all to the enthusia-
stic support given to us all along by the members of the Society.”

AwarD oF THE NARASINGA RA0 MEDAL

Since no medal was awarded last year, two medals were presented
this time to two persons. The one is to Dr. V. Venugopal Rao for
his paper on ‘The lattice point problem’ and the other is to
Dr. C. 8. Seshadri for his paperon‘ Multiplicative meromorphic

functions’. Both these appeared in the Jowrnal of the Indian
Mathematical Society.



REPORT 83

JUBILEE ARDRESS

After the award of the medals Dr. K. 8. Krishnan, Director,
National Physical Laboratory delivered the Jubilee address.

PRESIDENT'S ADDRESS

Professor V. Ganapathy Iyer then delivered the address which
is printed separately.

ADDRESS BY PAST PRESIDENTS

The President requested Prof. Ram Behari a past president to
address a few words. His speech appears elsewhere. Then Professor
D. D. Kapadia an oldest foundation member also addressed a few
words.

Vore or THANEKS

Dr. V. S. Huzurbazar the local secretary proposed a vote of
thanks, bringing the proceedings of the inaugural session to a close.

MEETING OF THE SOCIETY

The Council of the society met in the afternoon of December 31.
At the meeting of the General Body which followed, a condolence
resolution touching the death of Sir V. Ramesam was adopted, all
members standing. Prof. K. R. Gunjikar suggested that the Society
should give its views on the new Government Calendar. After some
discussion it was agreed that the council should appoint a small
committee to examine the calendar. The Secretary announced that
the next Conference would be held in Allahabad and the 26th
Conference in December 1960 in Nagpur at the invitation of both
these Universities.

PROCEEDINGS OF THE CONFERENCE

There was a crowded mathematical programme Which‘ consisted
of presentation of papers, invited addresses and symposia. Four
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sessions were devoted to the reading of papers and abstracts of
these appear elsewhere. Among the invited addresses were one by
Prof. D. H. Lehmer on ‘ Some functions of Ramanujan ’, one by
Dr. J. Musielak on ‘ Some remarks on Modular spaces ’, a third by
Dr. R. Bojanic on ‘Slowly oscillating functions and their
applications ’, a fourth by Dr. V. S. Huzurbazar on ‘ Remarks on
induction ’, and a fifth by Dr. V. Venugopal Rao on  Lattice point
problems and quadratic forms’. The last address was given by
Prof. Ram Behari on “ New ideas in mathematical education in
Europe and America”. There was a symposium on ° Ordered
Structures’ in which Dr. V. S. Krishnan, Dr. V. K. Balachandran,
Dr. S. Swaminathan, among others participated. There was another
on ‘ Boolean Algebra’ in which besides others Mr. C. H. Smith,
Prof. B. S. Madhava Rao and Dr. V. 8. Krishnan took part. There
was a third one on ‘ Research in Statistics > in which Dr. V. S.
Huzurbazar and others took part. In the symposium on ‘ Magneto
Hydrodynamics ° Prof. P. L. Bhatnagar and others took active
part. Proceedings of these are printed elsewhere.

There were two popular lectures one by Prof. B. S. Madhava Rao
on ‘ Parity in nature’ and another by Prof. V. V. Narlikar on
‘ Sputniks’. In addition to these, Sir S. V. Ramamurti gave a talk on
‘ Science, Religion and Mathematics . This was an illuminating and
interesting account of his ideas regarding the relation of ¢ spirit ’
to the usual concepts in Science and Mathematics. Prof. Mukunda
Lal of Punjab gave a talk on ¢ New approach to the fundamentals
of arithmetic ’. Here he demonstrated vividly quick and one line
multiplication and division of two big numbers. As an adjunct to
the Jubilee Session a mathematical exhibition was got up. The
exhibits included among other interesting items, charts, drawings
of geometrical patterns, portraits of mathematicians, interesting
models and rare books on mathematics. Of special interest was the
first issue of the Journal of the Society (1907), the foundation volume

of the Cambridge Philosophical Society (1822) and ¢ Primum
Mobile ’ published in 1658.
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SociaL PrograMME

The delegates were entertained on a lavish scale. The Reception
Committee organized a grand Jubilee dinner on the lst January
in which the elite of the town took part. There was an excursion to
National Chemical Laboratory and to the National Defence Academy,
Kharakwasla. There was a variety entertainment consisting of
music recital, folk dance and a drama. There was also a film show
in which the activities of the Science department of the University
were depicted.

THANKS OF THE SECRETARY

On the final day the secretary thanked the authorities of the
University, the participants in the symposia and those who gave
invited addresses and popular lectures. He also thanked the local
secretary and volunteers for the excellent arrangements and for
their unstinted service to the delegates.






PRESIDENTIAL ADDRESS

By V. GANAPATHY IYER

FrrLiow MATHEMATICIAN, LADIES AND GENTLEMEN :

I have the honour and the privilege of addressing this Conference
of the Indian Mathematical Society when it is celebrating its Golden
Jubilee: To mark this occasion, the Conference is held for four daytq
instead of the usual three days. The Society is bringing out a Jubilee
Volume consisting of invited articles on mathematics by distinguished
mathematicians from India and abroad. So far about 25 contribu-
fions have been received and the Jubilee Volume is expected to be
ready in April, 1959. ‘

As T indicated in my last year’s address, India is very backward
in mathematical development. In pursuance of & resolution adopted
at the Conference held last year, the Council of the Indian Mathe-
inatical Society has appealed to the Government of India to open
Institutes devoted to mathematical research to accelerate the pace
of mathematical development in the country. The Government is
already giving substantial help to the School of Mathematics in
the Tata Institute of Fundamental Research. The Ramanujan
Institute now taken over by the Government of India and managed
by the Madras University is awaiting development. The Council
lias appealed to the Government to hasten the development of the
Ramanujah Institute and to open two ‘more Institutes, one at
Delhi and another at Calcutta where active research work in
mathematicsis carried on already at the Universities. In these days
when the total body of mathematical knowledge is very vast, no
single individual, however eminent, can claim expert knowledge
in all its branches and a large number of scholars in the same locality
interested in the same or allied branches of the subject and holding
frequent discps‘sions_wiﬂ_enajble fow of ideas and consequent develop-
ment in mathematics. Team work in mathematics as in. several
other. sciences is becoming.the order of the day. These research



88 V..GANAPATHY IYER

institutes besides making original contributions will also train up
young men with aptitude who will man the Research Departments
in the Universities and Colleges and thus accelerate the pace of
mathematical development in the country. It is hoped that the
Central Government will be taking concrete steps in this direction
in the immediate future.

Before proceeding to the mathematical part of the address, 1
desire to draw attention to one of the disturbing features of the
present-day trends in education in this country. It is true that no-
one facet of a nation’s activity can remain isolated or uninfluenced
by the trends in other fields. But it is certainly questionable whether
the predominant influence which the political leaders and those
endowed with the task of running the State are able to exert in
shaping the pattern of education in this country is a healthy feature
in the growth of education in this country. The experienced teacher
has very little voice in this matter where, if progress is to be natural
and healthy, he should have the final voice. At best the teacher is
allowed to play the role of the approver for the policies adumbrated
by the political leaders and other non-academic persons. Even before
the dawn of political independence, the State had a complete control
over secondary education through their education department.
So it was easy for the politicians to make their voice felt in the field
of secondary education. A glance at the successive changes that
have been introduced in the field of secondary education, during the
past decade, ostensibly on the advice of educational experts, will
show that each change merely reflected the pet ideas of the person
or persons in power at that time. The influence of the political
leaders is slowly, extending to University education as well. As
one instance, I refer to the splitting up of the present Intermediate
course into a Pre-University course with a conglomoration of
subjects to be studied under the impression that it is liberal education
and the introduction of the three year degree course. From the press
reports it is evident that the State is actively supporting this roform.
Every colleague in my profession whom I had the opportunity to
oonsult feels that this is not a healthy step in the progress of higher
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education in the country and yet he has to support the scheme
because it has been directed from persons in authority. It is always
possible to produce plausible arguments for introducing any change
which a person endowed with: power desires. But on that account it
does not become a healthy change. Anyway, this phenomenon in
the educational atmosphere of this country is not one about which
the nation should be proud of. The politicians on the one hand and
teachers and educationists on the other hand should find a remedy
for this situation before it is too late. B

I have chosen for the mathematical part of the address a brief
review of the theory of Topological Vector spaces. A knowledge of
what is meant by a topological space and by a vector space is
presumed in the following exposition though I am going over the
relevant definitions rapidly.

Topological Space~—Let X be any set. A distinguished family I
of subsets of X closed for finite intersections and arbitrary unions
and containing the empty set and the whole set X is said to define
a topology on X. The pair (X, T') is called a topological space. The
elements of X are called points of the space and the elements of I'
are called the open sets of the topological. On the same set X several
topologies can be defined. Starting with a collection M of subsets
of X there is a unique topology having the smallest family of open
sets and conbaining the sets of M among its open sets. This may be
called the topology generated by the family of sets M. Let fbea
map of a topological space X into another topological space Y. The
map f is said to be continuousif the inverse images of open sets in ¥
are open in X. Let X and ¥ be topological spaces. The cartesian
product of the sets X and Y, denoted by X x Y, is the pair (z, y) of
elements, where z and y vary over X and Y respectively. The maps
(x,y)—> 2 and (x, y) — y are called the projections of X x Y onto X
and ¥ respectively. If X and Y are topological spaces and X X Yis
endowed with the topology generated by the inverse images of open
sets in X and ¥ by their respective projections, we call the resulting
topological space the topological product of X and Y. A topology on



90 V. GANAPATHY IYER

a set is said to be separated or a Hausdorff topology, if any two distinct
points of the set are contained in disjoint open sets of the topology.

Vector Spaces—We consider vector spaces over the complex
number field O (which is supposed to be endowed with the usual
topology when it is to be considered as a topological space). A set
V of elements closed with respect to an operation denoted by + with
respect to which it forms an abelian group and closed with respect
to the operation of multiplication by numbers of C is said to be
Vector space over C if (1) a(z -+ y) = oz + ay, (a + b) x = ax - bz, (2)
a(bx) = b(ax) = (ab) x and (3) 1z =2, 0-z = the zero eloment of the
space V (the identity of the abelian group) which we denote by ¢,
where & and y are elements of ¥V and @ and b are numbers of C. If
E and F are subsets of a vector space V, the set £ 1 F is the set
of all elements of the form z + y, z € E and y € F. Similarly, aF
(where a is a complex number) is the set of elements of the form az,
xzeB. If x and y are elements of V, the set of elements fx + (1 — 1)y,
0 <t < 1,is called a segment in V joining « and y. A subset B of V
is called convex if the segment joining any two points of & lie in K.
A subset E is said to be a disc if ol c E for every complex number o
with |a| < 1. Now given any set F in V, there is always a smallest
convex set containing E called the convex hull of E and a smallest
disc containig ¥ which we call the disc generated by E. A subset £
of V is said to absorb the subset ¥ if there exists a £> 0 such that
ali> Ffor |a| >t A set is said to be absorbing if it absorbs all sets
consisting of single points. A subspace of V is a vector space over the
field C contained in V. A map J of one vector space ¥V into another
W is called linear if f(aw + by) = af(x) + bf(y) for =, y € E and a, b,
eC. If Wis the space C itself, f is called a linear functional. The seb
of all linear functionals on a vector space V is called the Algebraic
Dual of V and is itself a vector space over C with the usual definition
of addition and multiplication by complex numbers. In a vector
space a finite set Z, 1 =1, 2, ..., k, of elements is said to be linearly
independent if Za,x; = ¢ (where a, are complex numbers) implies
that o, =0fori=1,2,.. % A family of elements of ¥ is said to be
inearly independent if every finite subset of the family is linearly
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independent. Now it is known that every vector space over C
contains a linearly independent family such that every element
of V is a finite linear combination of elements selected from the
family. Such a family is called. a Hamel basis in V. Two Hamel
bases can be proved to have the same cardinal number. This number
is called the linear dimension of V. If this dimension is finite, V
is called a finite dimensional vector space. The finite dimensional
Euclidean spaces are the typical finite dimensional vector spaces.
The set of all complex valued continuous functions on a closed
‘interval on the straight line or on a bounded region in the complex
plane is a typical example of an infinite dimensional vector space.

Semi-norms and morms. A non-negative function p(x) defined
on a vector space V is called a semi-norm if (1) p(¢) = 0; (2) p(az) =
|a| p(z) for any complex number ¢ and (3) p(x + y) < p@) + 2(¥).
If in addition, p(x) = 0 implies that z = ¢ then p() is called a norm
on V

Topological Vector Spaces: Let V be a vector space over C.
Suppose a topology 7' is given on V. We say that T' is compatible
with the structure of the vector space if the two maps (z, y)—2z + ¥
of X x X onto X and (a, ) —ax of C x X onto X are continuous
where X x X and €' x X denote the topological products of X and X
and O and X respectively. In this case the system (V, T') is called a
topological vector space. It is evident that the same vector space ¥V
can be converted inbo different topological vector spaces by different
choices of the compatible topology 7. But it can be shown that if ¥V
is finite dimensional there is essentially only one topology compatible
with the vector space, that is, if V; and V, are two topological
vector spaces of the same finite dimensions, then there is a one-to-
one bi-continuous linear map of V, onto V, so that regarded as
topological vector spaces the two are indistinguishable. But this is
not true for infinite dimensional vector spaces.

A neighbourhood of a point z in a topological space X is defined
as any set containing an open sob containing z. It is possible to
specify the topology on a space by specifying the neighbourhoods
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of each point. Now one of the important properties of a topo-
logical vector space is that its topology can be completely specified
by specifying the neighbourhoods of the element ¢ the neighbour-
hood of any other element x being of the form x 4 N, where N is
neighbourhood of ¢. At any point in a topological space, a funda-
mental system of neighbourhoods is one with the property that
any other neighbourhood of the point contains a neighbourhood
of the system. Now a topological vector space is completely specified
if a fundamental system of neighbourhoods of ¢ is specified. It
can be shown that such a system A can be chosen with the additional
properties ; (1) each N € A is an absorbing disc, (2) if NV € A then
so does aN for any complex a ¢, (8) if N € A then there isan N e A
such that N, 4 N; c N and (4)if N,, N, € A, there is an Ny € A
such that Ny ¢ N, n N,. Conversely any system of subsets of ¥V
with properties (1) to (4) can be taken as a fundamental system of
neighbourhoods of ¢ defining uniquely a compatible topology on V
thus making it a topological vector space.

Topologies defined by norms and semi-norms. — Let S be a family
of seminorms defined on a vector space ¥ over C. If d >0 and p €8,
let N(p ;d) denote the set of elements x € V such that plx) < d.
Let A denote the class of all sets obtained as finite intersections of
sets N(p ; d) as p varies over S and d varies over the positive real
numbers. Then A satisfies the conditions (1)-(4) of the last para-
graph and defines a topology compatible with the vector space which
we call the topology defined by the family of semi-norms on V.

Now suppose S consists of a single norm. The corresponding
topological vector space obtained is called a normed vector space.
It can be shown that the topology defined coincides with that
defined by the metric p(x — y) on V. If V is complete with respect
to this metric, the space is called a Banach Space. Banach spaces
are among the most widely studied class of topological vector spaces
and I shall be referring to a fow important properties of such spaces
a little later. It may be noted in Passing that the topology defined
by the family of semi-norms § is separated or a Hausdorff space
if and only if the relation p(z) = 0 for all p €8 implies that 2 = ¢.
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Locally convex topological vecter spaces. —The simplest among
topological vector spaces are the normed spaces and Banach spaces
mentioned in the last paragraph. All finite dimensional topological
vector spaces can be specified in terms of suitable norms and are
Banach spaces. After these come the space of all bounded complex
valued functions on any arbitrary set. If the set is a compact
Hausdorff space, the class of all continuous functions on the set
form a subspace of the space of all bounded functions, the norm
in both cases being the Lu.b. of the modulus of the function as the
variable runs over the set in question. The space of all bounded
complex sequences with the lLu.b. of the moduli of the terms as
the norm and the subspaces of convergent sequences and null
sequences are other examples of Banach spaces.

The next in importance are the locally convex topological vector
spaces. A topological vector space V over C is said to be locally
convex if there exists a fundamental system of neighbourhoods
of ¢ consisting of convex sets. It can be shown that in this case
there exists a fundamental system of neighbourhoods each. set of
which is a closed convex absorbing disc. Each such disc determines
uniquely a semi-norm on V, the disc consisting of those elements
for which this semi-norm does not exceed one. Now the family of
semi-norms determined by the sets of a fundamental system of
neighbourhoods defines a topology on V which is precisely the
given locally convex topology. Conversely the topology defined
by any family of semi-norms is locally convex. In case the locally
convex Hausdorff topology possesses an enumerable fundamental
system of neighbourhoods at ¢, the space is metrisable. All normed
vector spaces and Banach spaces are locally convex.

F-spaces. —There is another generalization of a Banach space.
A topological vector space whose topology can be specified by a
metric d(z, y) with respect to which it is complete is called an
F-space. In this case an equivalent metric d,(», y) can be intro-
duced for which d,(z, y) = d(x — y,$). Such a metric is called an
invariant metric. Every metrisable complete locally convex topo-
logical space is an F-space but every F-space need not be locally
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convex. The space of integral functions which I have been investi-
gating is an example of a locally convex F-space which is not
normable.

The topological dual of a topological vector space.—Let V be a
topological vector space. The class of all continuous linear func-
tionals on V is called the topological dual of V and denoted by V*.
With the usual definition of addition and scalar multiplication V*
is a vector space over C' and is a subspace of the algebraic dual.
If on V we introduce the topology generated by the inversc images .
of open sets in the complex plane by the various functionals of V*,
the corresponding topology on V is called the weak topology induced
by V*. It can be shown that the topological dual of ¥V endowed with
the weak topology is also the set V*.

Properties of Banach spaces—The following are some of the
important properties of Banach spaces :

1. Let V,, %=1, 2 be two Banach spaces with norms p,, i =1,
2 respectively. Let 7' be a linear map of V, into ¥, A necessary
and sufficient condition that 7 is continuous is that there exists
a fixed positive number M with property that po(T(x)) < Mp,(x)
for all x € V,. The number Lu.b. py(7(x)) when p,(x) =1 defines
a norm on the class of all continuous linear maps L(V,, V,) of V7,
into V,. In the special case when ¥, is the space C we get the topo-
logical dual V*, of V, and endowed with the norm described above
V*; becomes a Banach space. This statement is true in the general
case of L(V,, V,) with the norm mentioned above.

2. Let V be a normed space and E be a subspace. Let f be a
continuous linear functional defined on the subspace E. Then
there exists a continuous linear extension of f to the whole space
¥V, the extension having the same norm over the whole space V
(as defined in (1) above) as f over the sub-space V. This result is
known as the Hahn-Banach theorem on the extension of continuous
functionals. A consequence of this result is that if  is at a positive

distance from E, then there is a functional f of ¥ vanishing on E
with f(z) = 1.
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3. Let L, be a subset of the space L(V,, V,) where V,, 1 =1, 2
are Banach Spaces. If for each z € V, the set of numbers p,(7T(x))
is bounded as 7' varies over L,, then the set of norms of the map
in L, is bounded. This is known as the Banach Stienhaus theorem.
When V, is C, this reduces to the uniform boundedness of the set
of functionals in V*, when the values of the functionals form
bounded sets for each element in V,. Another consequence of this
theorem is that if E is subset of V, and the set of numbers f(x)
as x varies over E is bounded for each f € V*,, the norms of the
elements in ¥ form a bounded set.

4. If a sequence 7, of elements of L(V,, V,) be such that
T, (x) — T(z) for each x € V, then T' € L (Vy, V,). In other words,
the pointwise limit of a sequenco of continuous linear transforma-
tion of one Banach space into another is also one such transformation.

5. Let V be a Banach space and V* its topological dual endowed
with the norm topology mentioned in (1) above, making it a Banach
space. Consider the unit sphere S in V*, that is eloments of V
whose norms do not exceed one. Each element « € ¥ determines a
functional defined by z(f) = f(»), fe€ V*, which is an element of
the topological dual of V*. The family of such functionals as z
varies over V can be regarded as an isometric subset of the second
dual V*, of V. This subset can be used to define on V* a weak
topology similar to that indicated earlier. It is an important theorem
that the set § is bi-compact in this weak topology on V*, that is,
every open covering of § in this topology contains a finite covering.

6. Let ¥V, and V, be two Banach spaces and T a linear trans-
formation of V, onto V,. A necessary and sufficient condition that
T is continuous is that the graph (X, T(z)) of points in V; X V,
is closed in the topological product ¥; x V,. This is known as the
closed graph theorem.

7. Suppose 7T is a continuous one-one transformation of a
Banach space V, onto V,. Then the inverse transformation which
exists by hypothesis is automatically continuous.
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The above list constitutes some of the most important properties
of Banach spaces. Many of these have been generalized to locally
convex topological vector spaces and to F-spaces. For instance,
the Hahn-Banach extension theorem is valid in any locally convex
topological vector space. Again the closed graph theorem and the
property of bi-continuity of one-way continuous one-to-one trans-
formations remain valid for F-spaces. Some of the other properties
can be extended to more general situations but a detailed examina-
tion of these will make this address too long. Those who are inte-
rested may look up the references given at the end. I shall conclude °
this talk after touching upon a few more important landmarks in
the general theory.

Topologies on L(V y, V,).—Let ¥, and V, be two topological vector
spaces over (' and let L(V,, V,) denote the set of all continuous
linear transformations of ¥V, into V,. It is a vector space over C
with the usual definitions of addition and scalar multiplication. A
good deal of work has been done in investigating the properties of
this vector space endowed with different topologies. Let A be a
family of subsets of V,. For a set £ € A and a neighbourhood N
of ¢ in V,, let T(E, N) denote all the elements of I, (Vy, V,) which
transforms the set & into a subset of V. Under very general restric-
tions on A, V, and V, the sets 7(E, N) as E runs over A and N
over a fundamental system of neighbourhoods of ¢ in V, constitute
a system of neighbourhoods of ¢ in L(V,, V,). By specialising the
set A we get different topologies on L. We mention a fow such.

A set in a topological vector space is said to be bounded if it is
absorbed by every neighbourhood of ¢ in that space. Let V, and
V'3 be locally convex topological vector spaces. If we take for A the
family of all bounded closed convex discs, in V; we get the topology
of bounded convergence on L. If the V; are normed spaces we get the
usual norm topology on L (as mentioned in (1) above) under the
prqperties of Banach spaces. When A is the set of all finite subsets
of ¥, we get the topology of pointwise convergence. If A is the

set of all bi-compact subsets of V,, we get the topology of conver-
gence on bi-compact sets.
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Vector spaces in duality and weak topologies.—~Two vector spaces
V,and ¥V, are said to be in duality if there is a bilinear functional
(usually called a bilinear form) B(z, y), = € V,, y € V, [that is,
for each # € V;, B(x, y) is an element of the algebraic dual of V,
and for each y € V,, B(x, y) belongs to the algebraic dual of V,]
if B(z, y) is not the identically zero functional on V, for a y + ¢
and on V, for an @ # ¢. This implies that each ¥, can be identified
with a subspace of the algebraic dual of the other. Now let
o(V 4, V) denote the topology on V', generated by the inverse images
of open sets in the complex plane by the functionals of V,. Then
o(Vy, V,) is called the weak topology induced on V, by the func-
tionals of V,. The topological dual of ¥V, with respect of this weak
topology is precisely the functionals in ¥, and similarly the func-
tionals of ¥V, constitute the topological dual of V, with respect to
the o(V,, V,). When V,is a Banach space and V, = V*, we get
the weak topology mentioned in the para on the topological dual
of a vector space. When V, is the dual of a Banach space V and ¥V,
is the subspace of ¥V, determined by the elements of V as stated
in the property (5) of Banach spaces listed above, o(V,, V;) becomes
the weak topology mentioned there with respect to which the unit
sphere of V, is bi-compact. It is to be noted that o(V,, V,) is always
a locally convex topological vector space. We say that a topology
T on V, is compatible with the duality between V; and ¥V, if V,
is the topological dual of ¥, with respect to the topology 7' on V.
The weak topology o(Vy, V) is compatible with the duality as
already mentioned above. There are in general, several such topo-
logies. Some of the recent developments in the theory of topological
vector spaces have been in connection with the inter-relation
between such topologies. Details will be found in the references
given at the end. I shall conclude by mentioning one more result
generalizing the Banach-Stienhaus theorem. In a locally convex
topological vector space ¥V a barrel is defined as a closed convex
absorbing disc. ¥ is said to be a ¢-space if every barrel is a neighbour-
hood of ¢ and its topology is separated. All normed spaces are
t-spaces. Now let ¥ be a t-space. Let V' be a locally convex separated
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space. A subset H of L(V, V’)-is said to be bounded if for every
& € V the seb u(x), where w varies over H is bounded in V’. Then the
set H i3 equi-continuous, that is, given a. neighbourhcod N, of ¢
in V' there is a neighbolrhood N of ¢ in V such that w(N) ¢ V'
for every w € H. This reduces to the Banach Stienhaus theorem
when V and V' are Banach spaces.

I have attempted in the previous paragraphs to give a brief
sketch of the fundamental notions and results in the theory of
topological vector spaces. I have not made the account exhaustive:
EOI: -instance, I have not i'eferred to such notions and results as
inductive and projective limits, reflexivity, tensor products, vector
lattices, fixed point theorems and normed rings or Banach Algebras.
The theory of topological spaces has applications in several branches
of mathematics pure and applied. For instance, classical closure
theorems and the theory of best approximations are consequences
of the Hahn- Banach theorem. Continuous linear transformatlons
and fixed point theorems have a,pphca,tlons in the theory of Integral
equations and boundary value problems in partial differential
equations. Generalizations of the notion of Harmonic Analysis
typified by the. classical theory of Fourier series are bost expressed
in the language of the theory of Banach algebras.

I close ‘my address with an appeal to all interested i in the sound
progress of higher education in this country to see that changes
in bhe structure of education are nob introduced merely for the
sake of change to the politicians and other non-academic persons
to curb their desire to use the power with which they happen to
be endowed to push through their ideas of what education should
be and to the-teachers and educationists to try to be honest to
themselves and not give approval to proposals for cha,nges in the
educational structure in the country merely because they come from

persons-in authority and to express boldly their views on educational
matters.
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ADDRESS

By Dr. RAM BEHARI (Past President)

Mg. PRESIDENT, LADIES AND GENTLEMEN,

My connection with the Society dates back to the year 1921
when I attended the 3rd Conference of the Society at Lahore and
was an active worker of the Reception Committee. It is a great
joy to me to have attended the Silver Jubilee Celebrations of the
Society at Bombay in 1932 and to be present at the Golden Jubilee
Celebrations today. I met the founder of the Society, the late
V. Ramaswamy Iyer in 1932 at Bombay. He expressed his keen
desire to extend the activities of the Society far and wide and
0 hold conferences of the Society in various parts of the country.
It was under his inspiring influence that I have been closely con-
nected with the Society in various capacities as Secretary, Treasurer
and President. In fulfilment of his wish, conferences of the Society
have since been held in all parts of the country. After 1951, on
account of the greater output of research work and the larger
number of invitations from various universities to hold conferences
under their auspices, it was decided to have conferences every
year instead of biannually and it is gratifying that the number of
papers contributed to each yearly conference has been not less
than fifty. The achievements and reputation of our Society have
not been confined to this country only but have extended to other
parts of the world also. This year when I visited the States and
also attended the International Congress of Mathematicians ab
Edinburgh, I had an opportunity of meeting several foreign mathe-
maticians, and T was very glad to hear praise of the work done by
Indian Mathematicians, almost all of whom are members of our
Society.

Our Society and its journals are held in high esteem abroad

and the work that has been done by our members starting from the
late Srinivasa Ramanujan, whose first paper ‘On some properties of
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Bernoulli’s numbers’ was published in the Journal of our Society
in 1911, is spoken of in very high terms. I offer my greetings to
the Society on its successful completion of 50 years of excellent
and useful service in the cause of Advanced Mathematics and
Mathematical Research in our country.

Mathematics today is a different subject than it was a genera-
tion ago,hha,ving been transformed in many respects by the activities
of research mathematicians. School and College instruction has,
however, not adequately reflected these changes with the resulf
that, there is today a big gap between the research literature on
one hand and the curriculum for text book writers on the other.

The applications of mathematics have been greatly extended
in recent years,  particularly in the social sciences. Previously
mathematical methods could generally be applied only to phenomena
amenable to a deterministic description, now methods have been
developed for dealing with phenomena in which chance plays a
role. The modern approach to mathematics is as * the study of all
possible patterns” (Sawyer). The needs of mathematics itself,
of physical science, biological science, social science, technology,
engineering, and industry as these needs exist in the second half
of the twentieth century, should determine the orientation and
content of the school and college curriculum in mathematics.

On account of the dramatic successes of mathematical theory
in nuclear physics and the emergence of the digital computer
technology new reforms are being introduced in mathematics
teaching in the scientifically advanced countries. These reforms
consist mainly in two ways, viz. introducing “ modern > ideas and
throwing out the dead wood, and in modifying the teaching of

mathematics in the light of computation technology, i.e. to teach
programming, switching theory, etc.

In mathematics we aim to teach, in essence, two kinds of skills.
Skill in carrying out the calculations and demonstrations needed
in treating a given mathematical problem and skill in making and
understanding mathematical abstractions so that new situations



ADDRESS 103

may be mastered. To acquire thesp skills our students need drill,
practice, and the experience of struggling with hard problems and
difficult concepts. They need discipline—first the discipline imposed
by a good teacher ; ultimately the self-discipline learnt under his
guidance. It is still true that there is no royal road to the mastery
of mathematics. The schools have to produce this discipline. School
students should learn to think or to speak with precision, to write
clearly and in good order, to finish a task down to the last details,
or to persist in the face of real intellectual difficulties. The school
mathematics of tomorrow will be very different from that of
today. Teachers will be better grounded in the fundamentals of
the mathematics they are to teach, and in order to increase their
effectivenes, they will make use of various kinds of audio-visual
aids like films, film-strips, television, didactic machines, etec.

Every teacher of mathematics should try to become a creator
and should try to discover and arouse creativeness in his pupils.
We are living in a scientific and technological age. In the 2nd five
year plan of our country, stress has been laid on technical and
industrial development. We need therefore to train more engineers
and scientists. Scientific knowledge and its application to human
affairs have expanded. If knowledge expands, then the content of
education must be altered accordingly, and if knowledge is to be
applied extenswely, then education must include training those
who are to make the applications. The gulf between mathematics
and its applications can be bridged in two ways: firsily, by
inducing mathematicians to bring forward their results in a form
easily understandable by °appliers’ with scanty mathematical
training and secondly, by teaching such appliers the special mathe-
matical results and techniques they require.

Our great task is and will continue to be, the task of kindling
intellectual curiosity in our students besides elaborating new
curriculums, inventing new methods of pedagogy, revising the
virtues of intellectual discipline with all the zeal and wisdom of
which we are capable.



104 RAM BEHARI

Our Society will perform a hjghly constructive service if it plays
an important role in the task of national reconstruction by contri-
buting to the solution of some national problems like that of the
prevention of floods, and thus renders still more useful service to
Mathematics and the progress of our country.
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By D. H. LEHMER

Tak two basic operations, addition and multiplication give rise
to a simple branching of the theory of numbers into additive and
multiplicative number theory. Often however, a result or a problem
is a Combination of the two features. In the case of Goldbach’s
problem one may say that this attempt to combine multiplicative
primes by addition is unnatural and so unfortunate. There are
many happier instances of this type of marriage however especially
those connecting the divisors of a given number or set of numbers.
Results initiated by Euler and Jacobi, have been added to by
Glaisher and greatly extended by Ramanujan and broadened by
many recent mathematicians, especially members of the I.M.S.
Tt is about this class of results that I propose to talk.

Perhaps the most conspicuous class of numerical functions
consists of the so-called maultipticative functions, namely those
for which the property

fm) f () = f(mn), (m,n) =1 (1)
holds for every pair of coprime integers m and 2. The complete
solution of this functional equation is obtained by assigning

arbitrary values to f(p*) for each prime p and each exponent o.
The remaining values of f are then determined uniquely and

congistently by (1).
A function g is called purely multiplicative in case
g(m) g(n) = g(m ) (2)
holds for every pair of integers m and », coprime or not. This small
subclass of multiplicative functions is generated by assigning

arbitrary values to g(p) for each prime p. All composite values are
then determined by (2). In particular

*Invited address delivered at the Golden Jubilee Session of the Indian Mathe-
matical Society, December 1958 in Poona.
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g9(p%) = g(p) g@*~ 1) = {g(p) }*-

A larger subclass of multiplicative functions, that includes the
purely multiplicative ones, may (for want of a more descriptive
name) be called specially multiplicative. For these functions

Fm )= > fmn/®) ¢(), (3)
8/(m,n)
the sum, as indicated extending over all divisors & of the greatest
common divisor of m and n. The function ¢ is supposed to be purely
multiplicative. The most general solution of (3) may be found by
assigning arbitrary values to f(p) for each prime p and determining
f(p*) recursively by

F(@* ) = f(p) f(»*) —9(p) f(p*™Y)

which is, after all, an instance of (3). Such functions appear quite
naturally in several branches of number theory. Perhaps the simplest
functions, that are not purely multiplicative but are specially so,
are the number of divisors of # and the sum

a(n) = z )

8/n

of all the divisors of n. More generally

o(n) = Z o

S/n

and, still more generally, »*o,(n) are specially multiplicative
functions. For the latter function, which we call a basic divisor
function, f(p) = 9" + P"*E and g(n) = n¥*k,

The simple fact that o(n) is multiplicative is a comparatively
trivial example of a combined additive and multiplicative property.
There are many more elaborate results. One class of such results
we proceed to consider. The first member of this class was discovered
by Glaisher [1] in 1884 when he observed that

n—1

12 z o(k) o(n —k) = 5 og(n) — 6n a(n) + o(n). (4)

k=1
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This connects the ‘divisors of w, on the right, with- those of
the numbers < » on the left. This is the simplest example of
the composition of basic divisor functions expressed as a linear
combination of a fixed number of such functions. Another
Glaisher result is
n—1
12 Z k o(k) (n — &) o(n — k) = n2 o5(n) — n o(n).

k=1

He also evaluated
n—1

> k) oylu — B @)

k=1
for (3, 7) = (8, 3), (3, 5), (3, 9).

These results were rediscovered and extended by Ramanujan [2]
in 1918 who discovered a basic theory of such sums pervading
other parts of number theory and arising from the Woeierstrassian
theory of elliptic functions. In particular he gave the nine possible
examples of sums of the type (4') that are expressible in terms of
basic divisor functions, namely those corresponding to
G,9) = (1, 1), (1, 3), 4, 5), (1, 7), (1, 11), (3, 8), (3, B), (3,9), (5, 7).
We note in passing that in all cases these indices are odd. There is
no theory for gy, (7) and no observed phenomena.

S. Chowla [3] in 1947 gave a result equivalent to

192 o(l) olley) olks) = Tag(m) — 10(3n —1) ag(m) +

By +Eg g =
T + (24n? — 120 + 1) o(n)

and stated that similar formulas hold for such sums of multiplicities
4 and 5 but apparently not for 6.

All these sums are instances of the general m-fold composition of

m basic divisor functions
]
87y, Tas ooe s T | 815 Ss ovv s Sp) = z ky" oy (By) oo By ™ 5, (km)  (5)
the sum extending over all positive integral solutions (kyy ovvs Fp) Of

kl +k2+... +km=n.
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It is natural to ask if such a sum is a linear combination of basic
divisor functions #’ o3(n). The answer is no, except for 37 ocases.
These exceptional cases can be read from a table of Lahiri [4].
Sums 8, may be classified by their “ weight > which we take to be
the even number

w=m-+2r,+..+7)+8+8&+ ... +8,
Of the 37 formulas mentioned above one is of weight 4 and is
Glaisher’s (4). Three are of weight 6, nine of weight 8, nineteen of

weight 10, one of weight 12, and four of weight 14. For example the*
single sum of weight 12 is §,(1,0,0,0,0, ]| 1,1,1,1,1,). In fact,

1658880 > ky o(ky) olky) ... olks)
= 11n04(n) — 50n(3n — 2) o,(n) + 30 n(240% — 28n + 7)cs(n) —
— 20n (7273 — 108702 + 450 — B) o4(n)+
+ 7 (864 nt— 1440 03 + 720 2% — 120 n + 5) a(n).
Incidentally
58,(1,0,0,0,0|1,1,1,1,1) =5 8,(0,0,0,0,0[1,1,1,1,1).

Except for these 37 cases the sum (5) involves new and more or less
imperfectly understood numerical functions of » the simplest of

which is the celebrated r-function of Ramanujan discussed
later on.

To avoid such functions one may form certain linear combination
of two or more sums (5) of equal weight and obtain again basic
divisor functions. Thus for example

n—1

n—1
kt olk) o(n — k) — k2 ok —B20(n —
Z (k) o(n — k) 2 (%) (v — k)2 o(n — k)

=n'[ o3(n) — (2n — 1) a(n)]/24
or, again,

n—1

n—1
22; or(k) og(n — k) — > ay(k) ora(n — )

k=1

= [o13(n) — 11 og(n) + 20 oy(n) — 10 o4(n)]/240.
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By comparing orders of magnitude in this last expression one sees
that the second sum is very nearly 22 times as large as the first.
This is a rather unexpected fact about the powers of the divisors
of consecutive integers. Such formulas are sources of congruence
properties of o,(n) since the right members must be integers.

The number of such formulas is unlimited. However if one
restricts the number of sums being combined, only a finite number
of these combinations result in basic divisor functions alone.
‘The basic theory here is that of Eisenstein’s sum

Gy = Gy(wy, wy) = z (g wy + My wy) ™
My, My == — 0
which vanishes identically for odd integers k but for &k =2n > 4
has the Fourier development

3em— 1)! fy /2w Gy = an+ z 0y, (m) 27

where r = w,/w, lies in the upper half plane, I(r) > 0, and where
B,, is the Bernoulli number in the even suffix notation of
Lucas. (B, = — 1/30). Thus G, and its successive derivatives with
respect to T generate the basic divisor functions. On the other hand
the s themselves are generated by Weierstrass’ function

@Z)=2"2+ z @2n + 1) Gy g 22
n=1
Finally
©"(%)=12Q(2) ¢'(Z)

This differential equation implies relations between the G’s and
hence other relations between basic divisor functions.

Ramanujan preferred to normalize @, and G4 by dividing them
by their unwieldy constant terms. Introducing a function P, which
is essentially the n-function of Weierstrass, he took the following
three functions as a basis
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where y = 2" and in general

o
(I)r,s-}-r = Z n' o3(n) X"
n=1
is the power series generator of the basic divisor function. We are
concerned with the case in which 8 is odd and we define the weight
w of @, , to be the even number

w=r+s-+1.
To the monomial P*Q°R° we give the weight
w = 2¢ - 4b -} 6¢.

Every ®©,,,_,_, of weight w can be expressed as a polynomial in
P, Q, B whose terms are monomials of weight w (except for a
constant term in case r = 0). In case w < 12 there can be no ferm
in which the @ occurs to a power greater than two since the weight
of @3 is 12. In these cases explicit formulas for ®, , can be given.
There are two cases according as s = » -~ 1 or not.

w0, o= L] S ce—a ("t e R ©
=0
(Df’w-;r—l = —r—1)! B, , { ( 1 ] _

2w — 27! 12 r+1

~Zo(—1)“(;)PaQbRc}, (7

where 7 <w—r — 2. The exponents b and ¢ are functions of @. In
fact in both formulas,
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b='w—2a,—3°|:w—32a]

c=a+2|:w—32a] —3w.

Both formulas may be inverted to give

a) 12"(w — 2 7)!

GHd P 1
PQRE=1-2 Z (r (w—r——l)!Bw_2,q)”w"‘1’ (8)

O<r<iw
?rbvided w = 2a + 3b - 4¢ < 12. Hence any product of @’s whose
combined weight does not exceed 10 can be expressed as a linear
combination of other ®’s. The corresponding sum (5) is then a linear
combination of basic divisor functions.

When the weight w > 12 formulas (6), (7) and (8) become
congruences modulo A where

=]

A @ — R =12y [ [ (1 =y =12 r(n) x"

n=1
This introduces the Ramanujan function 7(n). We see that by
successively replacing @® by R? + A any @ or product of ®’s has
an expansion of the type
F(P: Q: -R) +AF1(P’ Q, 'R) +A2 F2(Pa Q} R)+
in which F; is a polynomial not involving Q® for b > 2.
Examplesnof the actual occurrence of 7(n) in sums (5) of weight

12 are

n—1

174132 _5_ os(k) os(n — k) = 65 ayy(n) — 691 o5(n) — 756 7(n)  (9)
k=1
840 i B2 ofk) (n—F)? o(n —k) = 1524 ay(n) — 147° o(n) —7(n). (10)
k=1

Both formulas have been used to calculate =(n) for isolated values
of n. The first was used with a punched card table of o5(n) and a
comparatively slow multiplier. The second has been used with a
fully automatic highspeed computer. Values of =(n) for »n about
16000 are obtained in a few minutes.
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A large number of other sums{5) of weight 12 have been given by
Lahiri [4].

Perhaps the most startling fact about 7(r) is that it behaves
like a basic divisor function in being also specially multiplicative
with g(n) = n!?, that is

7(p*+) = 7(p) 7(p%) — P 7(p*7Y)
for p a prime. However 7(p) is certainly not a polynomial in p.
Our knowledge about the order of magnitude of r(n), though not
complete, iz sufficient to show this,

Nevertheless 7(p) behaves like a polynomial (mod m) for many
small moduli m. For example it follows at once from (10) that

7(n) = 14 7° o(n) — 15 n* g4(n) (mod 840)

and from (9) that

7(n) = ayy(n) (mod 691) (11)
a remarkable fact discovered by Ramanujan. Contributors to the
study of the congruence properties of 7(n) include nearly every
number theoretic member of the I.M.S. and quite a few non-
members. Thus far 7(p) is congruent to a polynomial in p with
respect to the moduli 21!, 37, 53 7, 691. There appear to be no
other primes for which this is true, certainly none less than 1250.

There are however certain known properties module 49 and 23.
The moduli 87 or 5% cannot be replaced by 3% or 5°.

The simple question of the possible vanishing of r(n) remains

unsolved. However it can be shown that 7(n) = 0 implies n >
113740236287999.

The fact that 7(p) is specially multiplicative was discovered by
Ramanujan empirically and proved by Mordell [5] in 1917. This
property follows from the fact that

A = 18662400 [20 G2 — 49 (7]

is a modular form of dimension — 12 when congidered as a function
of w, and w,. That is
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A(wy, we) = Aaw, 3+ Bwy, yw, + Sws)

' = AZA(Aw;, Awy)
whenever a8 — By =1, facts which follow immediately from the
definition of @,,. Hecke [6] developed an extensive theory of such
functions whose Fourier coefficients are specially multiplicative.
There are in fact six functions 7,(n), ..., 7;(n) which we may call
the functions of Ramanujan since he made very brief mention of
their generators

A, QA, RA, @°A, RQA, @*RA

which are functions of weights 12, 16, 18, 20, 22, and 26 respectively.
These weights we denote in gemeral by &, (k=1,2, ..., 6). For
example

QA =12 7,(n) " = 12° (x + 456 x* + 50652 * + ...)
and
132.174611 Z ag(k) op(n — ) = 25 ayg(m) -+ 174611 ap(n) —
— 174636 7,(n). (12)
All the six functions are specially multiplicative with g(n) = n%~*.
There are many congruence properties of the =(n). Thus if one

takes the formula (12) modulo 174611 one obtains at once as a

counterpart of (11)
74(7?1) = Glg(n) (mod 174611).

In general
T(n) = 0g_1(n) (mod Ng),

where N, is the numerator of the Bernoulli number of suffix d;.
Other examples are

7o(n) =n?7(n) (mod 13)

m5(n) = 7(n) (mod 11).
There are other properties like those of the Riemann zeta-function.
If we let

-

Z,(8) =T(8) @2m) ™" > mlm)n ™,

n=1

then there is the functional equation
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Z(8) =% Z,(d, — 8)

and the hypothesis that the complex zeros of Z,(S) lie on the
critical line Re (S) = } 4.

A more elaborate identity involving the Bessel functions

[+e]

. K (2t) = t"} y~'Trexp{—y — 1y '} dy
0
is

2 Z m(n) K, (475 +/ n) n="2

n=1

—_ q,dk(271-)"“dk s’ I‘(dk v) < (n)

n=1 7?: + 8 )d}c v®
For example if k=4, § =1 and v = — } we have
> ryn) e~Vn =/ 2(2m) 42T ( 5 ) > nfn) (n + 1),
n=1 n=1
There are simpler results like
T8 ifk=1
< T8/12 ifk =2
z T4(n) e~ 2™ =
3 T)12% ifk =4
0 otherwise,

where 7' = } I'(})* (27) 5.

If we admit answers in terms of these six functions we can give
many more formulas for sums of the type (5), even including

n—1
% 044 (k) oy3 (n—k) which, involves only 4(n).
B=1

However, when we ask about the sum I o,,(k) o,,(n—Fk), that
goes with A% the corresponding function fails to be multiplicative
even in the weak sense. The road seems to stop. There is nevertheless
a narrow pathway still open if one is searching for new specially
multiplicative funections. For this, one must blend two linearly
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independent generators like R2A and A2 of weight 24. The
appropriate blend in this case is

0

1278 R%A 4 BA® = ' y(n) y* with B = 1275 {131 + (1/144169) }.

n=1
Thus the values of ,(n) are integers in the quadratic feld
K 4/(144169) as noted by Hecke. Thus
() =1, 7(2) =12(45+ /D), 7,(3) = 36(4715 — 16 4/D), ...
where D = 144169. Still 7,(n) is specially multiplicative with

g(n) = n®. There are altogether six functions m(n) (kB ="T(1)12)
with values in the field K (+/D) for the following values of D

144169, 131.139, 51349, 18295849, 479.4919, 181.349.1009

which are specially multiplicative with g¢(n) =»%~1 for the
following values of d,
d, = 24, 28, 30, 32, 34, 38.
Next we come to the generator A3 which we must now blend
with two other functions AG,,, A%G, to obtain a new specially

multiplicative function with g(n) = #%. The values however lie
in a cubic field in fact the field determined by the cubic equation

y3 — 1376111721422y2 — 5742145719432261916155855y
— 1400571281422085609163714549762600000

the discriminant of the field being

D = 212 3¢ 52 72 23,1259 (236364091)8.269461929553.

There are, in all, six such functions corresponding to
d, = 36, 40, 42, 44, 46, 50
whose properties are almost completely unknown.

Without following this trail any further we should say in conclusion
that the theory of Ramanujan’s 7,(n) is really much more elaborate
than this one-dimensional picture I have attempted. Thus nothing
has boeen said about the quadratic forms in many variables which
go with these functions, nor of the analytic theory for studying
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their asymptotic behaviour. The beautiful theory of Hecke and
its generalizations have -only been alluded to. Such developments
would require much more time on my part and patience on your
part.

REFERENCES

1. J. W. L. GrasHER : On the square of the series in which the
coefficients are the sums of the divisors of the exponents,
Messenger of Math. 14 (1884-5) 156-163.

2. 8. RAMANUJAN : On certain arithmetical functions, Trans. Camb.
Phil, 8oc., 22, (1916), 158-184 ; and Collected Papers, 136-162.

3. 8. Cmowra: Note on a certain arithmetical sum, Proc. Nat.
Insti. Sci. India, 13, No. 5, (1947).

4. D. B. Lartirr: On Ramanujan’s function 7(n) and the divisor
function o(n) 1, I1, Bull. Caloutia Math. Soc. 38 (1946), 193-206,
and 39 (1947), 33-52.

5. L. J. MorpErL: On Mr. Ramanujan’s empirical expansions of
modular functions, Proc. Camb. Phil. Soc. 19 (1917), 117-124.

6. E. Heoru: ‘“‘Ober Modulfunktionen und die Dirichletschen Reihen
wit Bulerscher Produktentwiklung”, I, II Math. Annalen,
114 (1936), 1-28; 316-351.



SLOWLY OSCILLATING FUNCTIONS
AND THEIR APPLICATIONS*

R. BOJANIC

1. A real-valued function L(z) defined for all z > 0 belongs to
the class of slowly oscillatiny functions al infinity if

I, : L(=) is positive and continuous in 0 <z < 0 ;

L : m%n:o LIE()‘;;) =1 for every fixed A > 0.
A slowly oscillating function has the following representation :
[ et
L{z) = c(x) exp (J %) dt) , (1.1)
1

where c(z) is a positive, continuous function which tends to a positive
limit as # — oo, and e(x) is a continuous function which tends to 0

as & —r 0.

From the representation (1.1) many properties of slowly oscillating
functions can be obtained. We shall mention here scme of these

properties.
(i) The asymptotic relation
. L(Ax)
lim
T—> 0 L(LE)
holds uniformly on every closed interval a <A< C, (0 <a <€ < ).

=1

(i) Forevery «> 0
2% L(z) — o0, 2~ *L(z) — 0,z — 0.

(i) If « > 0 and
L,(2) =2~ max {t*L(t)}, Ly(x) =z max {~=L(t)},

0<i<e <<
* The invited address delivered at the Golden Jubilee Session of the Indian
Mathematical Society, December 1958 in Poona. This forms part of the work done
when the author was the visiting member of the Tata Institute of Fundamental
Research, Bombay. The author wishes to thank Prof. K. Chandrasekharan for
valusble discussions and suggestions during the preparation of this paper.



118 R. BOJANIC

then L,(») ~ L(z), €~ o0, k=1, 2, and Ly(x), Ly(z) are slowly
oscillating functions. (%),

(iv) If f(x) is such-that both integrals

1 o
[eeiroia, j & 1f ()| db (1.2)
0 1
exist for some x > 0, then
Jf(t)L(xt)dt :L(m),j.f(t) dt,z — 0. (1.3)
H b

The definition of slowly oscillating functions given here, as well
as their representation (1.1), is due to J. Karamata [1, 2]. J.
Korevaar, T. van Aardenne-Ehrenfest and N. G. de Bruijn [3]
and H. Delange [4] have deduced the uniform convergence property
(i) of slowly oscillating functions directly from the definition. The
other properties, and in particular, Karamata’s representation
theorem, follow easily.

Finally, 8. Aljangic, R. Bojnaié, and M. Tomic [5] have proved
property (iv) of slowly oscillating functions.

A slightly more general class of functions‘ of ““ regular behaviour
at infinity is defined as follows :

A real-valued function ¢(z) defined for all z > 0 bélongs to the
class of functions of “regular behaviour ” at infinity if

II, ¢(x) is positive and continuous in 0 <®< oo

. Ax)
Iim 95.(_

2 ZT—> o 95((17)
J. Karamata (2) has shown that II, and I, imply that A(}) = A%,
where — o < & < 0. The number « is called the exponent of d(z).
It follows that a function of regular behaviour with the exponent
« has the representation

= h(A) exists for every fixed A > 0.

**f(x) > g(X), X - o0 means tha,tzl_i_>m {;—g; = 1.
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$(x) =3 Lz), (1.4)
where L(x) is a slowly oscillating function.

The well-known examples of slowly oséiilating functions are for
instance

lg°(x*?), — 0 < o < ©, (2 —|—£f;"—x> lg(2 +x),
z
then all finito iterations of these functions, every continuous function
which oscillates between

lg(xt?) and lg(x*?) +lf@t?), 0 <8 < 1,

every positive function jf(x) which tends to a positive limit as
z— o0, ete.

The slowly oscillating functions, and more generally, the functions
of regular behaviour appear naturally in problems connected with
asymptotic evaluations of cortain integrals and sums. In section 2
we shall consider a problem of this type from the theory of multiple
Fourier series. Section 3 contains a remark on a class of averaging
functions used by S. Bochner and K. Chandrasekharan [6] in
connection with some extensions of Wiener’s general Tauberian

theorem.

2. Let f(x,y) be a real-valued, L-integrable function, periodic
with period 2= in each variable. For a fixed point (, y), the circular
mean of f(x,%) is defined by

27

M) = %T J f(@ -1t cos 8, y -+t sin 6) d6.
If Uﬂ ]
Opq = _4_177_2 j jf(g’.,l) e~ Upétan) g & dn
and o

An(x: y) = Z qu ei(p:v+q1/) s
PP+e¥=n
then the Riesz mean of circular partial sums of f(x, y) of order & is
defined by
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n

&
S”R(w,y)ﬁz (1 - 1%2) A, y), n<B<n+1l
v=0

The following theorems which connect the asymptotic behaviour
of §%(z,y) as B—> co, with the properties of the circular mean.
M,,(t) as t—0, are well known [3].

If M, (8)—+1ast— 0, for a fized (z, y), then
lim S%(z, y) =1if 8 > 1.

R—>w
If at a point (2, y), M, (t)= O(t%), 8 >0, as t—-0, then for 6 > 6 + %
Sz, y) = O(R™?), R— co.
We shall prove here a slightly more general theorem of this type.

TeEOREM 1. Assume thai 8 >} and } — 8 < a < 2. If at a fived
point (2, ¥)
M, (t)~ t L(1/t), t —0, (2.1)

where L{x) is a slowly oscillating function ot infinity, then
I8, T —a/2)
I'é +«/2+1)

A function f(z, y) which satisfies the condition (2.1) at the point
(0,0) is for instance, any function of the form

Sz, y) ~ 2™ R* L(R), R — oo.

fle,y) = @ +99) g {2 + (@° + ")} g(z. ),
whoere g(z, y) — A4 > 0 as (», y) — (0, 0). In this case,
1 1\ f , 1
My(t) = E;t lg (2 + 2) j g(tcos 0,tsin6)d 6 ~ At‘llgi ,t— 0.
0

Therefore,

$40,0) 23 4 /mt EO T D)
7(0,0) ~ 44/ F(8+3/2)ng.R,R—+oo.

The proof of the theorem depends on the well-known formula of
Bochner which expresses the Riesz mean Si(x, ) in terms of the
circular mean M, (f) of f(z, ¥), for § > }.
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‘CO

Sz, y) = 2°T(8 + 1) RH[ M, (¢) 12 T (BE)dt,  (2.2)

0
where J,(z) is the Bessel function of the first kind and of order p

J(z) = ( ) Zun I‘(~+13: +1) (x)"

Proor. We choose first 5 so that
, ,,(t)~t"°‘L( )\< t‘“L( )forO <t<n  (23)

Then we split the integral (2.2) in the following way :

Sz, y) e B0 | L (i ) 5237, , (Ri)db +

OL—-—;d

+c¢; R*? {Mw(t) —t *L (;) } 178 5,1 (BEydt

+os BY2 | M (t) t 72 5y (BE) @8

R N e

:-[1 +12 ‘1‘13;
where ¢, = 2% T'(8 + 1).

The evaluation of I, follows directly from the inequa.]ity [7, p- 117]
’ o]

j o0 17T 1 (RO < 2

[I,] = ¢; B' Rs 5%

K}
M
Pt S
Ro+ti-t L(R)
Since « + & — % > 0, we have by the property (ii) of slowly oscillating

R+ T(R)—» 0, R—

R« L(R).

and so
I, = o {R*L(R)}.
Now, from (2.3) it follows that



122 R. BOJANIC

< ecy R® J 1{ Rt) g2 +8—2

()
o

[Js41(®) | < Mpa®*,0 <o < 1, | Jyyq(2) | < My)i/m,2 > 1,
and 4 — 3 < a < 2 follows that the function
@) =72 T (1) |

satisfies conditions (1.2) if we choose 2 > 0 such that z < 2 — ¢ and
z<<oa—+8—4.

S (

o

< €6y R* j L(Ry) g*t3-2
0

From the inequalities

Then, as B — o, by (1.3).

o0 0

f L(Rp) 1++4=2 Jm(;) dt ~ L(R)J. gets-2ly, (;)‘dt,
0 h '

Hence
Iy, =0 {R*L(R)}, R — co.
Finally,

n
I, = ¢, RA—3 j I (;) £~ J,, (RY) di
0

o0

= ¢, R* j L(Rt)t*+3=2j, . (;1) dt

1/Rn
0 1/Ry
=¢; R* (j . J )L(Rt) ta+8—2JS+1 (}) di
0 0 t
:III +Illl‘

Since the funetion
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£ty = t“H—z.JaH (% )

sabisfies also conditions (1.2), it follows from (1.3) that

0

1 ¢ 1
[ L(BE) 492, ., (Z ) it ~ I( R) j T A (E ) dt, B — oo.
0 b
Hence

I, ~c¢; R* L(R)

H-‘p—d

P2 T ( ) dt, R — 0.

But, for § — §< « < 2 we have

ro 1 ro (L —/2)
jt‘”‘ 2Ja+1(;)dt= [t o) O = BTG Ta 4 1)
0 0

Therefore

[y gme L@ ED I —a2) g ey By oo,
' +«/2 +1)

Ou the other hand,
1/Rn
Iy < B | B 1

0

1
o1 (2 )] dt
1/Ry

<M, R® j L{Re) t2+3-32 4y

0
1in

1”4 %t-8—8/2
< 7 jL(t)t dt
0
M
< gar g HE
or
1", = o { R*L(R) }, BR— 0.
Hence

_b_;lx(a-yl)l‘(—m/m « . i
1=y (EE TRy B I o (BLEY, B e

and the theorem is proved.
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3. In connection with some .extensions of Wiener's general
Tauberian theorem, S. Bochner and K. Chandrasekharan [6} have
defined a class of averaging functions of “slow growth ” in the
following way :
A funetion () in — 00 < 2 < 0 belongs to the olass ¥, p =1, 2,...
1° (=) is positive continuous and has the value 1in — o0 <2< 0;
2° for any finite real numbers ¢ and ¢, a < o,
lim Pz 4 A)

z->o l/f “

=1

uniformly in e < A< ¢;

3° there exist numbers m and M, depending on @ and ¢ such that

0<m<¢(x+)\) <M< ow
P(z)
fora<<Ac;
4° there is a constant ¢ such that
j —dt<0¢ , —0< L < 0.

We wish to indicate here a closely related class cf funetions which
have the properties 2° — 4°,

If we denote by R, the class of functions of regular behaviour at
“infinity, with the exponeni o, it is easy to see that for a function
$(x) € R, the properties 2° and 3° hold for every «. The property 4
holds if — 1 < « < p in & slightly more precise and general form.

THEOREM 2. Suppose that the function f(x) is integrable on very
finste interval and that

J(&) ~o(z727Y), z— 0, (3.1)
where p>> 0. If (x) eR,, — | < a < p then

j./'(lfv—tl)sﬁ( ydt ~ 2 d(x )[j )df a— o0,
; :
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If we take, in particular, fx) =1/ (14 2?*1), we obtain that for every
$x) € B,, — 1 < a < p the following asymptotic relation holds :

[-+}

\[._ﬂl‘_.dt: 2
Tre—tert " T prl
V]

cosec (-_.'—1> Hlx), x —> 00,

Proow. The existence of the integral

=4

- jf(lx 1) (t) e

for — 1 < a << p follows immediately from (3.1) and the properties
of functions of regular bebaviour mentioned in §1. In order to prove
the theorem we split the integral I into three parts

b (8/2)x o
z=(l + i +(3/Lx)f(lw~tl)¢(t) @t =1, + I, + I,

The first of these integrals can be evaluated as follows : If 0 < -+ 1,

we can find % so that 0 < 5 < « 4~ 1. Then, using (1.4) we have
P

|
L] = [jf(m-mww
o
< J [ f(z — )]t " max {u” L(w)} dt
S \u\

b
<« max {w"” L{(u)} j [flx —t) |85~ " dt
0

oS use
L a7 Ly(x) j | f(e) ] (x — )" dt.
E Y
Now, using (3.1) we see that
x R

[F(0) | (2 — )"~ " dt << By j £ (g — 5% di

3/2z E24

1
— M,z P [ (=231 — )% di

The last integral exists since « —n> — L. Therefore
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Ly

x)
()

|| < Mya*~? Ln(x) = My2™? é(x),

or
I, =0 {$(x)}, r — o0,
by the property (iii) of slowly oscillating functions.

The integral I, can be evaluated similarly. Since 0 <p — o we
can determine & so that 0 << 8 <<p — «. Then using again (1.4) we
have

sl = Flle —t]) $() at
(312)
< |f(E—a) | t°F® max {u°L(w)} di
S u<cw
(372)w
< max {42 L(w)} |f(8 — )| 22 dt
e<u<om @2
L w78 Ly(w j [f@)] (t + 2)*° di.
EY A
Next, we have
j IF(8)] (¢ +z)* e dt < M, j PN ) iy
ta iz

= My axt3-2 jt_f’"](l + )=+ dt

and the last integral is finite since p — « — 8§ + 1> 1. Consequently

Iy | < M, 277 Lyfa) = M, o2 228 4 )
Ly()
or
I; =0 {$(x)}, x— oo,
by the property (iil) of slowly oscillating functions.

Hence we have to evaluate the integral
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/2 8/2
I,= [ 1z — 1) () ds = [f(ll—u:v) (1) di.
iz i

Using the representation (1.4) and the property (i) of slowly
oscillating functions, we can choose x, so large that

¢(xt) —t*| < eforallte[1/2, 3/2]andz > X..
o)
Then we have
3/2 3/2 st }
T=ad(@) | f(L—¢lo)edi +ag@) | [ 22 st p(11 —sfa) b
5 flae

= () (I'y +1I").

First we have
1 3/2

Io=2 (T —dax)t*di +2
3

iz
* t o o
—z f(t){(l—;) +(1+;) }dt
a} iz :
o t a
=2~ f(t) dt + [f(t){(l—y;) +(1+m) —2}dt.
b b
Now, by the mean-value theorem we have
a—-p*+(1 +t)“:2+(zt{(1 —0)* 1+ (10 0<0<
Hengce, if 0 <t< %, we have
(1=t 4 (1 4+8%—2| <Ot

F((E — 1)) = di

[ ——.

where
(3/2)¢~ ! jal|,ifa > 1
‘e ™ @+ 1) |al,if —l<a<l.
Therefore
3z
t\o [N A
Jf(t){(l~—;) +(1+5) —2}dt
10
1
<Mﬁ;jt1f )| dt — 0, 2 — ©
0
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because of (3.1). Hence

I'y—+ 2 Jf(t) dt, & — 0.
0

Similarly, ,
3/2
[ [$t)
11"2!<xj O f (1L —tlx) | dt

3/2

€x j [f(11 —¢|x)dt
i
3=

and so ej |f ()] dt,

0

I"g—0,2— o0.

Collecting all these evaluations, we find that

o)

jf(lx ) (1) dt =2 jf(c) i,

x—)oo (]S

and the theorem is proved.
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ON SOME MODVULAR SPACES
CONNECTED WITH STRONG SUMMABILITY?

By J. MUSIELAK

1. Ina paper by W. Orlicz and the author “On modular spaces”,
Studia Mathematica, 18, are considered modular spaces of some
general type. I shall refer to this paper as (¥). Here examples of such
modular spaces will be given, connected with strong summability.
First, I shall outline some auxiliary definitions and results from (*).

2. Given a linear space X, a functional p(x) defined for all ze X
with values in (— oo, -+ 00) is called modular, if the following con-
ditions are satisfied :

Al p(x) =0 if and only if z = 0; A.2. p(—2) = p(z) ;.

A3, plax+ By) < p@) +py), 29X, 0,f>0, a+B=1.
Evidently, p(x) > 0. The following conditions will also be used :

B.1. if o, — 0, then p(a,x)—0; B.2. if p(x,)—- 0, then p(xz,)
— 0 for any «.
The following sets are of importance :

X, ={reX: plr) <+ o0},

X, ={weX: p(kz) < + oo for some &> 0},

X ={zreX: « satisfies B.1}.
Obviously, X; cX;cX and X, and f; are linear spaces. The
notions of convergence, completeness and separability are the
following :

+The invited address delivered ab the Golden Jubilee session of the Indian
Mathematical Society, December 1958 in Poona. This forms part of the
work done when the suthor was the visiting member of the Tata Institute of
Fundamental Research, Bombay.

¥An FF.porm is a non-negative functional ||« || defined for all 2 € X,* such that

(a) |z || = 0if and only if =0, (®) |z +y <l + Iyl () I—zl= =] (d)
9n—> o and [Jzn — & [|~>0 implies || dnzn — #2||>0. A linear space with an #-norm
complete with respect to this norm is called an F-space.
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() A sequence {z,} c X is, modular convergent to x e X, if
plk(x, — x)} — 0 as n—> co for a number k> 0, dependent on {z, }.

(B) A set X, c X is called strongly modular complete, if there
exists a constant k> 0 such that for any sequence {,} c X, the
condition p(x, — z,)— 0 as myn— co implies plk(x, — z)]— 0, as
n— oo, where z € X,.

(v) A set X, c X} will be called strongly modular separable if there
exist a sequence {w,} c X; and a number k> 0 such that for any
% € X, there exists a subsequence {w, } c {w,} such that p[k(w, — z)]
—0 as v—+oo; if the number k£ depends on x, X, will be
merely called modular separable. Of course, the limit operation
is ‘unique,’ additive and homogeneous. For any xeX: we write
lz]| =inf{e>0: p(xfe) <e}. Then |jz| is an F-norm*. More-
over, norm-convergence implies modular-convergence to the same
limit; both convergences are equivalent if and only if B.2 holds
for all sequences of elements of f:. Strong modular completeness
implies norm-completeness ; and separability in norm implies
strong modular separability and thus, obviously, modular separa-
bility, too.

3. I shall further mention that ||z is not a B-norm**. Assuming
the convexity instead of A.3, ie. plaz + By) < ap(z) + B p(y),
r,yeX, o,>0, a + 8=1, a B-norm equivalent to the F-norm
ll || may be defined by the formula ||z |, =inf {e> 0: p(z/e) < 1}
Indeed, for p(x) convex the following inequalities hold :

if |z|=1 or [#[ly =1, then |z| = |z, =1;

fllzl< Lor zf, <1, then |z, <z < vzl < L;

if lz]> 1 or @il > 1, then 1< v/ [z, < l2]| < |2 [}

4. Now, some concrete modular spaces connected with strong
summability will be considered. Let («,) be an infinite matrix of
non-negative numbers satisfying the following two conditions :

**  An F-norm is called B-norm, if it is positive-homogeneous, i.e. if (¢’) [jaz || =
lx] || ||; obviously, (c¢’) and (b) imply (c) and (d).
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1° O<1imsupZ<xm<+oo,
v=1

n—>c0

2° For any positive integer v there exists n such that «,, #0.
For instance, 1° is satisfied by all non-negative Toeplitz-matrices.
For further use we introduce the notation

o«

w0
K = sup z s o = lim sup Z %y
%=1 n>o

v=1
Denote by X the space of all numerical sequences z = {a,}. More-
over, let M(u) be a continuous, even function, non-decreasing for
u>0, M(0) =0, M(u)> 0 for 4 0. Then

plx) = sup > o, M(a,)
L |

is modular in X. Some special cases of modular functionals of this
type were considered in (*), namely the two following :

(i) «,=1 for v=mn,a, =0 for v #n,

(ii) o, =1l/nfor v<mn,a, =0 for v > n.
We denote by

X,, = the set of all x = {a,} such that there exists a number a
with the property

lim z o, M[k(a, — a)] =0 for any real k;

Kangags
X)) = the subset of all x € X, such that @ = 0.

Let us note that for any € X,, there exists only one number a with

the above property ; indeed,

M(a _b) idnv< za’nvM[2(av - a)] + zanvM[2(av —b)]'
y=1

v=1 v=1
Assuming that the right side of this inequality tends to zero as
n— oo, we obtain M(a — b) =0, i.e. a =b.

5. X7 and X—; are strongly modular complete, X, aud X0 are
linear spaces contained in 'X;, complete with respect to the norm.
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For proving the strong modular completeness of X, let us
take =, ={a}}e X such that p(z, — x,)—+O0as p, ¢— 0.
By 2° it follows M(a? — a?)—0 as p, ¢— oo ; hence there exists
x = {a,} such that a® —a, for v =1, 2, ... . It follows

[e ]

za”" (a? ——a)<hmmf2amM(ai"——aq)

— g-->>

for p sufficiently large, uniformly in n. Thus, p(z, —2)—0

as p— . The strong modular completeness of X follows from
that of X.

Now, we shall prove that X, ¢ X’ Taking z € X, and 0 < « < 1/2
we have

“nv M(mav) < mﬂv M[Qa(ay - a)] + oc*nv .M(zfl.a)

< Z %, MG, — &) + K M(2aa).

v=1
Given an € <0 we choose a positive number o, < 1/2 such that

KM (200) < ef2 for 0 < a < a,. Now, since X o,, M (a,— a) — 0 as
1

n— oo, we can find N such that 2 «,, M(a, — a) < /2 for n> N.
1

Then ¥ o, M2 a,) <eforn> N and 0 < « < «;. Now, it is easily
1

seen that p(2) < - co. Therefore there exists », such that
> €
Z Gy M(av) < '2
v=yo+1
for n < N. Thus we obtain

w©

> a, M(za) < z %, M(03)) + ; forn < N.

v=1 r=1
Finally, take 0 < o’ < «, such that
Yo

M(oca)/ < for 0 < <a<oe andn<N.

y=1
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Then = «, M(xa,) <e for n<N., This yields p(xz) <e for
1

0<a<a, ie. ¢ € X7,

The linearity of X,, and X, is obvious. Since the proof of the
completeness of X,, and XJ, by application of 1° is similar to that
in the case of the first arithmetic means, given in (*), it will be
omitted here.

Let us further remark that from the above theorem it follows

that’ 2_(_;, X,, and X9 are F-spaces. In the case (i) the following
isomorphisms hold :

X ~m, X, ~ X, X5~ A

6. Assuming «,, —> 0 as n— o for all v, X, is not modular
separable ; hence it is mon-separable in norm, too. The spaces X,
and X2, are separable in norm.

To prove the modular non-separability of X-;, let us first define
two increasing sequences of indices {k,} and {n,} as follows. We

%
choose k, and n, so that b Oy > 0[2; that is possible, since we -
1
can find by 19, n, such that ¥ «,,> 3¢/4 and then k; such that
1

o
> oy, < o/4. Now, let us assume that the numbers K, K,, ...,
ky+1 .

K, and nq, 7, ..., Ny, ate already chosen. We take by > kp_1q

and 7, > n,,_, so that
Em
v=lyy 1+ 1
Such numbers k,, and n,, exist; it is sufficient to take any n, > M, 1
50 large that

=) 3 ’km-—l o
a, > - cand E oy, < oo
NP 4 1 ! 8
v=1 y=

applying 1° and the assumption of our theorem and then to choose
k,, > k,,_. in such way that
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00
zg 4, , < o
v *
v=km+1 " 8
Now, we take all sequences y = {a,} of the form a, =5, for
k,_y<v<lh,k,=0andb, = 0,1 (ie. {b} are zero-one sequences).
Take two sequences y’ = {a’,} and y" = {a",} of this form and let
{p')} and {§",} be the two corresponding zero-one sequences
respectively. If ', = &", for p = 1,2, ..., m — 1 and b, # b",, and
if k& is an arbitrary positive constant, we obtain

plk(y’ — ") = sup > a,, M[k(a', —a")]
noy=1

km
> _kz M) > ‘;M(Ic).
v=kp—1+1
Moreover, the set of all sequences y = {a,} of the above form is non-
countable. Now, the proof of modular non-separability may be

finished in the usual way.

It is easily seen that, for proving the separability in norm of X,
and X0, it is sufficient to show that for any sequence x = {0,} € X,,
with the corresponding number @, the sequence

%, = {ay, ag, ..., @, @, @, ... } tends to z in norm.
Taking any e > 0 we can find n, such that
z amM(a,—a) < gforn> g,

€

v=1

and kg such that

Z oam_M(a"_a) < ;forn<n0.

0 0

< : M(a, - a) (a,, - a)
< supzocv - +Sup2é(”"ln <€

nEng popy €
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for k > kg Consequently, || X; — X || — 0 as k— oo.

7. If the following condition is satisfied : for any e« > 0 there exist
numbers A, >0 and o, > 0 such that M(au) < ¢ M(u) for every
0 < a< a and for every u > A, then X, = X-;

The proof of this theorem is easy and follows from the inequality
plkz)<<eplbax)y+ KM(aA.lk), valid for 0 < « < k «,, where
plkx) < + oo. Let us note that in the case of the first arithmetic
means (ii) the above condition is also necessary for the equality

34

X; = X,, as proved in (*), while in the general case the necessity
does not hold ; as a counter example we may take the matrix (a«,,)

as in (i) and M(u) = log (1 4+ |u]).

8. If the following condition holds :

(A,). there exist my> 0 and x> 0 such that for any u > 7,
M(2u) < x M(u), then B. 2 is satisfied in X, (whence the modular

convergence and the norm-convergence are in X, equivalent).

As is well known, from (A,) it follows that for every n > 0 there
exists a #, > 0 such that M (2u) < z, M (u) for all u > 7. Now, take
x = {a,} €X, and put for an arbitrary 5 >0, 4 ={v:|a, (<7},
A = {v:lav| > 7}

Then

2]

> o, M(2a) = > a, M(2a) + D, M(2a,) < KM(2) + 2, p(2)

v=1 4 A4’
whence p(2z) < KM(29) + %, p(@) and the theorem follows easily.

Tt is again easily seen that in general B.2 does not imply (A;) ;
for instance, if («,,) is defined as in (i), B. 2 holds always. But on the
other hand we shall see that in the case of the first arithmetic means,
B.2in X7 implies (4;).

9. If (a,,) is defined as in (ii), then B.2 holds in X, if and only if
M (u) satisfies the condition (Bs).

Let us assume (A,) is not satisfied. Then M (u) —- o as u— c0. We

define a sequence {%,} by induction. First we take u; > 0 such that
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M(uy) > 1 and M(2u,) > 2 M(uy), I wy, uy, ..., w,_; are already
defined, we take w, such that M(u,)> 2M (4,_,) and M(2u,)>
2" M(u,). Then we have M(u)< 27"+ M(u,) for any » < nand

n-t+8
Mtys) < D M(w) < M(u,,,) X
n+s
X Z 27" < 2 M (u,, ) fors =0,1, 2,....
Now, we shall define a sequence =, ={a" }€X, as follows. ,Let
P, =[2" M,], where[ ] denotes the integral part and M, = M (e,).
We put

n [uuforv=p“,y,>n,
G’ =

14

0 forv <p, andforpu<v<p#+l,p,>n

Fixing n, we have for p, < SM< Py, B> N, 8 =p—n,

’%ZIM(M zMa,”)_

2
<%<__2Mu < 2 <_£

Pnys 2°M,—1 2% 1 2 _]

zs Miw,)

n+s,, n

Hence

plx,) = SuP—-zMa"’) &2 -+ 0asn— oo,

mSpn M

On the other hand,

R

p(2z,)=sup — > M(2a") = sup - S\ M(2u,)

mZ Py, v=1 uZn y,

> 2 Mi2u) > L o ) >

n Dn

and B. 2 is not satisfied.



LATTICE POINT PROBLEMS AND
QUADRATIC FORMS

By V. VENUGOPAL RAO

THE olassical lattice point problem associated with the circle is
concerned with the study of the function P(z) defined by

R@)= Y r(n) ==z + P,
[/ ]
r(n) denoting the number of integral representations of the integer
n as the sum of squaros of two other integers. Two problems
regarding P(z) have been studied intensively; firstly regarding
the growth of the function P(z) as # — co0 and secondly an exact
formula for P(z) as an infinite series of analytic functions similar o
the Riemann prime number formula. We will be concerned with the
second problem. It has been conjectured by Voronoi [24] that

R(@) — 8, r(x) = 7z -2} Z (m) I 2’:«/ (n2) "

J () denoting the Bessel function of the first kind and 8, being % or
0 according as z is integral or not. This result was proved for
the first time in 1915 by Hardy [9] and his proof of (1) appeals o
methods of complex analysis, especially to difficult theorems on

the singularities of Dirichlet series of the type X @, e~ vV®=  Hardy
n=1

further showed that the series on the right of (1) is uniformly con-
vergent in any closed interval, contained in the positive real axis,
which is free from integers n such that r(n) # 0 and that the series
is boundedly convergent in every closed interval (a,b), @ > 0. This
fact led Hardy [10] to the proof of the formula

r(n) (@ — n)* = 1”_:_’ - — e D(a+ 1) P B2 LB

0<n<s

y Zl 1) T 27V 12D,
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a being any positive real number. The non-uniformity of convergence
of the series on the right of (1) (iisa.ppea,rs in (2) and the series on
the right of (2) is uniformly convergent in any closed interval
(2, b) with @ > 0. Further the series on the right of (2) is absolutely
convergent if «>> 4. It may be remarked that the formula (2) has
been utilized by Hardy [10] in showing that

j | P(8) | dt = O(&H+)

1

i

as — oo, for every ¢ > 0. In 1920 Landau [15] gave a proof of (1),
using the so called Pfeiffer method, which appeals to methods of
real analysis. It was felt desirable to give an elementary proof of (1)
and this was done in 1924 jointly by Hardy and Landau [13] who
gave two proofs one of which makes use of complex analysis and
the other of real analysis.

The formulae (1) and (2) can be generalized in several ways. Let
us consider the number of integral representations of 7, not neces-
sarily as the sum of two squares but, as the sum of m squares
(m > 2) or more generally the number of integral representations
of a positive real number by a real, symmetric, positive definite
quadratic form of rank m. Moreover every representation need not
necessarily be integral but real and congruent to a fixed set of m
real numbers and every such solution may be counted with a
“weight”. More precisely let 8 be a m rowed, real, symmetric,
positive definite matrix and let A, H be two real column vectors
with m rows. Let X denote a real column vector with m rows, X'
the transpose of X and S[X] = X' S X. Let

As, A H )= > orixH (3)

S[X+Al=t,
Xintegral

As § is positive definite the number of summands on the right of
(3) is finite. If § = B, the unit matrix of order m, A = H = O, O
being the column with all elements zero, then A4 (s, A, H, ) represents
the number of integral representations of ¢ as the sum of m squares.
The analogue of (1) and (2) is then given by
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’

A(S, A, H, &) (z— x)* =
0<yjge
™2 | 8|~ (o + 1) .
Tl + 1+ m[2)

+ |8 7F e~ 2AH g [ 4 1) g/2mit x

z* +

= A(S~LH, —A, 1) J o o 2 %
X lEI #?1/2+m/-2m/2( 77'\/(/"'1 )) (4)

where {2} and {4} represent the sequences of positive values
of 8[x + A] and S~1[x + H] when x runs through all integral
column vectors, the dash on the left of (4) indicating that for « =0
and z = A, (for some I) the last term in the summation on the left
of (4) is to be replaced by half its value. The formula (4) is valid
for o > (m — 1)/2 with the series occurring on the right converging
absolutely. For a < (m — 1)/2, the series is either conditionally con-
vergent or divergent. In the case when the series diverges it has
been shown in special cases that the series can be summed by Riesz
typical means of type u and of appropriate order with the formula
(4) remaining valid. The best result in this direction is due to
Walfisz [26, 27] who proved that (4) is valid for « > 0, in the case
of 8, A rational and H = O, with the series on the right of (4) summ-
able (R, p, (m — 3)/2 — a). He further proved that this order of
summabilii;y is the best. The same order of summability was proved
by Oppenheim [18] in the case § = B, A = H = O. Walfisz and
Oppenheim further proved that the series obtained by deriving
the series on the right of (4), with respect to z is summable

(R; s ﬂ;—-—l — oc) in case x # p; and not summable (B; p, «') for

any real o, if # = . The considerations of Walfisz are limited to
the case S rational, A =H = O and those of Oppenheim in addi-
tion, 8 =E,,. The proofs of the results of Walfisz are similar to those
of Hardy [9] and those of Oppenheim similar to the first proot
given in the joint paper of Hardy and Landau [13]. Thus we are
led to the study of the convergence and summability of the series
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@

D ASTHH, — A, ) I(2m/(2)) (3)

n=1
« being real. This has been done by various authors in particular
cases. Some of the results of Wilton [29, 30] concerning the series (5)
have been improved by Dixon and Ferrar [7] in the case S = K,,
A =H = O. Further the results of Dixon and Ferrar are limited
to the case x > 0 and r(x) = 0.

The proofs of all the results mentioned so far make use either
of the transformation formula,

HS, A H,5) = s™™2| 8|1 2AHGG-1 H, A, s71), (6)
of the theta function

ﬁ(s, A, H, 8) = Z e“ﬂSS[X-{—A].FMX’H (7)
X
the summation on the right of (7) being over all integral column

vectors X with m rows and s a complex number with positive real
part or one of its “equivalents . In view of the definition (3) one
can rewrite (7) as

B8, A, H,5) =8, e H . ' A(S, A, H, A, e, (T%)
n=1

where 5, = 1 or 0 according as A is integral or not. If 8, A, H are
rational all the A s are rational numbers with bounded denominators
so that at least for special cases of 9, A and H, 98, A, H, s) consi-
dered as a function of z =4s is an automorphic form defined in
the upper half planey > 0 (z == 4 4y, = and y real). Recently,
S. Bochner and K. Chandrasekharan [3, 4, 5] obtained some general
results concerning the convergence and Riesz summability of the
series (5) in the case H = O and their results include many of the
earlier results as special cases. Their considerations are limited to
those positive real values of x for which 4(S—1, 0, — A, z) = 0. One
of their best results states that, for § and A rational, H = O and
A(871, 0, — A, ) = 0, the series (5) is summable (R;n,p)forn=0
and a << (3/4) — (m/2) + (/2), as long as t > — 1.The only disadvan-
tage of their method is that it depends on some properties which are
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peculiar to positive definite quadratic forms and as such cannot
be applied to similar problems which arise when one replaces
A(S~1, H, — A, t) by other arithmetical functions. Before we proceed
further we mention that the convergence and Riesz summability
of the series (5) for those  for which 4(S~—%, O, — A, x) # 0 has been
considered by Avadhani [1] in the case S =E,,.

In 1951 Bochner completely generalized the problems considered
earlier by replacing A(S, A, H, t) by arithmetical functions of
certain type and obtained far reaching results. In particular his
results include those of Bochner and Chandrasekharan as special
cases. Bochner considers Riesz summability of series of the type

@

D a2/ O@)XE, (p> —1, a eal) (8)

n=1
, . irichlet seri
where the a,’s are coefficients of a Dirichlet series

@0

f(.S‘)= Z QO e~ ot

n=0
which is convergent in a half plane o > 0 (s = ¢ -+ 44, ¢ and £ real)
and satisfying

Z @y e =g z b, et (82 0), (9)
ns=0 n=0
g(s) = z by, e™#,
n=0

being some other Dirichlet serjes converging for o > 0. One can,
for instance, take for @, the Ramanujan function 7(n); for this
special case, Wilton [31] and Hardy [12] have obtained a series

of Bessel functions for X' 7(n)(x—n)*. Another example is
0<n<z

obtained by setting a, = (1/n) = d. An exact formula, in this case,
din

for X' a (r —n)* and the summability of the corresponding series
0<n<z

have been considered by Wigert [28] and Oppenheim [18].

We now proceed to consider the case in which the matrix § is
indefinite. In this case A(S, A, H, ?) is not finite in general. A
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special oase in which A(S, A, H, #) is finite is that in which S is the
matrix of a binary decomposable, rational, quadratic form. One

01
1 0) and then

A(S, O, O, n) is d(n), the number of divisors of n. Voronoi [25]
proved, in 1904, that

may, without loss of generality, assume that 28 = (

z’d(n)=m logze+(2C —-1)z+4}—

i { 1(dmy/(ne ))+.§K1(4m/(m))}, (10)

the series on the right being convergent, and the dash on the left
of (10) indicating that the last term on the left of (10) is to be
halved if z is an integer, and C denoting the Euler constant. The
Y and K functions on the right of (10)are the usual Bessel functions
which are so denoted in the notation of Watson [32]. The series on
the right of (10) is boundedly convergent in any closed interval
(a, b), a> 0 and uniformly convergent if (a, b) is free from integral
values. Thus one can integrate (8) with respect to z and in this way
Hardy [10] obtains for positive integral values of «,

2400t = =Tlet D) — 20 piaey S A

n<T

na“l‘ }“

X {Ym(etm/(m)) + 7_2Tcosm K, +a(41r\/(7;,x))}, (10%)

Ls) a**
s(s+1)...(s + @)

poles, {(s) being the Riemann zeta function.

¢.(x) denoting the sum of the residues of

at its

For « positive and non-integral, (10*) has to be replaced by a
general formula which includes (10*) as a particular case. This is
in complete contrast to all the previous considerations that we
have mentioned so far and was pointed out, perhaps for the first
time, by Dixon and Ferrar [6]. The analogue of (4) to indefinite
quadratic forms, as will be mentioned in the next paragraph, involves
an infinite series of analytic functions which in addition to the
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usual Bessel functions include a function studied by Lommel [32,
pp. 345-352] and a function “similar” to Lommel’s. The formula
of Dixon and Ferrar is

;d(n ) (x—n)*= =7 +1 {O—Hogx — (e + 2) }
+ 2ma 1 Do+ 1)2 d(n) Ay 1 (47 v/(n) ), (11)
where "
2 < (Z]2)4m
M(Z)y= — 2 _
A== Z r'(2m+ )T (2m 4 « + 1) {2log Z[2
— (2m + 1) — (2m + « + 1)},
. FI
and 1/1(9:) = I‘(ﬁ):x)) .

Formula (11) is valid for all real values of &« > 0 with the series on
the right converging. For positive integral values of «, (11) coincides
with (10%) and to see this fact explicitly it will be advantageous
to express the function A (Z) in terms of the Bessel functions Y, K
and a ‘“‘residuary” function. It turns out that with A, (Z) so
expressed, the part of the infinite series on the right of (11) arising
out of the K function and the residuary function are always
convergent, thus revealing that the part of the series involving the
Y function have to be considered separately. Thus one may sum up
by saying that the ¢ critical ” part of the series on the right of (11)
is the series involving the Y function. At the moment we shall not
proceed to express A,(z) in terms of Bessel functions as, in the next
paragraph, we will do it in the more general situation when we
consider general, indefinite, quadratic forms.

Now let § be an m-rowed real, symmetric, indefinite matrix
with signature n, m — » and A, H two real columns with m rows. As
S is indefinite, 4 (8, A, H, ¢) is, in general, infinite and one seeks
an analogue of this arithmetical function. Siegel[20], in his researches
on the analytical theory of quadratic forms, defined a function
w(S, O, O, t) which is defined for all rational S and is finite in all cases



144 V. VENUGOPAL RAO

except the following : m = 3, with — ¢8| the square of a rational
fumber, and m = 4, t = 0, — |S| the square of a rational number.
In these exceptional cases u(S, O, O, ¢) is infinite. Later Siegel [23]
gave an analogue of 4(8, A, O, t) for A rational. We consider another
rational column vector H with m rows and following the ideas of
Siegel define p (S, A, H, ¢) which is a generalization of 4 (S, A, H, ?).
(S, A, H, t) is finite in all cases éxcept in the cases mentioned above.
Further for A=H =0, p (S, A, H, t) coincides with the function
defined by Siegel in [20]. The precise definition of w(S, A, H, ¢) is
given in [19]. The case m = 3, — #|§| square of a rational number
occurs if and only if S[X + A] represents zero non-trivially ; in
this case we shall refer to § as the matrix of a ternary zero form.
The case m = 4, { = 0, |S] the square of a rational number will be
referred to as§ being the matrix of a quaternary zero form. Hercafter
we shall assume that § is an m rowed, symmetric, rational, indefinite
matrix with signature n, m —» and A, H two rational column vectors
with m rows. We shall exclude those cases in which 8 is the matrix
of either a ternary zero form or a quaternary zero form. We shall
also exclude the case in which § is the matrix of a binary decom-
posable form as in this case u (S, O, O, t) is “essentially ” d(t). Let
{A}, {m}, {v} denote the sequences of positive values of S[x -+ A],
8-1 [x + H], — 8~ [x 4+ H] respectively, arranged in increasing
order of magnitude, when x runs through all integral column vectors
with m rows. Then the analogue of (4), for indefinite forms, is given
by (2) for |S| > 0,

@) Z (S, A, H, A) (2 — N =
o<N<a
_ paz*t ™ T(m/2) D(a 4 1)
P(a + 1+ m/2)

+ S, AH, 0)z*

+ (__ 1)(m—n)/2 I 8 |—‘l‘ e—2mA'H 7.,.—0:1\(“ + 1) po/2+mle %

X i l"’(S_l, H, — A, I“t)' J“+m/2(2ﬂ'\/(.u‘lw))’ (12)
=1

p_la/2+m/4

and (ii) for |§| < 0,
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©(8, A, H, &) (2 — A)* =»

0<M<y

:plx“+l PgF(M/2) P(“‘I‘ 1) a+mis | ’
x i1 T T igmz © THSAHOS

+ (_ 1)(m——n+l)/2 ”S ” -3 e-—ZmZA’Hw——aP(a + 1) p2tmid s

:u'l «f2+mf4

« [ i WSLH, — Ay ) Y, (279 (3))
1=1

+ ? o8 mxi p(— 8L H, A, v) K,y (274 vy) +
4 i=1

v, af2+m/d

1T(m2+1) 1
F(oﬁ) 2<z——m/2—1

o0

X { z H(S~1,H9 '—A: Hl) Soc~m/2—1,a+m/2(277'\/(ﬂ'lx)) .

2 1
& “ic/ +m/

S U A G mnrV02) I
& Vgt/2+m/4 '

Some terms in (12) and (13) need explanation. S, (x) is the Lommel
funotion, its definition being dependent on p -4 v being a negative
odd integer or not, is a solution of the differential equation

2
xgg——:g —[—x% 4L (¥ — 2t =t

Its precise definition is found in Watson [32]. @, (v) is a function
similar to the Lommel function and is & solution of the differential

equation
vy
da®
For p + v not a negative odd integer, @, ,(z) is defined by

G, @) =g,x) —2¢"'T (!‘ *2"+ 1) T (u +v+ 1) y

222 Z_y — (VP 2f) =T
x

2

X {I,(x) +cosw<“ ; V)K,(x)}

1
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with

o) = i D((p — v+ 1)/2) T((p+v+1)/2) (_sg)+
w( (h—v+3)2+nT((u+v+3)2+7) ’
if x4 v is a negative odd integer — (2 p + 1), by definition

G,,_ly,, z P 20+ 2r
2%¢p! (1 =), 2%+ (—Pho1 (v = Phy1

r=0

Gv~Zp -1, (x) =

with

@ 2
G,y (@) =1z I'(v) Z MP((:C%_-T) X

{2logz/2 —¥(r+1) —F(@+r+ 1)} +271T(v) cos (m) K, (),

r—1

and (B), = | [ (B+K).

=0

£(S, A, H, 0) is the value of the zeta function {(S, A, H,s) at s =0,
It is defined in the half plane o > m/2, by the absolutely convergent
Dirichlet series,

U8, AH, s) = ZM (14)

£>0
the summation on the right being all positive rational ¢, and over

the rest of the complex s plane by analytic continuation. The zeta
function (S, A, H, s) is regular for all s except possibly for s =1 and
8 =m/2 where it has simple poles and p,, p, are respectively the
residues at these points. If either |s| > 0 or S[x + A] is not a zero
form, s =1 is a point of regularity, s =m/2 is a pole if and only if
H is integral. Further ¢(S, A, H, s) satisfies the functional equation -
d)(S, AH, 8) = (— 1)(m—n)/2 | s l—%_r o~ 2miAH d)(s_l, H,—A, m/2 —8),
if |s|>0; (15)
and
sin (ms) $(S, A, H, s) = ¢72rH ||g||=F (_ 1ym—n-12 (16)
{cos (ms) (S L H, — A, mj2 —s) —$(— S~L, H, — A, m/2 — $)}
for |s| <G,
.where

#(S, A, H, 5) = ==* T'(s) £(s, A, H, s).
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The zeta function ¢ (S, A, H, s) has been studied by Siegel [21] in
the case A = H = Q. The proofs of the formulae (12) and 13, which
are both valid [19] for « > (m — 1)/2 with all the occurring series
absolutely convergent, are based on the functional equations (15)
and (16). The difference in the nature of (15) and (16) is reflected
in the formulae (12) and (13). Let us examine the situation a little
more closely. For a moment we go back to the case of § being
positive definite. We had remarked that the proof of (4) is based on
the transformation formula (6) or one of its equivalents. It has been
proved by Epstein [8], on the basis of (6), that the Dirichlet series

(8, A H 5= 0, AS ALY

t>0 A (17)

which converges absolutely in the half plane o > m/2, can be conti-
nued analytically into the entire complex s plane and that the
resulting function is everywhere regular with the possible exception
of a simple pole at s=m/2. m/2 is a point of regularity if and only
if H is not integral. Further (6) implies [8] for {* (S, A, H, s) the
functional equation

US, A H,s) = e 2 A H S~ {(S~LH,—A,m/2 —5), (18)
where .
US, A, H,sy=="°T'(s) {*(S,A, H, ).

Hecke [14] more generally proved that if the Dirichlet series

fls) = i a, e, g(s) = i b, et
0

0
satisfies, in addition to (9), f(o -+ it) =0("), glc + it) =0 (™),
uniformly in ¢ for suitable constants ¢; and c,, then the Dirichlet
series

b
5 (19)
1 I‘Lﬂ/

o) = 5> Vo) =

converge absolutely in certain half planes, admit analytic confinua-
tion into the entire complex s plane and satisfy the functional

equation
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T(s)®(s) = I'(8 — 9) ¥ (5 — 9); (20)

and conversely if the Dirichlet series (17) which converge absolutely
in two half planes satisfy (18) and certain regularity conditions,
then for the Dirichlet series f(s) and g(s), (9) holds. In view of this
theorem of Hecke one can regard (9) and (20) as equivalents. This
theorem of Hecke applied to the functional equation (15) implies
for the Dirichlet series

ot D (S, AH,L X) e, (21)
=1

in the case |8]>0, a transformation formula of the type (9), u,being
a suitable constant. Now one, if so desires, may invoke a theorem of
Bochner [2, Theorem 10] and immediately arrive at the proof of
(12). This method fails for the proof of (13) as the functional equation
(16) is not of the type (20). Hence we obtain the proof of (13) directly
[19] without resorting to any transformation formula similar to (9).
The same method can also be applied to the proof of (12) and we
thus arrive at an alternative proof of (12). Before we proceed
further we remark that, for |S|> 0, in the light of a transformation
formula for (21) of the type (9), a general theorem of Bochuner
[2, Theorem 13] allows us to conclude that the series

D w87 H— A, ) J (@ )

i=1
is summable (B; p, ) for all > 0 such that « < —m/2+ 5/2,
provided that == pu, and p> —1.

There arises the question of seeking an analogue of the theta
function (5) for indefinite quadratic forms. This analogue is implicit
in the work of Seigel [21, II]. Following Hecke one asks for the
construction of this function from the zeta function (14). Maass
[16] showed that these functions are not analytic functions as in
(7)* but, non-analytic functions defined in the upper half plane of
Z =is which are solutions of a partial differential equation of
second order of the elliptic type and possessing the properties of an
automorphic form under a discontinuous group of mappings acting
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in the upper half-plane. More precigely let g, (z, ¥), g, (2, %) be a pair
of complex-valued functions which are twice differentiable in the
upper-half plane y> 0. Further let g; (2, y) = fi(z, ), ga(x, ¥) =
f2( 2),« and Ba pair of real numbers and @, @, positive
constants. Then one requires g;(», y) and g,(x, y) to satisfy the
following conditions ;

(1) gi(e, y) and g, (2, y) satisfy
o%g , 9% . 09 9 _
vk + ) By L+ (et By =

o2
(ii) gjlx + @ y) = ¢*" g,(, y) (0< y<1,j=12)
(ifi) g, y) = O(y™) as y— oo, L (22)

= O(y=") as y— 0,
uniformly in 2, A, p, (4 = 1, 2) being suitable constants.

: 1 1 . . -
(iv) fl( 7" %) =y —12)* (82)" fo(2,2),
y being another eonstant. J

It has been proved by Maass [16] that by Mellin’s inversion one can
associate with [(S, A, H, s) and {(S—1, H, — A, s) two functions of
g.(x, y) and gy(z, y) satisfying (22). In this case «==n/2 and
B = (m — n)/2. Thus g, (z, y) is the analogue of the theta function for
(8, A, H, s) and the functional equation for the zeta function
appears for g,(z, y) and g,(», y) under (22) (iv). Maass [16]
has shown that conditions (22) (i), (ii), (iii) imply for g,(z, ¥)
the Fourier expansion

il 9) = ol <+ B Fbo + Dy X

ndv #

X W( 2mint v ‘Z y; o pyega(n + v)) Qi malls (93)
1-

the series on the right of (23) being absolutely convergent for y > 0
on the right of (23),

1—8
u(y, )-—?—/—1——;— and W(y; «, B, €)=y ~OABEW o pyein, @+ 8-y (24)

where W, m is the Whittakor solutlon of the confluent hypergeo-
metric differential equation in the reduced form [17, Chapter 6].
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In the case of quadratie forms the Fourier coefficients a,,, upto
a multiplicative constant are precisely the u(S, A, H, t). In the case
of those non-analytic automorphic forms which arise from indefinite
quadratic forms, the ““ simple ’ nature of the functional equation
(18) of {(S, A, H, s)for | S| > 0, is reflected in the following elegant
property for g,(x, y), (¢ =1, 2). For |S|> 0, m —n is even and
thus (m — #)/2 is an integer. Siegel [22] considers the (m — =)/2 the

1

iterate of the differential operator n/2 + |z —z] a—a which may be
2

denoted by ® and proves that (g, (z,y)) is a constant multiple of
(21) when one sets ¢s = 2z and the property (22), (iv) implies for (21)
a transformation formula of the type (9). This property has been
generalized by Maass [16] for general non-analytic automorphic
forms for which B is a non-zero integer. Thus we are led to the
fact that the functional equation characterizes the ‘ indefinite
nature of quadratic forms. Now we are in a position to formulate
& generalization of (13). One starts with a pair of functions g,(z, ),
(z=1, 2) satisfying the conditions (22) and then seeks to obtain a.
formula expressing .
a’n+v(x - m)a
0<ntv<e

as a series of analytic functions. The formulae (11) and (13) enable
us. to guess the nature of these expansions.
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ON ORDERED STRUCTURES.
By V. 8. KRISHNAN

1. Imtroduction. In studying the characteristic properties of a
(axiomatically defined) mathematical system, -it is convenient to
consider the algebraic, order-based, and topological characteristios
separately first and then study their inter-relations. Thus the
real number system is & commutative field which is infinite, totally
drdered, and which has a metric topology under which it is complete;
further the positive elements (elements greater than or equal to zero,
under the total order) form an integrity domain which has the original
field as its field of quotients, the topology is also determined by order
convergence of sequences and the totally ordered set is conditionally
complete as a lattice. It is this richness of properties of the real
number system under the basic structural features that makes this
system so fundamental for mathematics. While the role of algebraic
structure and topological structure have been recognised for some
time, the place of order in the structural analysis of mathematical
systems has come to be studied only in recent years. This sympo-
sium is intended to present some of the order based features in
different branches of the subject.

The simplest of Well-ordered sets, the sequence, and its cardinal
have played s dominant role in all classical analysis and ‘early to-
pology. This is partly due to the place of the enumerability of the
integral domain -of positive integers from which in stages the real
numbers are built up, by immersing in a group, then in a field and
then completing it. That a somewhat similar procedure gives rise
to an ordered field when one starts from an integral domain which is
woll ordered and has the order type of a regular initial ordinal,
has been worked out by R. Venkataraman, who will be presenting
here some special features of his generalized system.

. In the rational field thefe_ is a partial order different from the
usual total order; namely the relation of divisibility : we set zfy
(in words « divides y) if there is an integer n.such that y=nxz. With
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respeot to this order the subsystem of all integers is a lattice, with
the g.c.d. and the l.c.m. of two integers forming their lattice product
and lattice sum. Ideal theory and valuation theory of rings deal
with this type of partial orderings in rings. N. Sankaran will be
giving a report on this type of order and on the use of valuation
theory in rings. Birkhoff, Ore and others have observed the
essential lattice-theoretic form of many structure theorems relating
to algebraic systems. The results on normal series and composition
series, are all extensible to corresponding results on congruence
relations on an Algebra. This relation of lattice theory to abstract
algebra (or metamathematics), and the relation between the general
projective spaces and certain complemented modular lattices will
be treated by Miss Iqbal Unnisa, who also gives the basic material
required for this from lattice theory proper.

How the lattice formulation leads on naturally from the finite
projective geometries to the infinite dimensional ‘ atomic’ or ‘ conti-
nuous’ geometries will be explained by V. K. Balachandran. Here

the projective geometry itself means a special type of modular
lattice.

Finally the place of order in the study of vector spaces, and the
deduction of a type of extended Hahn-Banach theorem for topolo-
gical vector spaces from a similar result proved for ordered vector
spaces will be discussed by S. Swaminathan.

After this introduction to the nature of the symposium and the
soope of the talks by the succeeding participants, I shall take up
an example to show how order properties are involved in very
general structural questions, by discussing the nature of immersion
problems and treating in some detail one such problem.

The Immersion problem

Two typical immersion problems will illustrate our further discus-
sion. The first is the immersion of the additive semigroup of positive
integers (and zero) in the group of all integers; the second is the
immersion of the topological (additive) group of rational numbers
n the complete topological group of reals. In each oase the original
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system is immersed by an isomorphism (which is also a homomor-
phism in the second case) as a subsystem of a larger system of similar
nature but having some further properties that the original system
lacks (in the first case, the existence of inverses is the extra property,
in the second the existence of limits for Cauchy filters). Thus, we
can formulate our immersion problem in the following manner :

P denotes a certain type of mathematical structure and P*
denotes a restricted type of P-structure, that is, any P*-structure
is a P-structure satisfying some further properties. There is also
a notion of isomorphism or structural identity for P-structures;
isomorphic structures have identical properties in terms of the basic
structural concepts defining P-structures. The questions that can
then be asked are :

(1) Given a P-structure A are there P*-structures 4* containing
substructures isomorphic to 4 ? When such a P*-structure exists
we call it a P*-extension of 4, and the isomorph of 4 contained
n A* is called the image of 4 in A*. By replacing the image of 4
by A itself, it is clear that A* can be treated as a P*-structure
containing A4 itself as a substructure; it is for this we call the iso-
morphism of 4 in 4* an isomorphism immersing 4 in 4%,

(2) Given two P*-extensions A* and 4%; of 4, with f, ¢ as the
isomorphisms mapping 4 in 4% and A%, if the isomorphism
g. f~1 of the image of 4 in A*; on the image of 4 in 4%, can be
extended to an isomorphism of A% in A*; then we say that the
extension A*, is smaller than A*,. The second question is then:
if there are P*-extensions of 4, are there minimal P*-exten-
sions (such that there is no non-isomorphio smaller P*-extension)?
Is there a minimal smaller than each given P*-extension ? Can
there be non-isomorphic minimal P*-extensions ?

(3) Finally is there a P* extension smaller than all P*-extensions?
Such an extension would be unique upto isomorphisms.

The study of extensions of a lattice or partially ordered set
relative to oclosure under various order-based operations gives
examples where the above questions have sometimes positive
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and sometimés negative answers (see [3, 4 and 5}).- In the two
examples mentioned at the beginning the extensions are smallest
in the sense explained above. We shall examine here another example
which arose in connection with the study of quality between uniform
seini-groups.-

By a demigroup we shall mean a set closed for a binary, asso-
ciative operation, denoted by +-. A zero for the demigroup is a
unit under the operation. A demigroup is a half group if no element
other than the unit has an inverse. As P structure we take the
commutative P group with zero. As P*-structure we take a demi-
group isomorphic to a subdemigroup of a direct sum ZRE; of re-
plicas of the additive demigroup of real numbers. (In the direct
sum each element is a finite sum of elements from the R,, or it is the
subset of the Cartesian product in which only a finite number of
components is nonzero.) So the question is to find under what
conditions a commutative half group with zero can be immersed
in & direct sum of replicas of R. The answer requires the formu-
lation of some further concepts.

A demigroup D is said to be torsionless if na = ny, for a positive
integer n and elements z, y of D, implies that 2 = y (where nz is the
sum of  #’s). D is said to be divisible if for any element x of .D and
any positive integer » there exists a y in D such that nY =2, "An ele-
ment & of Dis said to be less than another y (in symbols x < y) relative
to a subdemigroup D’ if there is an element z of D’ such that z-}-z= y-
When D’ is the demigroup .D itself the associated relation is called
the natural ordering relation in D. Given an ordering relation <,
an element z of D is said to be infinitesimal relative to y under < if
for each positive integer n, nz < y. If the ordering relation is the
natural ordering relation we omit to mention ‘ under < °. Evidently
0 is infinitesimal relative to any element x of D. If 0 is the only
element infinitesimal relative to z in D, then x is said to be regular.
If all elements of D are regula.r, D is called regular.

"We can now state the ‘main' result regarding the immersion
problem :
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TaeoREM. A commutative halfgroup with zero can be immersed
in a direct sum of replicas of the group of reals if and only if, it is
torsionless, divisible, reqular, and every enumerable set of its elements
has a lattice product (relative to the natural ordering). When this
immersion is possible, there is a smullest extension of the sort considered
upto 1somorphisms. -

The proof of this is derivable from the results (Théorems 2 and 3)
proved in another paper [7]. While the conditions are seen to be
‘necessary for such an immersion to be possible, it can be shown
that, under the conditions given, the halfgroup admits, the half-
ring R of positive reals (and zero) as a operator halfring. Being
torsionless and divisible, for any # of D, 1/(nx) and so m/(nz) can be
uniquely defined (for positive m, n). Then by taking rx to be the
lattice product of 7, z, where 7; is a decreasing sequence of rationals
converging to a positive real r, the real operators are defined.
If then, using Zorn’s principle, we find a maximal direct sum D* of
replicas of R’ contained (isomorphically immersible) in D, its en-
veloping group @ (or group of differences) is a direct sum of replicas
of R (the group of reals ) and this is also the enveloping group of D.
Finally any direct sum @ of replicas of R oontaining D would
contain also D*, and so also @ (upto isomorphism).
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GENERALIZATION OF REAL NUMBERS
By R. VENKATARAMAN

1. Introduction. One of the basic structures in all branches of
mathematics is the real number system. It has quite a richness of
properties in that it is a field which is totally ordered and also
topological ; totally ordered in the sense that the field operations
are monotone with respect to order; topological in the sense that the
field operations are continuous under the topology introduced
through sequential convergence. The order and the algebra of the
real number system are so related that it could be characterized
up to isomorphism as a complete ordered field. The relationship
between the topology and algebra of the real number system is
brought out in the result that a locally compact, connected topolo-
gical field is isomorphic with one of the threc topological fields, viz.
the field of real numbers, the field of complex numbers or the field
of quaternions (cf. Pontrajagin [10]).

The topic of the generalization of real numbers has two natural
divisions : (1) a generalization with reference to its order properties
and (2) a generalization with reference to some order and algebraic
properties it has. In the following sections 2 and 3, I summarize the
work carried out under the divisions (1) and (2) respectively.

2. Following are some properties of the real number system as an
ordered structure: If § denotes the ordertype of all real numbers
in the closed interval [0, 1], it is well known that 0 is a complete
ordertype. Also it isimbeddable in every one of its non-null intervals.
Severa] interesting order properties of § arise out of its relationship
with the ordertype n of all rational numbers. 7 is dense in g; again,
7 is similar to an isolated subset of 6 (ie. 5 similar to a set of dis-
joint intervals of §). Further every countable order type can be
realized in the ordertype n and consequently, in the ordertype f.

A generalization of the system of real numbers as an ordertype
possessing order properties similar to those of # was initiated by
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Webber [14] and Cuesta Dutari Norberto [4] and was ocarried out
in detail by K. Padmavally [8] &4nd [9].

Starting from the definition of a complete power (Hausdorff [5]),
some relations between 6§ and + are generalized for complete powers
of certain ordertypes.

The complete power C(«) with basis C, for any ordertype C, and
argument «, o any ordinal number, is defined as the aggregate of all
(finite, infinite, transfinite) sequences each’ of « terms {Talpcas B
an ordinal < the given ordinal «, x, € C, ordered lexicographically,

viz. {Tglpca < {Yalp<o if and only if, #; = yg whenever B <y and
z, <y, for some y < a.

It could be shown that for any ordertype O, C(x) is its own com-
pletion if € is its own completion. Further, if « is an indecompo-
ssible ordinal (i.e. an ordinal number « such that whenever 8 and y
are ordinal numbers with 8+ y = « then y = a), then C(x) can be
imbedded in every one of its non-null intervals.

For every ordertype C' and every limiting ordinal «, C(a), i.e. the
completion of the ordertype C(«), has a dense subset similar to an
isolated subset of itself. If further, ¢ has a highest or lowest element,
C(x) has a dense subset similar to an isolated subset of itself.

Bearing in mind the Cantor-Bendixon theorem that every order-
type imbeddable as an isolated subset of 6 is countable, the property
of 1, that every countable ordertype can be realized in it, can be
stated in the followmg equivalent form : The union of a countable
family of ordertypes imbeddable as an isolated subset of 8 is itself
imbeddable as an isolated subset of 4.

The generalization of the above result can be given for complete
powers of argument, a regular initial ordinal number. (An ordinal
number w, is said to be regular if every cofinal subset of it is of order-
type of the ordinal w, itself. An ordinal number is said to be
initial, if it is the least ameng equi-potent ordinals. A regular ordinal
is initial, but the converse, in general, is not true.) If w, is a regular
initial ordinal number and N, the power of w,, .the union of an
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aggregate of power C' N, of ordertypes imbeddable as an isolated

subset of C(w,) is imbeddable as an isolated subset of C(w,).

3. In this section we shall consider the question of generalization
of the system of real numbers as an ordered field. I shall enumerate
certain properties of ordered fields in general. The cofinal character
and the coinitial character of an ordered field are equal and infinite.
Every element of an ordered fisld has equal and symmetric character,
which is the character of the field itself. Also, no ordered field of
character w, > w, w, a regular initial ordinal number, can be order-
complete, for all ordered fields which are order-complete are isomor-
phic to the ordered field R* of all real numbers which is of charac-
ter w. Hence every ordered field of character w,, w, > w has
necessarily gaps.

Let [4,, 4,] denote a decomposition of an ordered set 4. By the
characters of the decomposition [4;, 4] we mean the cofinal
character of (4, —a,) or 4, according as 4, has a last element a,
or not and the coinitial character of (4, —a,) or 4, according as
A, has a first element a, or not. Then it is easy to see that a
necessary condition for a decomposition of an ordered field to be a
cut is that it is of character w,, where w, is the character of the
ordered field. Again, if we define that an ordered set is w,-complete
if every decomposition of character [w,, w,] is & cut, then no ordered
field of character w, can be ,-complete for w, < w,. So we shall
define an ordered field F' of character w, to be complete if every
decomposition of character [w,, w,] is & cut.

Bearing in mind that the real number system is an ordered field
of character w which is also complete, we can define its generalization
as an ordered field of character a given initial ordinal number which
is complete. The question arises, whether for every regular initial
ordinal number w,, there exists a complete ordered fiold of character
w,. This question has been considered by Roman Sikorski [12] and
also by myself [13] and has been answered in the affirmative.

I shall present a summary of the construction of a complete
ordered field of character w,, where w, is any given regular initial
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ordinal, through a systematic generalization of the ordered domain
of integers.

I shall first define a class of ordered sets, called the symmetrically
ordered sets.

An ideal I (coideal U) of an ordered set P is said to have extremal
symmetry if there exists an ultimate segment (initial segment)
of I/U, anti-isomorphic with an initial segment (ultimate segment)
of the coideal (ideal) constituted by set complementation of I/U
in P. An ordered set in which every proper ideal (coideal) has
extremal symmetry is said to be symmetrically ordered. The order-
types w, w*, w* 4 w, are examples of symmetrically ordered sets.

Let J denote the ordered domain of all integers and o« some
ordinal. By a symmetric power J(x) of index «, we mean the
- aggregate of all integer-valued functions defined on the set of all
ordinals < «, such that each function has at most a finite numbsr
of non-zero values, and ordered by last differences. (If f and g be
distinct elements of J(«), then as f and g have at most a finite number
of non-zero values there can be at most a finite number of places
where f and g can differ.) If at the last place (say) B( < «), where
fand g differ, /(8) < g(B), we say f < g. It is easy to see that this
ordering relation < is a total-ordering on J(x).

It could be proved that an ordered set is symmetrically ordered
if and only if it can be imbedded as a segment of the symmetric
power of index a suitable ordinal. (By a segment of an ordered set
we mean a non-null subset which with every pair of its elements
contains all intermediate elements of the ordered set.)

In the symmetric power J(«), « any ordinal, the binary opsration
+ of point-wise sum as functions defined on the set of all ordinals
< «, could be seen to be a group operation and under this operation
J(«) is seen to be an ordered Abelian group. J(«) is the least ordered
Abelian group (up to isomorphism) containing. the system of all

ordinals < w* under the Hessenberg natural sum (cf. P. W.
Carruth [3]).
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The element g in J(«) such that g, has the value zero for all
places except at B where it has fhe value 1, is called the Bth
generator of J(«). The set of all generators of J(«) constitutes a
basis over the domain of integers for it. Define a binary operation
x for the gencrators of the ordered groupJ(«)thus:g, X g, =g;
where gg, g, g, are Bth, yth, 8th generators respectively and
8 = o(B,y), viz. the Hessenberg natural sum of 8 and y. This
binary operation defined for the basis elements of J(«) could be
extended as a binary operation over J(«) itself. The necessary and
stfficient condition that J(x) may be closed for this operation ‘ x’
is that o« is an indecompossible ordinal. If ais an indecompossible
ordinal, J(x) is an ordered integral domain, under the binary
operations +-and x defined above.

The following characterization theorem is true. If w, is any
regular initial ordinal then every ordered domain of character w,
which is also symmetrically ordered is isomorphic to the ordered
domain J(w,). This is the generalization of the following theorem
which characterizes the ordered domain of integers : Every ordered
domain, the set of whose positive elements is well ordered, is
isomorphic to the ordered domain of all integers. So we shall refer
to the ordered domain J(w,) as the ordered domain of all w,-
integers.

It is well known that there exists a unique (up to isomorphism)
minimal extension of a given ordered domain into an ordered field.
Such an extension for the ordered domain of w,-integers is called
the ordered field of w,-rationals:

If w, is any regular initial ordinal, w, > o, then Roman Sikorski
[12] has proved that the ordered field of all w,-rationals is complete,

Tt must be noted that the above result is not true in the particular
case when w, = 1.

Tt is of interest to note that there exists one and (up to isomor-
phism) only one complete ordered field of character w, while for
w, > w, there exist many non-isomorphic ordered fields of character
w, and complete (cf. Roman Sikorski [12]).
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Further, while the complete ordered field cf character w is of
power 2%, > ¥;, the ordered field of character w, we have construc-
ted is of power W,. For w, > w there exist ordered fields of
power 2¥;-
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ORDER STRUCTURE IN RINGS AND FIELDS
By N. SANKARAN

1. Introduction. Divisibility, as an ordering relation induces an
order structure in a ring and in the collection of ideals of it. This is
one way of introducing an order in a ring. Another is by means of
valuation. We study in the following pages the nature of a valuation
ring, the relation between the divisibility order of the ring and order
induced by the valuation, and the conditions for a topological field
to have valuations compatible with its topology. We mention briefly
the characterization of valuation rings in terms of its various ideal
systems and indicate the application of valuation theory to algebraic
geometry.

2. Ordered Rings & Fields. We call a ring 4 an ordered
ring if an order structure can be introduced in it which is com-
patible with the ring operations. That is, the following are true.

>0,y>0=>x9y>0
foreachzed, 2 < y=>a+z2<y+z2

Now the positive part of the ring (denoted by P) determines the order
structure and the order structure determines the pos1t1ve pa.rt The
conditions gre: (i) P + P c P, (i) P. Pc P, (111) Pn (—~ ) = (O).
For a total ordering of A we further demand that P, (— P) =
From the fact that nxz = 0 implies # = 0 for a non-zero na.tural
integer n, we deduce that any totally ordered ring is of characteristic
zero. If we have an ordered integral domain with a unit then we
have one and only one order structure on the field of quotients
which preserves the order of the ring. Now the problem is that if
is an extension of the ordered field K, can we introduce an order in
E which will preserve the ordering of K ?

A necessary and sufficient condition for this to happen is that the
relation Ip; 27 = 0 => p; z; = 0 for all ¢, where x; ¢ ¥ and p,> 0,
p; € K. As a corollary we get the theorem due to Artin and Schreier
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which states that for the existence of an order structure on a com-
mutative field E it is necessary and sufficient that the relation

n
Sa2=0=>a2=0for¢=1,23,..,n
1

We agree to call an ordered field maximal if it coincides with
all its extensions. We can prove that every ordered field has a
maximal ordered extension field.

3. Normed Rings. The collection R is called a normed ring
when (i) R is a linear, normed complete space in the sense of
Banach, (i) in R the operation of multiplication of elements is
defined, which satisfies the algebraic properties

2(\y + p2) = Awy + paz, 2(y?) = (2y)z, Jz.y| <fz|.lyl
and
lz+yl<lz]+lyl, le]=1and|0] =0

For a detailed discussion one can refer té Gelfand [5].

4. Valuation Rings. The theory of valuations can be viewed
as a sort of generalization of the normed ring in that the triangular
inequality with respect to multiplication becomes an equality and
the valuation is not necessarily a positive valued funotion. It can
also be looked upon as a method of constructing fislds with the
properties of absslute value. Before comiirig t& the géneral theory
of valuations we will give certain particular definitions. A field K
is said to have a valuation » if a function v(a) is defined for every
aeK such that

(i) o(a)is an element of the ordered field P,
(i) v(e) > 0 for @ £ 0, v(0) =0,
(iii) v(ab) = v(a). v(b),
(i) v(e+b) < v(a) + v(b).
These conditions are fulfilled for any ordered field K if v(a) = |&|.
Each field has a trivial valuation: »(a) = 1, for a non-zero a, and

9(0) = 0. For the field of rational numbers I' we can define another
type of valuation the p-adic valuation (for evéry prime p) because
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if p is any prime then any rational number @ can be represented as
@ = bjc. p" where (b, ¢) = 1, and prime to p. Put now ¥V, (a) =p~",
V,(0) = 0. This satisfies the first three conditions and instead of
the fourth we get the stronger inequality

V(a4 b) < max (V,(a), V,(b)).

If now we define an Archimedian ordered field as one in which for
any two non-zero elements «, 8 we can find a natural number » such-
that ne > B we see that the absolute value gives an Archimedian
order while the p-adic valuation introduces the non-Archimedian
order. The necessary and sufficient condition for the valuation v of
the field K to be non-Archimedian ordered is that the stronger
inequality »(e 4 b) < max (v(a), v(b)) is satisfied. This condition
shows that for fields with non-Archimedian valuations it is needless
to consider the field of values as we use only one operation.

Now Ostrowski [13] has shown that any field with an Archimedian
valuation is topologically isomorphic to a subfield of the complex
numbers with absolute value as its valuation. So for deeper results
in valuation theory we consider only non-Archimedian valuations.

In general we take the valuations v to satisfy the following
postulates. v is a mapping of the field K onto a simply ordered

Abelian group I' such that
) fo;? every o # 0 in K, there exists an « in I' such that
va) = «; (i) v(e. b) =v(a) + v(d); (iil) »(a - b) > min (v(a), v()).

The elements of the skew field K for which the valuation is non-
negative form a ring R called the valuation ring. In this valuation
ring the elements with zero valuation form a two-sided ideal.
In fact we could prove that every ideal in the valuation ring is a
two-sided ideal. If now we define an upper class in the collection of
the positive eloments of the valuation domain I' as the set which
with any « contains all 8 > «, then we could show that the upper
classes form a simply ordered set and that it is isomorphic to the
two-sided ideals of the valuation ring.
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If now, we are given an integrity domain I with a unit, then the
problem is that under what conditions will it be a valuation ring
of its field of quotients K ? Krull [8] has given the following : The
necessary and sufficient condition for I to be a valuation ring of its
quotient field K is that (i) all non-units of I form an ideal ; (ii) any
over-ring R which contains / and is contained in K containsan
inverse of a non-unit of I.

Further if T is integrally closed in K then there exists at least one
valuation ring 7,5 I and that I is the intersection of all such
valuation rings.

S. Order and Valuation. Now the valuation induces an order
on the field. We say that @ < b where a, b € K if v(a) < v(b) in the
value group I'. In the integrity domain I with a unit there is an
intrinsic order that of divisibility order (& < b if @ divides b). Now
the question is what the relation is between the divisibility order
and the order induced by the containing valuation rings. This has
been investigated by Lorenzen [9, 10] who gives the following
results : If B, denotes the valuation over-ring containing the
integrity domain I then the divisibility order is the conjunotion
order (lattice product order) of all the induced orders. That is to say,
a < b implies a < b, for each ¢.

Each principal ideal ring can be represented as the intersection
of valuation rings and the multiplicative group of its quotient
field is a lattice group with respect to divisibility.

6. Topological fields and valuations. Let K be a commutative
field where addition and multiplication are continuous operations
and I' be a linearly ordered Abelian group. The valuation introduces
in K the order topology of I' in the following manner: The neighbour-
hoods of 0 in K are given by

Uly)={zeK |v(x) <y, yel}

If this topology is compatible with the topology of the topological
field K we say that the valuation preserves the topology. Now the
question is which of the topological fields have valuations preserving
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the topology ? Kaplansky [6] has given the necessary and sufficient
conditions for a topological field to have Archimedian valuation
preserving the topology based on a conjecture of Shaferevitch [18]
and Zelinsky [21] has given in the non-Archimedian case.

For non-commutative fields with Archimedian valuations the
conditions are: (i) the set {a} of nilpotent elements (a* — 0) forms a
right bounded set ; (ii) if @ is nilpotent and b is either nilpotent or
neutral (6" 4>,0, b~™ 4> 0) then ba is nilpotent ; (iii) the com-
putator subgroup of the multiplicative group of non-zero elements
is right bounded.

For a commutative field the conditions are rephased as (i) the set
of nilptent elements form an open set ; (ii) if 4 c K is bounded away
from zero (4 is disjoint from the neighbourhood of 0) then 4~*
is bounded.

For non-Archimedian valuations the conditions read as (i) some
neighbourhood of zero generates an additive group which is bounded;
(ii) if 4 c K is bounded away from zero then 4! is bounded.

7. Generalizations. Schilling [17] has considered the non-
commutative valuations by taking a non-commutative group.
As an example we consider the following: Let I' be a lexico-
graphically ordered group of all motions in the plane where the
law of combination is defined as (a, B) + (y, 6) = («+y,¢”. B4 9).
The set I't consists of all couples for which either & > 0 or & =0
and 8> 0. This I" will be the value group of the formal power series

D ={% a,, t*P}, where a,gc F' a field and ¢ is a transcendental
(@8)
over F. The valuation is defined as

{00 — 1 ; $&B ) — ¢ where ¢ = (a, B) + (7, 9)-

Schilling generalizes the theorems on general valuations to
valuations with value group non-commutative. Now Zelinsky [22]
considers non-associative valuations by taking an ordered loop L
as a valuation domain. Recently Fuchs has generalized the valuation
theory by considering a partially ordered group instead of a linearly
ordered group for the valuation domain. By taking the following
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law: (@) > v(c) and »(b) > v(c) implies v(a — b) > v(c) instead of the
triangular inequality, he shows "that every integral domain with
unit can be exhibited as a valuation ring of its quotient field and
that the value group of an integrally closed ring is a subdirect sum
of linearly ordered groups.

8. Complete fields. For every field K with a valuation we can
construct an extension field in such a way that the arithmetic
properties of the original field with respect to the given valuation
aro preserved and the algebraic structure of the extended field is
considerably simplified by the adjunction of the new elements. We
can complete the field either by taking fundamental sequences or
by considering a system of ideals and an infinite system of congru-
ences, that is to say, that if {9} is a collection of ideals of the
valuation ring R subject to (i) ¥,., c ¥, (i) 7 %A, = (0) and the
sequences are such that g, =@, (mod %)) for m > n. In this
completion the elements consist of all sclutions of all systems of
congruences. But fields having more than one complete extension
fields which are not analytically isomorphic are known to exist.
For further information about complete fields one can refer to
Schilling [16], Ostrowski [14] and Kaplansky [7].

9. Ideal theory and Valuations. Aubert [1] has given the
following characterization of the valuation ring and the various
system of ideals of it. A total system of r-ideals in a quasiordered
directed Abelian group @ is defined as follows: To every bounded
set A of G is associated a subset A, of @ such that

i) Ac¥A; HACE — Y cE,;

(i) eeG—{afr=(a); (iv) a. Ar = (a. A),.
For the ring case we have for e, b « U, o+ b eW,. For a detailed
discussion of such abstract ideal systems one can refer to Prufer’s
paper [15]. The different r-systems form a partially ordered set
with rospect to < : 7, < r, if each r, ideal is also an ro ideal. The

v-ideal system is the greatest element in this partially ordered set,

ie. 1, =ug )(a) and the s-ideal system is the least element, i.e.
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U, =U (a). We further define U, =B, and U, =U B,, where
P

ael nesH,
% denotes a finite subset of G. Then the following statements are
equivalent.

(i) I is an integral domain with a unit valuation ring.
(ii) Every s-ideal in I is a d-ideal (the usual Dedekind ideal).
(iii) Every s,-ideal in I is a d-ideal.
(iv) Every s-ideal in I is a v,-ideal.
(v) Every s,-ideal in I is a v,-ideal.
(vi) Every s,-ideal in I is a v-ideal.

If r = s wo get the usual valuation due to Krull and » = v gives the
non-associative valuation due to Zelinsky [21].

Tor the value group of an integral domain to be linearly ordered
it is necessary and sufficient that the ideals of R are not reducible
and the value group to be Archimedian ordered a necessary and
sufficient condition is that every ideal in R is primary.

10. Application to algebraic geometry. The theory of valuations
and the theory of ideals in algebraic function fields enable us
to prove the arithmetic proof of the theorem on the reduction
of singularities with great ease and rigour. Corresponding to the
notion of a branch of an algebraic curve we have the zero dimensional
valuation of the field of rational functions. Zariski [22] proves the
following fundamental lemma : Given any zero dimensional valuation
of 3 there exists a projective model F of Z, on which the centre of
the valuation is a simple point. Schilling and Maclane [11] give a
general survey of all possible value groups for valuations on -
dimensional algebraic varieties.
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PARTIALLY ORDERED LINEAR
TOPOLOGICAL SPACES

By S. SWAMINATHAN

1. The study of linear topological spaces presents new features
when an order structure is also introduced relative to which the
algebraic operations are monotone. The interest in this began with
the study of vector lattices in functional analysis about three
decades ago. Partial order in vector spaces has been the subject
of recent study by M. G. Krein, M. A. Rutman, F. F. Bonsall, I.
Namioka and others. I. Namioka has made a systematic investi-
gation of partially ordered linear topological spaces in general
in [5]. Referring to some of his results, we shall briefly deal with
some aspects of the relationship between order structure and topo-
logical structure in linear spaces over the scalar field of real numbers.

2. Partially ordered linear spaces. A partially ordered linear
space is a real linear space (B, ,.) with a partial ordering >
on E which is monotonic with respect to addition and non-negative
scalar multiplication, i.e. for z, y in E such that z >y, we have
(i) # 42>y -+ zforeachzin B, and (ii) ax > ayfora > 0. Such a
partial ordering is called a vector ordering on K.

A vector ordering on  can be associated with a geometric object
in E called the cone. A cone is defined as a linear subset C' of B such
that ¢ ++ C cC and aC cC for all @ > 0. A partial ordering > can be
defined for B with respect to a cone C by prescribing that for =, y
in B, & > yifand only ifx — y is in B. This partial ordering is a vector
ordering > on E and is said to correspond to the cone C. Conversely,
given a vector ordering > on E, the elements % such that z > 0 form
a cone, which is called the positive cone of E. The vector ordering
> corresponds to the cone C. Thus we see that a vector ordering on
E determines and is determined by the positive cone C of E. Hence
we many denote the partially ordered linear space by (&, C).

If the vector ordering on (B, C) be anti-symmetric (or strict)
the necessary and sufficient condition for it can be expressed in terms
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of the cone € as 0 n { —C} = {0}. The cone is then called a proper
cone. The vector ordering is a directing relation if and only if ¢ — ¢
= &. In such a case the cone is called a generating cone. When (&, ()
is a lattice also, it is called a wector lattice.

There are many examples of partially ordered linear spaces. To
mention one, let X be a locally compact Hausdorff space. The
space C(X) of all real valued continuous functions can be ordered
by defining that f, g in C(X), f > ¢ if and only if f(x) > g¢(x) for all
z in X. This ordering is a vector ordering and the positive cone in
C(X) is both proper and generating. The case in which the space
C(X) consists of all real valued continuous functions with compact
supports is important in the theory of integration in locally compact
spaces.

3. Extension of positive linear functionals. One of the most
important problems concerning linear spaces is about the
extensions of linear functions from a linear subspace to the whole
space. In partially ordered linear spaces we consider the extensions
of a positive linear functional which is defined as a linear functional
which is non-negative on the positive cone of &. Theorems concern-
ing such extensions have been given by Krein and Rutman [4],
Bonsall [2,3] and Namioka [5]. We shall now prove an extension
theorem of the Hahn-Banach type for partially ordered linear
spaces due to Namioka. We use the concept ‘ radial at z’ which
is defined as follows: A subset U of (£, C) is radial at a point x € B
if there exists a real number s such that for any 2in B,z € (4 — )
for¢ > s, t real.

TarorREM I Let F be a lincar subspace of a partially ordered
linear space (B, O), and let f be a linear Sfunctional on F. Then the
following statements are equivalent :

() f can be extended to a positive linear SJunctional on E.

(i) There is a convex set U, radial at 0, such that flx)<1
whenever x € F and x < y for some y in U.



LINEAR TOPOLOGICAL SPACES 175

Furthermore, when the statement (ii) s satisfied, an extensionfcan

be chosen so that f(x) 1 whenever x < y for some y in U.

Proor. (i) implies (ii). Suppose that a positive linear functional
fis an extension of f. Thentheset U — {x: f(z) < 1}is convex and
radial at 0. If x is an element in F such that z < y for some y in U,

then f(z) — f(z) < fly) < 1.

(ii) implies (i). (ii) is equivalent to saying that there exists a
convex set U, radial at 0, such that f is bounded from above on
F A (U—-0), ie. f(z) < 1 whenever z € F n (U — (). Consider the
Minkowski functional p of the convex set U — €, which is defined
as follows :

px)=inf {¢t:t>0, 2t (U—C)} for all 2 in K.

p is subadditive, i.e. p(x 4 y) < p(x) 4+ p(y), and non-negatively
homogeneous, i.e. p(ax) = ap(x) for a > 0.

Now f(x) < p(z) for all z in F. We thus have the hypothesis of
the classical Hahn-Banach theorem (Banach, [1]) and so, applying
it, there is a linear functional f on X, which is an extension of [
such that f (z) < 1 for all z in U — C. The functional f is necessarily
positive, for take x in C'; then, for all positive numbers  — tz is
in U — C. Hence f{ — tr) = — tfx) < 1 for all positive numbers ¢,
whenee it follows that f(x) > 0. Hence the theorem.

COROLLARY I. Let Fhea subspace of a partially ordered linear
space (E, O) such that for each positive element x in B there is an
element y in F such that y > x. Then each positive linear functional
on F can be extended to a positive linear functional on E. *

CororLaRY II. Let a linear subspace F of (B, C) contain a point
at which the positive cone s radial. Then each positive linear functional
on F can be extended to a positive linear functional on K.

A stronger form of Cordllary I was proved by Dixmier, while a
weaker form of Corollary II was proved by Krein.
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4. Partially ordered linear topological spaces. We noxt introduce
a topology in a partially ordered linear space (&, C). We take
the usual vector topology 7' of the linear space E, which is
determined completely by its local base of neighbourhoods of 0.
Thus (B, C, T) is a partially ordered linear topological space. When
the vector topology 7' is locally convex, (&, C, T) is called a partially
ordered locally convex space.

Consider the extension of linear functionals for the space (£, C, T').
We have the following theorem for partially ordered locally convex
Spaces.

TrrorEM II. Let F be o linear subspace of a partially ordered
locally convex space (E, C, T') and let f be a linear functional on F.
Then the following statements are equivalent.

(i) f can be extended to o T-continuous linear functional on
(B,C,T).

(ii) There is a T-neighbourhood U of 0 such that f(x) < 1 when-
ever x € F and x < y for some yin U.

This theorem easily follows from Theorem I. In fact, the condition
(ii) above is essentially the same as that of Theorem I, and also
implies that f is a T'-continuous positive functional on the subspace F
of K. This being so, condition (i) above follows from that of Theorem
I, since T'-continuity of f can be deduced from its positivity using the
equivalent form of the condition (ii) given in the proof of Theorem I.

We emphasise that we have been able to derive a topological
theorem from a corresponding theorem with only the order structure.
It should- be observed that Theorem II, though stated only for

partially ordered locally convex spaces, can be modified for the
general case.

S. Locally full topologies. By using the order structure, we
can construct a new veotor topology out of the old one, which
has some interesting consequences. We shall now show how this
can be done, though we do not propose to go into the details of the
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consequerices. We start with the nption of an order interval in a
partially ordered linear space (&, O).

A subset of E of the form {z:z < z < y} is called an order interval
and is denoted by [, y). For z, y, # and  in K, we have = + [y, 2]
=2+ y, ¢+ 2] and [z, y] + [z ] c [ + 2y + w]. It is not
necessarily true that [z, y] + [2, u] = [« + 2,y + u]. The spaces
for which this is true form a very special class of partially ordered
linear spaces, which includes the vector lattices.

Let (E, C, T) be a partially ordered linear topological space and
let % bo the family of all T-neighbourhoods of 0. Consider the
family of sets ¥" = {(U +0) o (U—C): U eu}. This family forms a
local base and determines a unique topology which we shall denote by
F(T). The following properties of F(T) can be easily verified :
() F(T) c T; (i) F(F(T) = F(T); (i) if Tyc T,, then F(T,)
c F(T,); (iv) the closure of O relative to T is identical with the
closure of C relative to F(T); (v) if T is pseudo-metrizable, pseudo-
normable, or locally convex, then F(T) is pseudo-metrizable,
pseudo-normable, or locally convex.

A subset F of a partially ordered linear space is called fullifx,y e F
implies that [z, y] c F. A partially ordered linear topological space
(B, C, T) is called locally full if full T-neighbourhoods of 0 form a
local base for T. Now, for any subset F of E, (F+0C)n (F—C)
is full. Therefore, the space (&, C, T) is locally full if and only if

FT)=T.

Lot the adjoint of (B, T) be (B, T)* ie. the space of all
linear continuous functionals on (E, T'). Let (B, C, T)* denote the
space of all linear functionals on E which can be exhibited as the
difference of two T-continuous positive linear functionals. Then
(E, T)* is identical with (B, C, T2 for a partially ordered linear
space with a locally convex and locally full topology 7. For proof
we refer to the memoir of Namioks [5] which contains a host of

other interesting results.
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INFINITE DIMENSIONAL PROJECTIVE
GEOMETRIES

By V. K. BALACHANDRAN

1. Introduction. We shall be concerned with two types of infinite
dimensional extensions of finite dimensional projective geometries.
In one type of extension the notion of point’ continues to play
(as in the finite dimensional case) the dominant role, while in the
other this concept is completely banished, thereby leading to the
‘pointless’ or ‘continuous’ geometries of Von Neumann, wherein the
dimension function assumes the fundamental role. We conclude
the discussion with some remarks on ring-coordinatisation of infinite
dimensional projective geometries.

2. Atomic Projective Geometry. In order to motivate the first
type of extension, let us recall the connection between a projective
space I" and the associated projective geometry I(I'), which is the
lattice of all flats in I, and L(T') is not only complemented and
modular but also upper-continuous and atomic. Conversely, starting
with any upper-continuous, atomie, complemented modular lattice
L, we have the associated projective space I'(Z;) with atoms in L,
as its points and elements covering atoms as lines. Further
L(I(L,)) = L,. Therefore it is appropriate to call an upper-continuous
atomic, complemented modular lattice L, a projective geomeiry or
more precisely an afomic projeciive geometry—to distinguish it from
the continuous geometry considered later. We wish to point out
that the two properties ‘ upper continuity ’ and ‘ atomicity > which
are simple consequences of ‘ modularity ’ and ‘ complementedness ’
when the lattice is finite-dimensional are no longer implied by
these when the lattice is infinite-dimensional.

Given a division ring F and a cardinal d, the lattice PG(F;d) of
all subspaces of the d-dimensional vector space V(F; d) formed by
taking all d-vectors over F having only a finite number of non-zero
coordinates, is an atomic projective geometry. PG(F; d) is always
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srreducible. We shall call an atomic projective geometry coordina-
tisable if it is isomorphic fo some PG(F; d). This definition clearly
includes the usual coordinatisable, classical (finite dimensional)
projective geometry when the space has homogeneous coordinates
from the field. ‘

Frink has proved the following theorems regarding atomic pro-
jective geometries (see [1, pp.130-131]) :

TrEOREM 1. Any drreducible atomic projective geometry (apart
from certain finite dimensional projective lines and mon- Desarguesitn
plane projective geometries) is coordinatisable.

TeEOREM 2. An alomic projective geometry is a sublattice of a
direct union of vrreducible atomic projective geometries.

Theorem 2 generalizes partially the result of Birkhoff that a
finite dimensional complemented modular lattice is a direct union
of projective geometries [1, p. 120, Theorem 6].

3. Continuous Geometries. The motivation for this type of
extension is obtained from the ohbservation that an n-dimensional
projective geometry (=an irreducible complemented modular
lattice of dimension 7 in the lattice sense) can be viewed as a
complemented modular lattice over which a ‘ normalized > dimension
function D = D(a) can be defined, whose range R(D) is a subset
of the unit interval 7 and which has the following properties :

(1) D(0) =0, D(1) =1; (2) D(aVb)+ D(a A b) = D(a) + D(b);

(3) 8~b(=> D(@) = D(b), a <b (=) D(a) < D(b), (& ~b moans
that @, b are perspective, that is, have a common complement,
and o < b means a < a, for some a, < b);

(4) BR(D) =8, = (0, 1/n, 2/n, ..., 1).

This observation raises the following question. Given an infinite
dimensional lattice L, under suitable conditions, is it possible to
introduce in L a dimension function D satisfying the properties
(1)~ (3)and (4): R(D) =8, =I? Von Neumann gave a positive
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answer to this question by proving the following remarkable result
[4, p. 101, Satz 2.1] :

TrEOREM 3. In any irreducible continuous complemented modular
lattice L* it s possible to introduce a (unique) normalized dimension
Junction D satisfying properties (1)—(3) and (4*): R(D) = 8, for some
n,or 8. ' '

(A lattice is called continuous if it is both upper-continuous and
lower-continuous, that is, dually upper-continuous.)

R(D) =8, occurs precisely when L* has dimension.n, and corres-
ponds to a projective space I' of dimension n—1; if L* has dimension
n, then D = d/n.

Whon R(D)=S,, we call L* a continuous geometry (in the
proper sense); note that in this case, since there are in L* elements o
of arbitrary small positive dimension D(a), the notion of ‘point’
cannot come in at all, as a point is considered as an element of
minimum positive dimension.

THEOREM 4. Associated with any division /rmg F, there is a con-
tinuous geometry CG(F).

CG(F) is obtained from the finite dimensional projective .geo-
metries PG(k)=PG(F; k) by a sort of limiting process (see, [4, p.121,
Anm. 2.4] or [1, p.125]). PG(k), the lattice of subspaces of the k-
dimensional vector space over F, can be imbedded isomorphically
in PG(2k) so_as to preserve the normalised dimension D. Repeating
this we get a sequence of extensions :

PGR(2)c PG4)c...c PG(2")c....

Each PG(2") is a metric lattice the metric being induced by
the valuation D. The ‘union X of these metric lattices is again
a  metric lattace D is defined over 2 a.nd takes as values
all rationals of the form kj2vk = 0, 2"). The metric
completion Z of X is the contmuous geometry O’G(F) The funetlon
D can be extended in a natural way to D over 5, -and: D is the nor:
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malized dimension function of CG(F); if z in T is the limit of a
sequence #, of T, then D(,) will converge to a limit, which is then

taken to be D(z).

Curiously we have the

TarorEM 5. The continuous geometry CG(R) associated to the
real field is isomorphic to CG(Q) associated with the quaternion field,
but not to CG(C) associated with the complex field. (See [6]).

If in the definition of continuous geometry we replace the con-
dition ‘irreducible’ by ‘reducible’, then we shall call the corres-
ponding lattice a reducible continuous geometry. Regarding this
we have the following representation theorem of Iwamura [4, p.128,
Sz. 8.2

THEOREM 6. A reducible continuous geometry L, is a subdirect
union of (irreducible) continuous geometries.

A concept of dimension can be introduced in L, : the dimension of
an element in L, is no longer a number but a function, in fact, a
cortain continuous function D,(p) defined over the Boolean space
8 =8(Z) associated with the Boolean algebra Z = (z) of central
elements z of L;. D,(p) satisfies: (i) for all p, 0 < D,(p) < 1;
ii) for a central element z, D,(p) is 0 or 1 according as z is or is

0ot in p; (i) Dupy(p) + Dany(®) = D, (p) + Dy() (soe [4, p- 129,
Sz. 3.3]).

4. Ring Coordinatisation. The classical field coordinatisation
theorem of Von Staudt asserts that an irreducible projective geo-
metry L of finite dimension # > 4 is isomorphic with the lattice
PG(F; n) of all subspaces of the n-dimensional vector space V(F'; n)
over & suitable division ring F. Since it can be shown that PG(F; %)
is isomorphic with the lattice of all (equivalently, all principal right)
ideals of the semi-simple n X # matrix ring R over F, the above
result can be reformulated as: L is isomorphic with the lattice of
principal right ideals of a suitable semi-simple ring R. This was
generalized by Von Neumann into
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THEOREM 7. A complemented modular lattice with a basis of n(> 4.)
pairwise perspective elements is 1somorphic with the lattice of all princi-
pal right ideals of a suitable regular ring. (See [4, p.225, Sz. 3.2]).

A ring with unit element in which to each element a there is a
‘relative inverse’ z such that aza =a is called a ‘regular ring’.
It may be noted that the regular rings with finite basis are precisely
the semi-simple rings. Furthermore, the concept of regularity for a
ring is precisely that required to make the lattice of its principal
right ideals a complemented modular lattice. (For an account of
regular rings, see [4, ch. 6]).
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ENGINEERING APPLICATIONS OF
BOOLEAN ALGEBRA

By C. H. SMITH

TaERE 18, 1 believe, an essential difference in outlook between the
mathematician and the engineer, which needs to be understood if
maximum benefit is to be obtained from any cooperative effort. I
postulate this difference knowing fully well that there have been
mathematicians with an interest in science and scientists who are
competent mathematicians. I will enumerate some of the differences.
The mathematician is primarily interested in the consistency of the
relation between the premises and the conclusions. If the premises
bear any resemblance to a set of existing circumstances then the
scientist is welcome to use them. The engineer is interested in
the degree of approximation of the premises to a set of events in
the physical world and, since the fit can never be exact, the conclu-
sions also can never be an exact statement about the real world.
Newtonian mechanics, for example, is impeccable logic to the
mathematician but to the physicist a very poor approximation to
some physical events and a very close one to others.

To the mathematician, the relation between premises and con-
clusion is all important. To the engineer, if the premises are accepted
and the conclusions are to be useful, then the intermediate logic
must also be of physical significance. For example, although the
mathematician is happy with Z = [ Ydz, to the engineer [ Vd¢ is
meaningless. He has no name for such a quantity and he always

thinks in terms of % | Vdt which is dimensionally acceptable.

A third difference of outlook arises from the natural tendency of
the mathematician to proceed from the general to the particular.
The experimentalist must proceed from the particular to the general.
He builds his theories by induction from a limited number of obser-
vations, and he is always interested in the simplest concept which
is consistent with his observations. His premises then are always of
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doubtful validity and he is willing to discard them as experience
dictates.

How do these remarks apply to Boolean algebra ? On the one
hand the logic is capable of demonstrable proof and this makes it
appeal to the engineer. He can never prove by example the identity
(x + y)? =22 4 2zy + y2. He can illustrate it by example bul can
never exhaust all possible values. However in Boolean algebra
proofs are readily demonstrable. Al possible cases of the identity
(x +y)? = = + y are demonstrated in the truth table :-

T y r+y=(@+y?
0 0 0

0 1 1

1 0 1

1 1 1

On the other hand Boolean algebra offends in that the premises
are not consistent with experience. To ask an engineer to accept a
logic built on the premise 1+ 1 =1 and his immediate reaction is
“ If the premise is contradictory to experience, how can the result
be useful .

This difficulty is best hridged by the concepts of the point set
theory. If, instead of + and X, we use ““union’’ and “‘intersection’’
then we get physically real concepts :—(1) z.%.y. is the total included

region of two overlapping regions z and y, and (2)x n y is the area
common to two overlapping regions.

The importance of Boolean algebra to the engineer arises in two
main fields: in relay circuitry and in digital computing. The appli-
cation of Boolean algebra to relay circuits, i.e. to automatic tele-
phone exchanges was systematised by Shannon in 1938. The appli-
cation to digital computors is really a logical extension of Shannon’s
work. Although relays are now little used in computors because of

their slow speed the diode gates are logically ne more than simple
quick acting relays.
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An allied field is that of automation where the principles of
digital computation apply but the :)bjeci';ive ig different. It may be
the limited computation necessary for a particular set of industrial
processes rather than a versatile all purpose computor.

For example, in servomechanism design a linear or quasi-linear
analysis is usually used. However the most economical design is
one which uses the smallest acceptable driving motor which is
always driven to saturation. There is then no region of linear

behaviour and the equation of motion becomes § = + K. The design
problem is then to determine the conditions at which the torque
shall be reversed and this is amenable to logical analysis on
Boolean lines.

The essential process in any computor is addition. We wish the
machine to carry out the process 141 = 2. To do this we set up
a circuit to add in modulo 2 ; i.e. to give 14 1 =0 and to design
this circuit we apply Boolean algebra and say 14 1=1. Can
anyone deny that + is an overworked symbol?

In the field of automation there are a number of interesting coding
problems to which I feel that the application of Boolean algebra
might give some useful results. It is usual to work to a radix 2 and,
in general purpose computors use the ordinary binary code :(—

0 000
1 001
2 010
3 011
4 100
5 101
6 110

7 111
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The laws of addition for this code are well established ; they are for
the half adder :—

a, b, S c
0 0 0 0
1 0 1 0
0 1 1 0
1 1 0 1

ie. 8 =ab + ab.
C = ab.

However in some machines a zero is stored as a negative of a one.

This occurs, for example, in a ferrate core storage unit or a magnetic
drum.

It is usual to include circuits to cancel the negative signal so that
ordinary binary arithmetic will apply. It would be possible however
to make an adder wsing + and — signals. The truth table for a
half adder would be :— '

a, b, 8, c,
—1 —1 —1 —1
1 —1 1 —1
—1 1 1 —1
1 1 -1 1
whence 8 =— ab
0 = ab+a+b— 1_
2
Incidentally this concept of + = true ; — = false would appear

to be a more logical basis on which to build a logical algebra than
Boolean concept of one and zero.

In engineering processes the information is often in radix 10
whereas computors normally work in radix 2. To convert from
radix 10 to radix 2 will require 4 binary digits, not all of which will
be used. We can therefore choose a variety of transformation codes.
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For example we might define a decimal . digit by its values
modulo 5 and modulo 2.

Mod. 5 Mod. 2 and then construct a code box

0 000 0

1 001 1

2 010 0 00 01 10 11
3 011 1

4 100 0 0105 2) 4

5 000 1

6 001 0 ot o I

7 010 1 10 6 8

8 011 0

9 100 1 11 1 3

In engineering processes the data is often a shaft position and
processing to be applied to the data involves addition.

The binary digital code (1) is not very convenient because of the
simultaneous change of several digits which

(1)

0 000 000
1 001 001
2 010 011
3 011 010
4 100 110
5 101 111
6 110 101
7 111 100

may lead to gross errors. This is avoided by the use of the C.P.
Code (2) in which only one digit changes at a time. The reading
error then cannot exceed one unit.

The digits of the C.P. code are obtained from the binary code by
the relation :—
(Ar) ep = (Ar+1 + Ar)b (mOd 2).
Another code which is convenient for shaft rotation is the chain
code. It is formed by a sequence of n brushes on the periphery of a
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coded disc. Thus at each stop the most significant digit is discarded
and a new least SIgmﬁcant nglt added.

0000 This sequence is con-
0001 structed by writing a 1
0011 in the 1.s.p. if permissible,
0111 otherwise write 0. An
0000 1111 interesting point about
0001 1110 this sequence is that it
0011 1101 can be terminated pre-
0111 1011 maturely to make a scale
1111 0110 of 10.
1110 1100
1101 1001
1010 0010
0100 0101
1000 1010
0100
1000

This code would be convenient for conversion from, say a cash
register to a digital computor.

There is one common unsolved problem in all these codes :—
“ What are the rules of addition ? ” Boolean algebra might provide
the answer and I would welcome your help.

00 01 10 11

00t 0| 809

on |1 6
10 ﬁ"‘—T";
11 27 3 o 4
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BOOLEAN ALGEBRA

By B.S. MADHAVA RAO

BooreaN algebra or the algebra of classes, of which lattice theory
is a natural generalization, has récently been used as an important
tool of application in several branches of mathematics, and of
applied science. I shall indicate briefly a few of these important
applications.

One such example of the first category is the subject of mathe-
matical logic wherein developments relating to the so-called
symbolic or algebraic or Boolean logic have not only been of great
interest in themselves, but 'have also proved vital for many
applications. Another example is the subject of topology in which
basic results have been obtained regarding the topological structure
of several types of Boolean algebras, thus leading to the notion of
topological Boolean algebras. As a typical illustration of this, I
might mention a recent theorem that a complete Boolean algebra
B has a compact 7T'-topology if and only if B is atomic, i.e. isomor-
phic to the lattice of all subsets of a fixed set. A third example is
provided by the recent attempts made to build up an axiomatic
foundation of probability theory based on the observation that the
objects to which probabilities are ascribed always form a Boolean
algebra, and the consequent development of the notion of measures

on such algebras.

As regards other applications, striking examples can be found
in the field of electronics. Behind the remarkable development of
digital computers in the last decade lie the applications of Boolean
logic to devise suitable algorithms. The theory of switching (both
binary and non-binary) leading to the design of multivalued and
sequential circuits makes use of generalized types of Boolean
algebras. With the notion of entropy clarified on the basis of measures
on Boolean algebras, one finds applications to information theory
also. Analogous to computer techniques are recent attempts made
towards machine translation of languages by digital data processing,



192 B. S. MADHAVA RAO

words to words and sentences to sentences, structure being important
for the latter. Treated as & binary algebra of classes, Boolean
algebra has been employed in actuarial science to check classification
of numerical data. Treated as an algebra of propositions isomorphic
to the above, it has been used to simplify sets of complicated
propositions thus finding application in the field of the social sciences.
Finally mention may be made of application in the field of quantum
statistics, and the logic of quantum mechanics.

University of Poona
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SYMPOSIUM OF MAGNETO-FLUID-DYNAMICS
Chairman : Prof. V. GANAPATHY IYER

Pror. P. L. Bhatnagar will lead the symposium by introducing
the fundamental equations of magneto-gas-dynamics and discussing
the production of discontinuities in subsonic flows if the impressed
magnetic field is of sufficient magnitude, a situation which can
never arise in ordinary-gas-dynamios. He will be followed by ShriJ. De
who will present his work on the possibility of the existence of
steady self-excited fluid dynamics. It may be mentioned that the
Dynamo theories have been proposed to explain the existence of
cosmical magnetic field. Shri J. D. Gupta will discuss how the
Rankine-Hugonoit equations of ordinary gas-dynamics have to be
modified in case of hydromagnetic shocks while Shri R. K. Jaggi
will talk on the hydromagnetic stability of a constricted gas
discharge. Then Dr. J. N. Kapur will review the progress in
hydromagnetic turbulence, while Shri P. C. Jain will report on his
work on the gravitational instability of turbulent medium in the
presence of a magnetic field. Shri K. S. Rajs Rao will discuss
applications of the Magneto-hydrodynamic theory to Jonospherie
problems and the symposium will be concluded with some remarks
from Prof. B. S. Madhava Rao. Dr. S. L. Malurkar’s paper on
“ Exceptionally large Solar and Geophysical ovents ” will be
taken as read.






MAGNETO-GAS-DYNAMICS AND LINES OF
' DISCONTINUITY IN STEADY
TWO-DIMENSIONAL FLOW

By P. L. BHATNAGAR

1. Under Magneto-gas-dynamics we study the motion of an elec-
trically conducting fluid in the presence of magnetic field. The
fluid motion induces currents, which experience mechanical force,
called Lorentz’s force, due to the presence of magnetic field. This
force tends to modify the initial state of motion. On the other hand,
the electric currents are associated with magnetic field which is
added on to the parent magnetic field. This interlocking will be
clear from the equations governing the Magneto-gas-dynamical
flows given below. Magneto-gas-dynamics finds application in a large
number of cosmical phenomena. Some of them are : (i) Variability of
magnetic stars, (ii) shape and temperature of Corona, (iii) inhibition
of convection in sunspots by magnetic field, (iv) stability of Quiescent
prominences, ete. It will be exaggerating the case of Magneto-
gas-dynamics to regard it a master-key to unfold all the mysteries
of the universe. Being a union of two well-developed disciplines
—Electro-magnetic theory and Gas-dynamics, it has wider applica-
bility than the parent disciplines and the researches of past decade
and half have amply proved this statement.

The equations governing the Magneto-gas-dynamical flows, in .
the usual notation, are :

(1) Maxwell’s Equations :

divB = 0, div D = 4=q, (1.1, 1.2)

curl H__ +_1§1_), ol E=228 (13 1.4
c 0t

B—=uH D=cE. (1.5, 1.6)

(2) Current Equation :
j=gV+3, J=0o [E+i6‘_(v >.<B)]. (1.7, 1.8)
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The first term in (1.7) ig the gonveotion current. The first term in
(1.8) is the conduction current, while the second term is the induced

current.
(3) Equation of Continuily :

%;—)—{—V. grad p + pdivV=20. (1.9)

(4) Momentum Equation :
,{%?—Vxw+%gMVﬂ:pF—QMp+%nQMthf
+7AV L, (110)

where F is the external force per unit mass, » the viscosity coefficient,
and f the Lorentz force :

f=qE+%ij (1.11)
(5) Equation of State : .
p=RpT. (1.12)
(6) Energy Bquation : i
0,20 = —paiv ¥+ div (bgrad 1)+ p@+ 2T 44, (133)
g

where @ is the rate of a,dditior; of heat from the sources which are
not taken into account in the equation and ¢ is the rate of dissipation
due to viscous forces.

We may point out that in writing the above equations we have
used the unrationalized gaussian units, neglected the terms of the

2
order of (g) and taken u, €, 7 as constants.

There are in all thirteen unknown scalar quantities V(u, v, w),
H(H, H,H,), E (E, E,E),q,p, p, T and fourteen equations.
From (1.4) we have

0
— (di =0.
5 (divB)
Hence if initially div B= 0, it will be so throughout. In this manner,

the equation (1.1) can be replaced by the initial condition and we
have just the right number of equations.
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The interlocking between the electromagnetic phenomenon and
the fluid motion enters through the terms marked below by an
asterisk, namely convection current, induced current, and Lorentz
force.

We may also note that leaving the Maxwell’s equations all the
equations are non-linear and hence a general study of a magneto-
gas-dynamical phenomenon is bound to be extremely involved
mathematically.

2. In this section we shall discuss briefly the existence of lines
of discontinuity in a two-dimensional steady subsonic flow provided
we put some restriction on the magnitude of the magnetic field.
We may point out that such a situation cannot ocour in ordinary
gas-dynamics.

The equations of the problem : Neglecting the viscosity and
displacement current and taking the electrical conductivity to be
infinite, the relevant equations are :

Mazwell’s Equations :

div H = 0, curl H — %’Zj, 2.1, 2.2)
divE = 0, curlE = 0, (2.3, 2.4)
and
E=—*vxH (2.5)
Cc

Bguation of Continusty :
div (p v) = 0. (2.6)

Equation of Momentum :
y.y)v=—- gradp + (curl H) x H. (2.7)

From (2.3) — (2.5), we have
div(v x H) =0, curl (v x H) = 0. (2.8, 2.9)

In a two-dimensional motion in the (x, ) plane,

v=(u,7,0), ; =0 (2.10)

o

and if the magnetic field lies in the plane of motion
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H=H, H,0) (2.11)
the condition (2.8) is automatically satisfied, while (2.9) gives us

kxv

H=0@y)v+«a sl

(2.12)

where k is unit vector perpendicular to the plane of motion, « is an
arbitrary constant and ®(x, y) is an arbitrary function. The inclusion
of the second term on the right hand side of (2.12) makes the treat-
ment mathematically cumbersome and hence we consider the parti-
cular case of (2.12) obtained by taking « = 0, i.e.

H ==, y)v. (2.13)
Recently Taniuti has discussed the particular case of (2.13) where

he takes ®(x, y) o« p. In both of these cases the direction of magnetic
lines of force and flow lines coincide.

Following the usual procedure we find that the characteristic
directions are given by

(udy — vd)? [(vde + udy)? — (@1 — k) + & V3 (de? + dy?)] = O,

(2.14)
where a is the local speed of sound, V = (u? - v2)¥/2, (2.15)
and
WHE
b= @2 pH? 87  4mp (2.16)

dmp dmpVE LpVE V2

From (2.16) k is the ratio of magnetic energy density to kinetic
energy density or the ratio of the squares of the Alfvén wave velocity

and the fluid velocity.
The first factor in (2.14) gives us the flow lines

dy v

2= 17

p Pt (2.17)

while the directions given by the second factor are real if
(1—Fk) (M2—1)[EM2 (1 —k)]> O, (2.18)

where M is the local Mach number.
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Case (4) : In the supersonic flow, i.e. when M > 1, the condition
(2.8) is satisfied if £ < 1, i.e. if at each point

Alfvén wave velocity
fluid velocity

<1 (2.19)

Case (B): In the subsonic case, i.e. when M < 1, the coundition
(2.18) is satisfied if

Alfvén wave velcoity 1

1
< fluid velocity < (1 — M2

(2.20)

Thus the two cases arising in the paper under reference arise here
too. It is clear that in Case (4) no lines of discontinuity can form
if the magnetic field is so large that the Alfvén wave velocity
is greater than the fluid velocity. In Case (B) by suitable choice
-of the magnitude of the magnetic field the lines of discontinuity
can always be produced.

We can easily show that along a flow line
1 v2% + ¢ = constant, (2.21)
where 4 is the specific enthalpy
and

= congtant. (2.22)
p p

In (2.22) the constant may vary from one stream line to another,
while in Taniuti’s case this constant is the same throughout the
flow field.

In Case (A) the characteristic directions are given by
2 [ —R) (A= 1) BM2 4 (1 — )}

- = — =1,
dz /1, 11 w kM +T—F)
a

(2.23)
while in Case (B) they are given by
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W [k — 1) (1 — M%) {1 — k(1—DM?)} ]
(dy) = @ : : — =
de /1, 11 Y {1 —k(1— M%) i
-

(2.24)

We can easily show that along the Mach lines
(1 )ty — 0220+ fu@)+ () (w0 by ) 6= D)
caut e} +(7ay+© dp>{lc Wt vl )+ (1= k) @l — )}

et (Y- ) +vzw> b =0, (2.25)

where {; ;; have to be substituted from (2.23) in Case (4) and
from (2.24) in Case (B).
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ON STEADY SELF-EXCITED DYNAMOS

By J. DE

The possibility of the existence of steady self-excited fluid
dynamos is investigated. It is found that the existence of a steady
dynamo solution is intimately connected with geometry of the
magnetic lines and the boundary condition satisfied by the magnetic
fields. For some general types of fields, a steady dynamo action may
be possible, while for some other types, Cowling’s case included,
dynamo maintenance is found to be impossible.

The particular solutions constructed show an interesting feature.
It is found that in every case the fluid motion becomes infinite or
discontinuous over certain regions. Drawing an analogy from the
mechanism of technical dynamos it is conjectured that such dis-
continuities will perhaps occur in every possible solution.
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JUMP CONDITIONS FOR MAGNETO-GAS-DYNAMIC
SHOCKS

By J. D. GUPTA

A spook wave is a surface of discontinuity in flow variables, when
it is propagated. The possibility of the existence of such disconti-
nuities is a distinguishing feature of supersonic flows. The two-fold
problem of shock waves is (i) to derive relations between the values
of the flow variables on the two sides of the shock, and (ii) to study
the shock structure, i.e. the process taking place in the narrow
width of the shock that brings about the discontinuity. In ordinary
gas-dynamics, the interest in the problem may be traced back to
early 19th century, with Stokes, Earnshaw, Rankine and Hugonoit
contributing tc its development.

When the medium is a conducting fluid in the presence of a
magnetic field, there is interaction between the magnetic field and
the flow. Alfvén, 1942, was the first to study the propagation of
waves of infinitesimal amplitude in a conducting incompressible
fluid, in the presence of a magnetic field. Van-de-Hulst, indepen-
dently extended the theory to compressible fluids and showed that
in general, five different modes of motion were possible, each
characterised by a different velocity.

Hoffman and Teller, 1950, considered the propagation of shock
disturbances in a conducting fluid. Making a relativistic approach,
they obtained the general form of jump conditions and deduced
therefrom the conditions in the non-relativistic case. Now, in
physical phenomena of interest in this connection, the velocities
are much less than that of light. So it will be of interest to derive
these conditions in the non-relativistic case directly. This will be
described in brief before referring to another paper on the subject.

The fundamental laws to draw upon are the Maxwell’s equations,
the conservation of mass, the conservation of momentum, the
conservation of energy, and increase or conservation of entropy.
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We shall consider a plane shoock in a homogenous isotropic
medium of infinite conductivity. As the material velocities are
assumed small compared to that of light, there will be no free charges
and the displacement current will be neglected. The energy of the
electric field will be neglected compared to that of the magnetic
field. The mechanical effect of the magnetic field is the same as that

. pH® . pH? .
of a hydrostatic pressure e and a tension e along the lines of
force. Since the conductivity is infinite we have
E=—%xH, %?=cur1(5><ﬁ). (1

Thus the field is rigidly attached to the material. Three cases of

- =
interest arise (i) when v, H are parallel and normal to the shock
plane, (ii) v is normal to the shock plane but H lies in the plane and

(iii) » and H are parallel but oblique to the plane. We shall take
them up in turn. We shall use suffixes 1, 2, to denote the variables
on the front and back side of the relatively stationary shock. Let

e U, E, denote the density, the pressure, the internal energy per
unit mass and the electric field.

(1) Longitudinal shock (A): v and I are parallel and normal to
the shock front. Let the normal to the plane be taken as z-axis.
Here

vxH=0 22 _—o (2)

the field H is constant in direction and magnitude on the front
side. Also,

H,, 0, H,=0 H,—0. 3)
Then Maxwell’s equations give at the surface of separation,
H,,=H 1z
and also since & — 0, H,, =0, H, =0. (4)

Now the principle of conservation, applied to mass, momentum
and energy gives the familiar equations
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PLYy = p2 ¥y (5)
Py Y+ Py = py B3+ 1y (6)
%Pl’”?‘l‘/’l'”lU1+P1'”1=%P2’”§+P2”2U2+Z727’2' (7
For a perfect gas after some simplifications we get
g+ B pgy Y D (8)
y—1p y—1p;
All these are independent of H which also remains invariant through
the shock. Hence the shock takes place as if the field were absent.
(2) Longitudinal shock (B): The field perpendicular to the direction
of flow, which is normal to the plane.
Here the lines of force move with the fluid, and cross the shock
front. Thus H et p,
hence Hy _Hy (9)
P P2

Conservation of mass, momentum and energy give as before,
equations similar to (5),(6), (7), where we replace p and U by

2 2
p*=p+ﬁ£[—,U*=U+-’/’£. (10)
87 8mp
Equation (8) is replaced by
P, pHE 2 vy pe, pl}
ot 4 L By By gge g v Do B
¥ y—1lp,  dwp ¥ ly—1lp,  dup,
Combining (5) and (9), we have H,, v,, = H,, v,,. (12)

The equations become determinate if the strength of the shook and
the strength of the magnetic field be given.

(3). Obligue shock: Field parallel to the direction of flow which
is oblique to the shock front.

Let us take z-axis to be along the normal to the shock plane,
y-axis in the plane containing the normal and the direction of flow.

Under the assumptions we have made it can be easily shown
that the field will be parallel to the direction of flow, behind the



206 j. D. GUPTA

shock front also, that is, both are equally refracted. Thus we get
the equations

Hy, v Hy_ (13)

Hy, v, Hy
The boundary conditions at the surface of separation give
Hy, = H,,. (14)
The conservation of mass gives
P1 Y1z = Pa Vo (18)

The principle of conservation of momentum gives two equations

2 Hlyﬂ 2 H21/2
p1Vr P+ L = pa 0, + Py + (16)
87 87
H,_H H, H
P1 Vi Yy — *——IZW W = py vy, Vg — ———ZZW W, (17)

The principle of conservation of energy gives
31007 + 08+ P10, Uy + 01,01 = § pava(va,® +25%) +
+ pave, Us + vy, (18)
Combining (18) and (15) we get the same equation as (8). It is to be
noted that this equation is independent of the field. A complete

solution of these equations can be found if the shock-strength, the
magnetic field strength and the obliquity of the field are all known.

When the field is small, these lead to the conventional hydro-
dynamic equations.

Helfer, 1953, has discussed these in detail, by a choice of suitable
parameters. He has shown that small magnetic fields (of strength
such that H? /87 < < p) are magnified by the passage of the shook
disturbance. If the field is large, then there is no magnification. The
presence of the field always causes a decrease in the compression.
He has applied this theory to discuss the presence of magnetic field

in the interstellar clouds and soms aspects of the internal motions
of prominences.
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ON HYDROMAGNETIC STABILITY OF A
CONSTRICTED GAS DISCHARGE

By R. K. JAGGI

Tr1s problem is one of the application of Magneto-hydro-dynamics
to physics, more particularly to ‘Controlled thermonuclear fusion’.
I will therefore say a few words about the fusion problem and how
Magneto-hydro-dynamics is of help to physicists in this important
problem. It may be stated that the fusion reactions are the only
hope of world’s future energy sources.

Prof. Narlikar remarked the other day, * that it is a very healthy
thing that at the conferences of mathematicians there should be
simpler exposition of some current problems although the so called
popular lectures may be solids, liquids, gases or even plasmas. ”’
We shall here be dealing with the fourth state of matter, viz ‘ The
Plasma’ (completely ionized gas) during the following talk.

WHAT ARE FUSION REACTIONS

We know that atoms of an element consist of electrons revolving
round their nuclei. The combinations or fusion of nuclei of light
olements to form heavier nuclei (or even sometimes lighter than its
own constituent [ 1, 2]) with the release of energy is what is called a
fusion reaction. We are already familiar with the hydrogen bomb
in which fusion reactions are used for destructive purposes. This
particular problem <The controlled fusion research’ is an example
of the peaceful uses of nuclear energy.

Fusion reactions of this type are in fact responsible for the
enormous amount of energy generated in the Sun and other stars.

Tt is important to recognize that in a fusion reaction each of the
interacting nuclei is positively charged. As a result they strongly
repel one another. This repulsion is called the potential barrier. In
order that the two nuclei may fuse together, they must be made to
collide with high enough relative velocity so as to overcomse the
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potential barrier which tends to keep them apart. We will return
to this later.

CHIEF MERITS OF THE PROBLEM

These are : (i) Unlimited energy sources: Deuterium which is
used for fusion reaction can be got from the oceans. As an order of
magnitude of the energy content we may note that the amount of
deuterium in one gallon of sea water is 1/8 of a gram and the cost of
extraction would be less than 20 np. However its energy content
if it were burnt as a fuel in a fusion reactor would be equivalent o
100 gallons of kerosene oil.

(ii) Inherent safety : The amount of fuel in a fusion reactor
would be so small that there is no possibility of explosion. The
products of the reaction are non-radioactive, so that there is no
danger of radiation hazards.

(iii) The best point about the problem is that the device can
offer direct generation of electrical power, so that the costly and

inefficient stages of converting heat into mechanical work are
eliminated.

Having studied the good points of the problem let us look at the

dark side of the picture, i.e. our inability to control thermonuclear
reactions.

Basic acquirements of achieving controlled fusion are (i) high
temperatures, (ii) low density and (iii) adequate confinement
means, the third requirement being the consequence of the first.

We have already seen that to make fusion possible the energy
and therefore the temperature of the constituents must be very
high, of the order of 10°K°. High temperatures can only be obtained
if we are able to reduce the conduction of heat of the ionized gas
by its contact with the material walls of its containers. No
material can stand the temperatures of the order of 10°K°. We are
therefore led to the problem of confining the hot gas so that it is not
in contact with the solid container.
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CONFINEMENT MEANS

. These can be three : The application of (i) the electric field,
(ii) the gravitational field and (iii) the magnetic field.

~ The first possibility can be ruled out at once, because the electric
field which would confine one kind of particles would drift the other
kind of particles in the opposite direction.

An example of the second confinement means is the Sun itself
which is supplying energy to us at a tremendous rate. Such a
complete confinement means is not possible in the laboratory.

The application of a strong magnetic field seems to be the only
promise for laboratory work. Various geometries for a fusion
reactor have been studied, but we will here confine our attention to
one that is a right cylinder of circular cross-section. As an ideal case
we will assume the length of the cylinder to be infinite.

We have noticed that to reach reacting conditions it is necessary
to keep the hot gas away from its container. It may be observed
that there is a self-magnetic field of the reactor. The potential
difference applied across the cylindrical tube produces a current j
along the length of the tube and a consequent toroidal magnetic
field of the form B, 7o/r, where 7, is the radius of the current channel.
The magnetic field produces the pressure B%/2u, on the ionized
gas. By increasing B, we can reduce the radius of the current
channel.

Tt is important to note that the apparatus is rendered useless due
to the instabilities.

Most of the theoretical and experimental work on the problem
will be found in the references 3, 4].

We will now consider one theoretical aspect of the problem.
The self-magnetic field acts upon the plasma and drives it towards
the axis of the discharge. This phenomenon is called the pinch
effoct. The macroscopic equations of compressible flow cannot be
applied to a fast pinch during the whole of its motion. Because at
the high temperatures, the mean free path of the particle will be
long compared to the dimensions of the apparatus. It may however
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give a fair representation of the process when the whole gas is
practically concentrated at the‘axis of the tube. At this point the
large increase in particle density will substantially reduce the mean
free path.

Kruskal and Schwarzschild (1954) imagined the cylindrical
pinched fluid to attain static equilibrium when the magnetic pressure
balances the plasma pressure. In static equilibrium the plasma is
held in by the pressure of a toroidal magnetic field which exists in
the vacuum surrounding the plasma. No magnetic field exists
inside the plasma. The separation between the plasma and vacuum
is supposed to be a thin boundary, so that the following continuity
conditions can be applied at the boundary :

(i) normal component of the magnetic field,
(ii) tangential component of the electric field,

(iii) sums of the plasma and magnetic pressures are all conti-
nuous on the boundary.

To solve the stability problem we have to linearize the magneto-
hydro-dynamic equations about the above mentioned equilibrium
solution [ 3]. To solve these it is assumed that the fluctuation of a phy-
sical entity from its equilibrium value is proportional to ¢™+# <,
exponential dependence on these quantities being justified since
these linear equations do not contain 6, z, ¢ explicitly. The vacuum
equations are similarly linearized and solved. The boundary condi-
tions are then made use of to obtain the dispersion equation, viz.
a relation between w, k, m and the equilibrium quantities.

For the case described above it can be shown [ 3] that for the m =0
mode the cylindrical plasma is unstable. Let us now assume a
uniform axial magnetic field B (produced externally) to exist inside
as well outside the current channel and the material tube to be (&
conductor of electricity) of radius B,. Now if @ = B/B, and A =
"Ry[rq, the-critical value of x, = | k|7, at which the instability sets
in is given by

gt — b Tul@o) Kp(Awg) — I, (A o) K, ()
By LA @) K, (wg) — Ly (o) Kpp(A o)’
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where I, K are Bessel’s functions. In the absence of the conductor
a is given by
1 K, () )

zy K, (%)

2

The following table givés the value of a against the values of

2
Alrg = —mj for m = 0 at which the instability sets in.
0

TABLE
4
A1y = 2u[x, a (No conductor) | a (Conductor present)
62.832 6.372 . 1.222
31.416 3.691 1.213
12.566 1.893 1.159
6.283 1.196 1.018
3.141 0.784 0.768
2.094 0.621 0.619

The table clearly shows that the axial magnetic field stabilizes
the plasma, the conductor has a stabilizing effect and that it has
greater effect on large wave length disturbances than on small ones.
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HYDROMAGNETIC TURBULENCE

By J. N. KAPUR

In view of the large dimensions of cosmical masses—of inter-
stellar gases and of stellar envelopes—turbulence is basic in many
applications in cosmic physics. In most of these applications the
electrical conductivity is high enough for electro-magnetic forces
to play an essential role and for turbulence to be governed by the
laws of magneto-hydrodynamies. The main problems of hydro-
magnetic turbulence are :

I. Partition of energy into energy of the velocity field and energy
of the magnetic field. The problem includes the study of (a) the
distribution of magnetic and kinetic energies over the various scales
of motion, and (b) the mechanism of interchange of energy between
the velocity and the energy field.

II. Decay of magneto-turbulence in the presence of a magnetic
field and Coriolis force. The various attempts at solving the first
problem have been the following :

(a) Permi (1949), Elassasser (1950), Biermann and Schliiter
(1950) have given qualitative arguments for supporting the hypo-
thesis of equipartition of energy, i.e. for the hypothesis

ERE: ST TIT

where p denotes the density and { %2> and { H®) are mean square
velocity and magnetic intensity respectively.

(b) Batchelor (1950) has used the analogy between the equations
for the vorticity vector
-

Vw~0 —V><( X w) = »y*(w)

ow
ot
in the absence of a magnetic field and the equations for the magnetic
field vector
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: o> ..
V. E_O aa—H -V '><(v >ZH)—)\V2H, (A=4n1‘ua)’

and some results about mean square vorticity in ordinary turbulence
to establish the hypothesis that the ultimate balance between the
ma,griei;ic and the hydrodynamic systems is such that the large wave-
number components contain comparable amounts of kinetic and
magnetic energy. He also uses this analogy together with Kolmo-
groff’s (1941) universal theory to deduce that a small random
magnetic field introduced into a conducting liquid in homogeneous
turbulent motion will be amplified if 47 powv>1 and that the
initial rate of growth of the magnetic energy will be exponential
with a doubling time of the order (V/\s)*,- where v is the kinematic
viscosity and ¢ is the rate of energy dissipation per unit mass.
He also suggests that ultimately the magnetic field reaches a
statistically steady state with energy of order pl(e v)’-’ per unit
volume of the fluid and that thls magnetlc energy will have a
spectral distribution which is concentrated in the nelghbourhood of
wave numbers of order (e¢/v®)!. Batchelor's arguments have been

critically examined by Lundquist (1952), Chandrasekhar (1955 a)
and Cowling (1957).

(¢) Chandrasekhar (1950) has extended the treatment of Von
Karman and Howarth (1938) for ordinary turbulence to confirm
Batchelor’s result that in a stationary state, the magnetic energy is
contained principally in the small eddies. He also defines various
double and triple correlations involving the components of velocity
and the magnetic field intensity and obtains three equations govern-
ing the scalars defining these tensors. He has also obtained equa-
tions exhibiting the exchange of energy betwoen the velocity and
the magnelic fields. In another paper, Chandrasekhar (1951) has
extended this paper to include the correlations including the total
pressure P(=p -+ }p|h|?). Later Chandrasekhar (1955 a) has ex-
tended his new theory of turbulence (1955 b) in which the concept of
correlation between velomty components at two different points and
at two different times has been introduced to obtain a ‘deductive’
theory of hydromagnetic turbulence,
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(d) An ‘elementary ’ theory of hydromagnetic turbulence based
on Heisenberg’s (1948) theory for ordinary turbulence has given
by Chandrasekhar (1955¢) The basic physical idea used is %o
conceive the transformation of the kinetic energy at a particular
wave number into kinetic and magnetic energies at higher wave
numbers and similarly the transformation of the magnetic energy
at a given wave number into kinetic energy and magnetic energy
of higher wave numbers, as a cascade process which can be visualised
in terms of suitably defined coefficients of eddyviscosity and eddy-
resistivity.

(e) Chandrasekhar (1957) has proved that in the inertial subrange,
ie. in the range of eddy sizes which are small compared to
the largest energy-containing eddies but still large enough
for the non-linear exchange of energy between them to be a dominant
factor—the energy in the magnetic field is 1.6265 times the energy
in the velocity field. This result is based on Chandrasekhar’s new
theory (1955 b) which is itself based on the statistical hypothesis
that the fourth order moments are related to the second—order
moments as in a normal distribution—a hypothesis which has been
severely criticized by Kraichnan (1957). Moreover Chandrasekhar
has tried to develop a universal theory on the lines of Kolmogroff
—only he has to consider three parameters v, and 1/4muc — and
this theory cannot answer the question of the actual ratio of energies
in the two fields without going into the structure of energy-contain-
ing eddies, i.e. outside the framework of a universal theory. In fact
the ratio in the inertial range is not of much interest from the point
of view of answering the real physical question.

Though the above studies have led to a great deal of understanding
about the energy—partition problem, the situation is not very satis-
factory, as in the words of Cowling (1957)" Nearly every argument
for or against equipartition between maguetic and turbulent kinetic
energy field can be strongly criticised. A more fundamental
approach to the subject seems necessary ?. Cole (1956) in his
review article on magneto-hydrodynamics omitted discussion
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of hydromagnetic turbulence as an area in which least general
agreement exists.

Two extensions, viz. to compressible fluids and to non-metal
type conductors and fully ionized gases seem desirable. The first
has been attempted by Krzywoblocki (1952 a, b). The electro-
magnetic phenomena caused by turbulent motion of an jonized
gas of low density have been discussed by Biermann and
Sehliiter (1950).

The decay of turbulence for large wave-numbers has been discussed
by Lundquist (1952). If G(k) and F (k) devote the spectral functions
for the sum and difference of kinetic and magnetic energies, he
proves

— 4k Bt
g, SO L g iw—n.

C 6_4k2 Bt __ 1 ’

It is seen that for v > A, only magnetic energy will remain after
a certain time and for v <X only kinetic energy. The distribution
of energy will be such as to make the dissipation as small as possible
in that part of the spectrum where the energy is consumed. This
result is not inconsistent with Batchelor’s. There is a fundamental
difference in the assumptions, however. In Batchelor’s case only
kinetic energy was present in the large eddies. In Lundquist’s case
both types may exist and hence the feeding mechanism to the
smaller eddies may be different.

The decay of magneto—turbulence in the presence of an external
homogeneous magnetic field has been considered by Lehnert (1955).
He considers only small amplitudes and neglects triple corre-
lations which, however, represent the basic mechanism of turbulent
interaction. Lehnert however considers only the final period of
decay in which the triple correlations are not important. He finds
that turbulence developes pronounced axi-symmetric properties

which however are destroyed by the introduction of an angular
velocity.

Finally we may mention the paper by Sweet (1950) in which he
studies the kinematic effects of turbulence in a magnetic field
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and finds that the apparent conductivity of the medium should be
decreased by the turbulent motion. In the pure hydro-dynamic
case it is found that the apparent viscosity is increased by
turbulence and the result of Sweet appears to be consistent with
this result.

REFERENCES

G, K. BATCHELOR : (1950) Proc. Roy. Soc. 201 A, 405.

L. BIERMANN and A. ScHLOTER :  (1950) Zs. f. Natur forschung 5a,237.
S. CHANDRASERHAR : (1950) Proc. Roy. Soc. 2044, 435.

S. CHANDRASEKHAR : (1951) Proc. Roy. Soc. 207 4, 305.

S. CHANDRASEKHAR : (1955a) Proc. Roy. Soc. 2334, 322.

S. CHANDRASERHAR : (195508) Proc. Roy. Soc. 2294, 1.

S. CHANDRASERHAR : (1955¢) Proc. Roy. Soc. 2334, 330.

S. CHANDRASEEHAR : (1957) Ann. Phy. 2, 615.

G. H. A. Core : (1956) Adv. Phy. 3, 452.

T. G. Cowrning: (1956) Magneto Hydro-dynamics — Inter Science,
New York.

W. M. EussassEr : (1950) Phy. Rev. 79, 183.

E. Fermr: (1949) Phy. Rev. 75, 1169.

W. HeisgnBERG : (1948) Zeit Phy. 124, 628.

A. N. Konmocrorr : (1941) C. B. Acad. Sci. U. 8. 8. R 30, 301, 32, 16.
B. Leaxzrr: (1955) Quart. App. Math. 13, 321.

R. H. KRAICENAN :  (1957) Phy. Rev. 107, 1485.

M. 7. KrzywoBLOCKI : (1952) Act. Phy. Austr. 6, 167, 250.

M. 7. KrzywoBLockI : (1932) J. Phy. Soc. Japan 7, 299, 511.

S. LuwpquisT : (1952) Ark. Fysik. 5, 338.

P. A. Swerr: (1950) Month. Not. R. Ast. Soc. 110, 69.

Von KArmix and L. Howarrs : (1938) Proc. Roy. Soc. 1644. 192.

Hindu College
Delhi 8






GRAVITATIONAL INSTABILITY OF AN INFINITE
HOMOGENEOUS TURBULENT MEDIUM IN
THE PRESENCE OF A MAGNETIC FIELD

By P. C. JAIN

Tae comprossible fluid is taken to be turbulent in the presence of

—_
a magnetic field of intensity H. The equations to be satisfied are :

0 0H, oH
9 _ ig _%Hug )_
at( )+ (P i ]) 477(3 m axi n
ap 1 32
_— i 1
—l—uv w,+p X + ¢ Navaa (1)
dp d
— . :O. 2
22t () @

Tirst, we take the fluid to be of infinite electrical conductivity
so that
0 H,

If the external force is derived from a gravitational potential, then
'X’L = a_‘V (4)
0Xi

Using these equations., we have

2 2
a_é)_m_a (p@l.u.—-ﬁHiHj)
. 47

—¢? L A T LA ?_If)_ 5
v [17+87T nHy, 2HY Bxi(paxi (5)

In order to discuss the gravitational instability of the turbulent
medium, we introduce
p=pL8p, p=p+8p V=V437. (6)

With the help of (5)and (6) and following the usual method of taking
the averages we geb
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%W 2, L= 0 L 4 G — - o "H,H,
= (e F3E) Vi e G e A
+ £ v THP. (7
8
If
Vy=p H H; = V& &+ Vady, (8)
where, V', and V, are the defining scalars of V;, we get

2
[ @@y —anep |6+

Pp® 0,2 18) (?ﬁ _ai) V,—0 (9
+8ﬂ-(¢ 87"2+ )31“+ Vi 8x\raor o7 2 (®)
which contains three unknowns w, V! and V2.

Then, we introduce the quasi-Gaussian hypothesis for the fourth
order correlation in terms of the second order correlations and
following the usual method of taking the averages, we have from (3)

Vi <o, (10)
Hence the final result is
A i L Ll e (1)
The criterion of stability is
e G (12)

2 4 1ud
which is the same as that obtained by the present author (Proc. Nat.
Inst. So. Ind. Vol. 24, 1958 b) in the absence of the magnetic field.

Next, the fluid is taken to be of finite electrical conductivity and

it is found that there are two modes of wave propagation, which
become unstable if

i<12 47 Gp
72 T4 Luy

(13)
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Hence the presence of the magnetic field does not affect the
stability criterion of Chandrasekha (1951) provided the fluid is of
infinite electrical conductivity; but it will excite another mode of
wave propagation for finite electrical conductivity of the fluid.
In the latter case:the criterion for instability is given by (13). The
results so obtained are in agreement with those obtained by
Chandrasekhar and Fermi for non-turbulent homogeneous medium.
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SOME APPLICATIONS OF ‘MAGNETO
HYDRO-DYNAMIC THEORY TO
IONOSPHERIC PROBLEMS

By K. 8. RAJA RAO

THE study of the dynamics of the ionosphere has been mostly based
on the kinetic theory of gases. It was Alfvén who first suggested
that in the jonospheric regions the electromagnetic effect is of
far greater importance than the effect resulting from considerations
of kinetic theory. Alfvén’s ideas are based on the effect of earth’s
permanent magnetic field. It can be easily seen from the following
figures how the electromagnetic_ effects dominate.

Pkmetw—nKT—lOsxl37>< 1071 x 1.5 x 10*2
~ 2 X 107 5% dynos/cm?;

) _
P magnetic = mr_ (307 ~3.6 X 107 ~3 dynes/cm?,
8w - 8w
Starting with the-fundamental equa.tipns of electro-dynamics
CurlH =4nj : '
Curl & = — p aaftl )

and
j=c(E+'v><p,H),

and the Navier Stokes equation of hydro-dynamics one can-deduce

the induction equations
oH

= Curl (v X Hp) (2)
and
oH 2
= H 3
o =V {9
whero .
= (4w p o) 7

If the gravitational and coriolis forces are neglected the equation.of

motion becomes

p@=j><H=—'l—(H><Cur1H), 4

dt At
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where y =1 and ¢ = ©

Treating the perturbation due to small oscillations, we write
H = Hy+ h, where H, = earth’s permanent magnotic field, and
h is the perturbing field. Remembering that Curl H, =0, the
equation of motion can be written as

4:7rp%=-—ﬂ00urlh. (5)

Differentiating with respect to time and making use of equation (1),
we have oscillations in a non-uniform magnetic field, the relation

2

tmp %TZJ = — H, x (Curl Curl ) X H, (6)
Consider the simple case of axial symmetry with the magnetic
dipole placed at the origin, viz. the centre of the earth parallel to
the axis of symmetry. Thus H|, lies in the meridional plane.

Following Dungey, the equation (5) can be written as

_, 0% —o o 1 9 02
dppH;2 P -2 g > 9 _ i -
( e R T K ara‘) (rsin 0 8,)
. 0 0 . ou
o(H, 2 ~8 _){ —14}
sin 5 o 5 (r sin 6) 5% ) (7)

In this equation the two modes of oscillations are expressed in a
coupled state. To simplify matters, we put /8¢ =0, i.e. the dis-
turbance occurs in phase over the whole earth ; there the coupling
between the two modes disappears. These two modes are called
the poloidal and toroidal fields. The lines of force are dragged along
thp circles of latitude and thus give rise to the toroidal field. The
poloidal field corresponds to the field coil of the technical dynamo,
and the toroidal field to the armature. When 0/9¢ = 0 there is no

coupling between the two modes. The equation (7) can be
transformed into

_, 0% s ¢ 1 2 02
4o H-29 _ -2 o 1 a3 . .
("P 0" o r Smeaﬁsinﬂae w)rsmBEgs—O. (8)
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4 2 . . P ;
Put —7P9 7 agsuming harnvonic escillation with ei“t,
)
V A H 0 2’ .
Then n = —42 where V, = - , the Alfvén wave velocity
w vV 47p
2
<™ and w 2%’, the frequency. Therefore it is necessary
4

to determine the Alfvén wave velocity.

To a first approximation, let us assume that all atoms are singly
jonized in the ionosphere, although actually there is a mixture of
ions and neutral particles. This gives a value of 200 kms/sec for
the Alfvén wave velocity.

It is possible that the mechanism of generation of these oscillations
is of solar origin. The particles emanating from the M regions in the
sun may produce these oscillations in the ionosphere. With Allen,
Keipenhauer and others, one may conceive of the M region being
present in the solar corona itself. Such ionospheric oscillation may in
turn produce minor disturbances in the earth’s magnetic field.

The Damping Effect

When the medium has a finite conductivity and viscosity, it
gives rise to dissipation of energy. The most general treatment is
due to Van de Hulst. According to him, the damping time is given

by

L
1= 0w’
‘ ’ ’ ’ w P 17 __47Tp__
where ¢ = (o' +b") X,,, @ =4—7wandb =2 Xm——ﬁ—z——cz,

(¢ = velocity of light, p = viscosity coefficient) a’ gives the Joule
heat according to Batchelor and b’ the dissipation of energy due
to viscosity. The relative importance of resistivity and viscosity

i4

to energy dissipation is given by the ratio b_,, where
a

b’  4dmop

~ 1.8 x 10°,
cdp

’
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SUMMARY OF TALK

By B. 8. MADHAVA RAO

The subject of Magneto-hydrodynamies, including Magneto-
gas-dynamics has been vigorously pursued in recent years, and
literature pertaining to the same has therefore been expanding very
rapidly. I wish to present briefly some of these developments by
dividing the subject into three categories specified respectively
By the macroscopic, normal, and microscopic scales of the pheno-
mena concerned.

Tt need hardly be said that much of the advance in all the three
regions has been due to recent intensive study, to a great extent
initiated by S. Chandrasekhar, of the solutions of the fundamental
equations themselves. For example, the systematic discussion of
the hydromagnetic equations for axi-symmetric fields in case of
fluids of finite electrical conductivity, based on the decomposition
of the magnetic and velocity fields into their poloidal and toroidal
components has yielded valuable results. Further generalization
by dropping the assumption of a static field, and using instead the

- -
condition that the undisturbed v and H fields are stationary, and
-

that the : field is everywhere proportional to the H field, a
great freedom can be obtained in the choice of the undisturbed
field. By such a suitable choice, expressions can be derived for
the periods of small oscillations about the equilibrium configuration,
and lower bounds deduced for the periods of the lowest modes of
vibration. Other types of work consist in the discussion of
wave motion in compressible and incompressible media, thermal
instability in the presence of a magnetic field, and the propagation
and structure of magneto-hydrodynamic shock waves. Consideration
of the stability of the simplest solutions of the fundamental equa-
tions has also given significant results.

At the macroscopic level, lie the results of an astrophysical signi-
ficance. It has been possible to discuss from the point of view of



230 B. S. MADHAVA RAO

the hydromagnetic equations, the question of generation and
maintenance of cosmic magnetic fields. Some recent Russian work
in the field of relativistic magneto-gas-dynamics also falls in this
category, but it is still in the introductory stage of setting up the
equations of motion in the Minskowski 4-space, there being, however
no derivation so far of results of astrophysical interest.
Attempts at obtaining the possible equilibrium configurations of
magnetic stars, and the nature of dissipation of magnetic energy
in interstellar space are other examples.

In the second category, the most striking result recently obtained
is that due to 8. Chandrasekhar about the decay of the Earth’s
magnetic field. Considering the effect of internal motions on the
decay of a magnetic field in a fluid conductor, he has applied the
general theory relating to axi-symmetric fields to this particular
problem, and shown by numerical analysis that reasonable motions,
if they ocour appropriately, can lengthen the decay time of the Ear-
th’s magnetic field from 17,000 years—the value it would have in the
absence of internal motions—to 500,000 years, a value suggested
by recent experimental results. Theories have also been set up to
serve as a basis for explaining the origin of the Earth’s magnetic
field. One such assumes a non-uniform rotation which generates a
toroidal magnetic field from an initial poloidal one, next s succession
of ““ cyclones  creating out of this toroidal field loops of flux in the
meridian planes, and finally these coalescing and regenerating a
poloidal field. Mention must also be made of recent work done at the
Japanese Earthquake Research Institute about the Earth’s magnetic
field based on the model of a self-exciting dynamo, and investigating
the stability of the Earth’s dynamo. This institute has also done
work on the explanation of the origin of earthquakes based on
magneto-hydrodynamic theory.

On the microscopic level, the outstanding recent contribution
is the development of the stellarator which is an experimental
device employing a twisted magnetic field to contain an ionized
gas, and electric fields to heat it, and which is perhaps the first
step - towards. the- deriving of useful power from thermo-nuclear
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reactions, a suggestion first made by H, J. Bhabha. When two
nuclei of heavy hydrogen collide at high energies, they interact
forming a new nucleus, and liberating either a proton or neutron
of high energy. To obtain a useful power yield from this reaction,
& gas of deuterium (H,) or of mixed deuterium and tritium (H,)
must be brought to an enormously high temperature—equal to about
108 degrees absolute. The problem then is to confine this gas within
& limited region away from contact with any solid matter, as other-
wise it will cool and the solid material will evaporate. Magnetic
forces seem to offer the only way to contain a thermo-nuclear reac-
tion using the pinch effect, viz. the flow of a heavy electric
current through the hot gas, thereby generating a strong
magnetic field which at once compresses the gas and brings
it up to a high temperature. In the stellarator, the gas is
originally contained in a magnetic field produced by the above
process thereby reaching a temperature of about 10¢ degrees, and
then the ultra-high temperatures are reached through an effect
called magnetic pumping induced by a second extremely rapidly
pulsating magnetic field. Besides the stellarator, recent work done
which belongs to this third category relates to the oscillations
of an electron plasma in a magnetic field, and plasma losses by
fast electrons in thin films.

Magneto-hydrodynamics is a very young and rapidly expanding
subject, and by its very nature a meeting ground of several disci-
plines of theoretical physics. A consequence of this is that at each
step in the development of the subject, unexpected problems
arise which need to be solved, and exact solutions are not, in general,
possible because of the mathematical complexity of the fundamental
equations. When, however, solutions are obtained under reasonable
assumptions and approximations, the interpretation of these solu-
tions leads to results as unexpected as the problems that arise. Surely
there are exciting possibilities for research in magneto-hydro-
dynamics.

University of Poona
Poona 7






EXCEPTIONALLY LARGE SOLAR AND
GEOPHYSICAL EVENTS.

By S. L. MALURKAR

In the laboratory, attempts have been made to verify several
results of Magneto-hydrodynamics. Of late the subject has been
applied for designing the elaborate experiments of thermonuclear
processes, under controlled conditions. In the sun and in the stars,
the processes involved are determined by magneto-hydrodynamics
due to the order of various quantities. The extra terrestrial observa-
tions would still be very useful. The chromospheric eruptions
(solar flares) of solar active regions affect almost contemporaneously
(taking account of the velocity of light) on the day light side of the
earth’s hemisphere within an area of about 70° of the sub-solar
point (McNish cone) and give rise to a temporary short time change
in the geomagnetic field (crochet) and to ionospheric disturbances
in D and F layers leading to a radio fade-out. After 24 to 48 hours,
often a world-wide geomagnetic storm may follow. The incoming
cosmic rays, the solar noise and details of spectroscopic phenomena
may also contemporaneously change while the cosmic rays may
decrease and closely follow the changes in the one to two day later
world wide geomagnetic storm. Among the large number of solar -
events which happen, the sorting oubt requires considerable pre-
paration. The exceptionally large events assume great importance
as they naturally classify themselves out. In the last twenty years,
five very large events with contemporary cosmic ray bursts occurred
(Feb. 28, 1942; Mar. 7, 1942; July 25, 1946; Nov. 19, 1949; Feb. 23,
1956). While a day or so after the eruptions of Feb. 28, 1942 and July,
25, 1946, world wide geomagnetic storms with simultaneous cosmic
ray changes were recorded, no such combined or inter-related sub-
sequent geomagnetic and cosmic ray disturbances were recorded
in the other three instances. To these five, two more events when
geomagnetic disturbances (two biggest ones recorded at Alibag)
with no corresponding cosmic ray changes were added and all the
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seven were studied with the evolutionary history of the connected
solar active regions. It was found :

1.

The cosmic ray bursts happened with solar active regions which
were very active and had a history of great activity > 6 days.

When the chromospheric eruptions of such a solar active
region happened near the C. M. of the sun, there was an
increase of cosmic ray intensity (a burst) and after about a
day, a world wide geomagnetic storm with corresponding
cosmic ray changes followed. (Feb. 28, 1942 ; July 25, 1946).

When the chromospheric eruption of the same type of very
active region took place near the western limb of the sun
there was a great burst of cosmic rays with short time geomag-
netic changes (crochets) in the McNish cone. No inter-related
geomagnetic cosmic ray disturbance followed in the next 24
to 48 hours. (Mar. 7, 1942 ; Nov. 19, 1949 ; Feb. 23, 1956).

No such event has yet been recorded at the eastern limb of
the sun with very active regions.

On Nov. 19, 1949 and Feb. 23, 1956, the solar flares caused
an increase in electron density in the F, which according
Minnis and Bazzard is rare unlike the usual solar flare effects
which give “ a simultaneous increase in the electron density
in the D and E layers.” The geomagnetic orochot at Alibag
on Mar, 7, 1942 is very marked and similar to those recorded
by Kodaikanal on Feb. 23, 1956 that it is likely that F,
layer was also affected on Mar. 7, 1942.

The purely geomagnetic storms were related to very active
solar regions with more ephemeral history soon after their
C. M. passage (Mar. 1, 1941 and Mar. 28, 1948).

Most of these along with the tabulated data and immediately
deducible conclusions about the nature of particles (positively
charged particles from the middle of the periodic table) have been
published (Acta Physica Hungarica, 8.235. 1958). These show that
the surface of the sun, even those belts where the solar active
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regions form cannot be considered as uniform in the causation of
the big events, which seem to be confined to two small longitudinal
sectors (vide Table, p. 236).

The next problem that was tackled was the nature of solar active
regions that give rise to big events. With the data available, it was
found that on days of big events, the details are very limited or are
absent. Even for the one day that has been used July 25, 1946, it
had to be got by interpolation. Hence an attempt was made to study
eight second order type events along with that for July 25, 1946
—a first order event included earlier. It showed that the events with
cosmic ray enhancements were determined by characteristic or
distinguishable differences along with positional value stated
earlier (Acta Phys. Hung. 9,353, 1959.)

The geophysical control or distribution of these events can easily
be obtained from records of observations. Some items of solar
control have been studied above. If in addition, the conditions
between the sun and the earth are reasonably assumed, the self
consistent picture would add to our theoretical knowledge.

Colaba Observatory
Bombay &
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SUMMARY OF POPULAR LECTURE ON
¢ PARITY IN 'NATURE’

By B. S. MADHAVA RAO

By parity is meant the principle that all phenomena in nature
could be explained on the basis of a few simple and fundamental
laws. The whole progress of the physical and biological sciences is
a.striking confirmation of the fact that man has struggled for ages
to perceive such parity in nature.

But one can immediately mnotice striking differences between
biologists and physicists in their approach towards finding such
fundamental laws of nature. While mighty revolutions are taking
place in the concepts of the physical sciences, the biologist appears
to be looking on these with detachment and exercising great restraint
about stating new laws in his own subject. This attitude could
perhaps be appreciated if we note that biology is still a young
subject, and a most complex one because of the hypothesis of
evolution by natural selection, containing the laws of adaptations,
competition and survival, and implying that there need be no
theory of the origin of life at all. Another kind of complexity arises
because of the validity in biology of the view that the design of an
existing product is relative to its way of life. This is something like
the principle of indeterminacy in physics, and leads to the result
that the technique of recognising that not only general statements
but their opposites also are meaningful, appears valid in biology.
A third complexity is the prevalence of the notion of a general type
of complementarity which states that one understands the laws of
nature only when considers all the three questions each independent
of the others, viz. the question of mechanism, the question of
adaptation, and the twin questions of embryogeny and evolution.
The most complex nature of biology, however, is that it is a science
of life without defining life, but only recognising it. It is because of
such complexities that biologists do not want to theorise like
physicists, but a time is certain to come when the biological sciences,
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having grown old enough, will indulge in abstract theories which
will put into shade the extravagant theories of modern physies.

Coming to the physical sciences themselves, one could trace an
interesting evolution in the attempts of physicists to perceive parity
in nature. Based on Newton’s laws of motion, and generalized by
deep and beautiful mathematical analysis developed by Euler,
Lagrange, Laplace, Jacobi and Hamilton, classical physics held
sway for nearly two centuries until the discovery of electromagnetism
by Faraday and Maxwell. It was then that Einstein formulated
relativistic mechanics, and quantum mechanics was created by
Bohr, de Broglie, Schrodinger, Dirac, Heisenberg and Pauli, based
on Rutherford’s epoch making experiments. Further attempts at
the search for uniform laws are best illustrated by considering
advances in the region of elementary particle physics. A fundamental
development was the relativistic quantum theory of Dirac leading
to the discovery of new anti-particles and the processes of annihil-
ation and creation of elementary particles. Further experimental
discovery of other elementary particles like the several types of
mesons and hyperons, and a new process of spontaneous decay of
several particles into other types greatly complicated the position.
The interaction between several types of elementary particles holds
the centre of interest in the subject today, and new theories have
been developed to re-examine Dirac’s work keeping the quantum
principles intact, but trying to consider the invariance of these
interactions under discontinuous relativistic transformations like
space reflexion denoted by P, time-reversal denoted by 7', and also
under the new type of transformation of particles into antiparticles
denoted by C. In this category falls the famous O'P7T-theorem of
Pauli that if one of the operators is not conserved, at least one other
also must not be conserved, leading to five possibilities. Recent
examination of this by Lee and Yang for the particular interaction
of B-decay, viz. n%— p* + &7 -+ v%(+°® being the neutrino) showed
that P and C are not conserved in this interaction, and this conclu-
sion was verified by the experiment of Wu on Cobalt-60, thus
leading to the result that »° is a right-handed screw, and »° (the
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anti-neutrino) is a left handed screw, and mirror images are nothing !
A consequence of Pauli’s theorem in*this ease is that 7' may or may
not be conserved, and experiments have not yet decided this. If
the latter be true, it leads to difficulties in statistical mechanics and
thermodynamics about reactions and reversible reactions, and also
to speculations, that at some previous history of the universe when
conditions of extreme densities and extreme temperatures existed,
ordinary thermodynamices did not hold. At least if CP invariance
is valid, and hence also 7' invariance, then the world we see in a
nirror would obey different physical laws, but would obey the same
physical laws as in an anti-world and this difference may be due
to an accident in the history of our part of the universe.

The rapid advance of experimental work in this field, which has
left theory far behind, has yielded many more new types of particles
some of which by their very nature have to be classified as strange
particles and have necessitated ascribing to them a new quantum
number called the strangeness S. A further study of the large number
of interactions between the several types of elementary particles,
which number 32 at present, has led to the classification of these
interactions as strong, electromagnetic and weak with relative
strengths 1: 10~2 : 10~ with 8 decay mentioned above as a typical
example of the last type, and besides a fourth type called a sirange
interaction, i.e. decay of strange particles has also been added.
Complex experiments are being performed to decide the question
of conservation of C, P and T in the several types of interactions,
and the physicist of today appears to be back in the position of the
chemist in the pre-Rutherfordian era working with 92 particles
and amassing vast information regarding interactions between
them, but failing to perceive a parity in nature.

Among the elementary particles, the photon and neutrino appear
the most romantic, and the mysterious »°, apart from having
helped in proving the violation of P in weak interactions, appears
destined to play an important role in future developments attempting
to absorb Einstein’s general relativistic theory of gravitation into
the main stream of quantum mechanics. Gravitational attraction
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as compared with other interactions is the weakest, being of the
order of 10~ 24 and if gravitational theory be quantised, and we can
talk of ‘gravitions’ as elementary particles, it would be most
interesting to find how they are related to the neutrinos. For this
the great open questions of cosmology dealing with the ‘ boundary
conditions ’ satisfied by the universe at its beginning have to be
answered by observation. Important innovations in this direction
may arise in the next few decades out of astronomical observations
relating to cosmological questions made possible by elaborate
equipment assembled in sputniks in interplanetary space. But-.a
clear understanding of the problems of elementary particle physies
appears possible only when a still deeper mathematical analysis
is made of existing quantum field theorios of the nature that
Hamilton’s theory did to classical physies.

University of Poona
Poona 7.



SOME DYNAMICAL PROBLEMS OF ASTRONAUTICS

By Proressor V. V. NARLIKAR

“Like one that on a lonesome road
Doth walk in fear and dread,

And having once turned round walk on,
And turns no more his head;

Because he knows, a frightful fiend
Doth close behind him tread’

The Rime of the Ancient Mariner—Coleridge

AT a recent meeting in New York, when W. Pauli gave an
exposition of Heisenberg’s unified theory of fundamental particles,
Neils Bohr is reported to have remarked that the theory was crazy
but not crazy enough to be acceptable. In solving their problems
the mathematicians have frequently to resort to plausible reasoning
and fruitful new ideas in science often appear crazy until we become
familiar with them. It is therefore a very healthy thing that at the
conferences of mathematicians there should be simpler expositions
of some current problems although the so-called popular lectures
may be solid, liquid, gaseous or even plasma. Attempts at enriching
common understanding are necessary when every branch of the tree
of knowledge is accessible only to a privileged few.

By astronautics is meant the science of space flight. From the
point of view of a cosmic spectator we are all participating in a space
flight : for the earth moves about the sun with an average velocity
of about 18.5 miles per second and the sun moves, with a velocity
of about 12 miles per second, in a stellar cluster and the stellar cluster
rotates about the centre of the Central Galaxy so as to cover about
140 miles in a second. He would call us sputniks or fellow-travellers

of the earth.

But the point of view of man is different.
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According to Eddington, ““ Man, in his search for knowledge of
the universe, was like a potato bug in a potato in the hold of a ship
trying to fathom from the ship’s motions the nature of the vast sea.”
Eddington was contrasting here man’s helpless confinement to the
earth against his insatiable thirst for knowledge of the vast outer
universe. At the bottom of a vast atmospheric ocean, which may be
stretching up to the moon or even beyond, man—a prisoner on
earth—has to be content with the messages he can get through the
radio window and through the optical window.

Tt is therefore a great thing to be able to travel from the earth to
the moon or Mars, or even to a space-station beyond the ionosphere,
in a space-ship under a short-lived, limited motive force, mainly
with the help of the gravitational field of the solar system.
The flight would be mostly ballistic, a gravitational ‘ fall ’. We will
be considering a few dynamical problems of such space flights.

To begin with we may use the terminology of space-time mapping
which is popular with relativists and which Professor J. L. Synge*
has recently used to present diagrammatically ‘an elopement
situation > and ‘ what every father should know ’ under the circum-
stances. With sputniks and ‘explorers’ travelling in the outer
space the cosmigc era has dawned and we should look upon ourselves
as citizens of the cosmos, consider our events as world events and
treat life careers of individuals as world lines.

The mere existence of a particle here and now defines an event
describable as a set of four ordered numbers and the totality of all
possible events forms a four-dimensional continuum. The sequence
of events associated with the existence of a particle constitutes the
world line which is the history of the particle. Each world line
progresses until it merges in another, or indefinitely, as time passes.
In the four-dimensional space-time representation Newton’s first
law states that the world line of a free particle is a straight line.
If two persons are moving towards each other on a straight line we
can show (by treating the persons as particles) that their world lines

*¢An Introduction to Space-Time”, The New Scientist, May 1, 1958.
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would intersect, the point of intersection giving the place and time
of their encounter. The world line of a pulse of light is also a straight
line. A simple calculation shows that the world line of the Newtonian
apple, falling from the tree, is a parabola.

The main problem of space travel can now be thus described.
There is the world line S of the starting station and there is also the
world line D of the destination. Initially, § is the world line of the
passenger and at the end of the journey it is D. We have to find a
wo.rld line for the passenger which branches off from some point
on S and proceeds, with a few breaks in direction if necessary, so
that it finally touches D somewhere and merges in it. There is
generally a world line corresponding to the least time of travel and
there may also be the least expensive track, the total rocket energy
needed being minimum.

For this we must know thoroughly the law governing the propa-
gation of world lines and we have to determine how rockets can be
advantageously used for effecting the necessary change of direction
at the right stage.

The simple problem that we may consider first is that of Professor
Singer’s MOUSE project. MOUSE is an abbreviation for * Minimum
Orbital Unmanned Satellite of the Earth ’. Let us assume the earth
to be spherically symmetrical, the radius being o and the
gravitational acceleration at the surface being g. If an object is
projected at a height (a + b) from the centre, with the velocity
v/ (ga?)/(@ -+ b) parallel to the surface of the earth underneath it conti-
nues to move with that speed in a circle of radius (@ -+ b) about the
centre of the earth. If there is no resistance such as that of the
atmosphere the motion is non-stop.

With all the works done from Newton to Einstein the mystery
of this motion is not yet fully understood. If we adopt the Newtonian
method several logical difficulties are encountered and certain
subtle relativistic observed effocts remain unaccounted for. Einstein’s
method, on the other hand, makes the calculation of the world lines
too complicated for known mathematical techniques. Besides, there
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are mathematical difficulties in representing rapidly changing
fields and gravitational radiation. In launching a satellite into its
orbit the scientists find the Newtonian method of calculation, with
its approximations and limitations, more convenient.

Incidentally, in the case b = 0, that is, for a circular motion just
close to the surface of the earth, the velocity of propagation is 4/(ga).
It is roughly 18000 miles per hour and is known as the primary
cosmic velocity for the space travellers in a satellite who would
keep very close to the terrestrial coast. The velocity /(2ga)is roughly
25000 miles per hour and is often referred to as the secondary cosmic
velocity. It is the velocity of escape from the earth. The world line
of an object flung vertically from a point O on the earth, with this
velocity, becomes ultimately parallel to the time line which is the
world line of O. In other words, the object never returns to the
earth.

In practice it is not prudent for space travellers to keep very
close to the terrestrial coast, because of the resistance of the atmos-
phere. One has to go up a certain safe distance b if the circular
motion is to continue undisturbed for a fairly long time. It will be
some time before man succeeds in guarding against the hazards
of space travel. At the present stage the unmanned satellite can be
used as a space observatory for observation and transmission of
scientific data. The necessary data are so important that costly
rocket experiments have been performed, even at the risk of the
utter destruction of the registering and measuring instruments, which
could be used for observation for not more than five or six minutes.
A space observatory, housed in a satellite, with a life of several
weeks and months would be definitely an advantage for collecting
some of the scientific data. It must be understood, however, that
some of the experiments and observations at lower levels in the
atmosphere can be carried out by short-range rockets which cannot
be replaced by satellites for these purposes.

We may take @=4000 miles and b = 22,300 miles so that the
period of circular motion 2r(a -1 b)3/2/4/(ga?)is just one day. If the
motion is in the plane of the equator and in the sense of diurnal
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rotation the satellite would be practically fixed relative to the terres-
trial observer underneath. But thedistance would be too much for
the satellite being used for the observation of the atmospherio
phenomena and for broadcasting the observed data to the earth.
Some time back von Braun considered b=1075 miles as most
suitable, the period of orbital motion being 2 hours. In this case
the effort required for the satellite to be set moving in its orbit is
considered as beyond the then resources of science and technology
before October 1957. The smaller the value of b, the greater is the
danger to the orbit through atmospheric resistance but the smaller
is the rocket power needed. For the minimum orbit for the un-
manned satellite under the MOUSE project b was taken as 600 miles.

From the data available to us of the first two sputniks we know
that their periods diminished to the dangerous figures of 89-90
minutes from 96.2m. and 103.7m. in 92 and 161 days respectively.
The daily loss in the periodic time first increases slowly and is rather
fast after some time. The average daily loss in period was found to
be about four to five seconds in the case of Sputniks I and II. This
offect is a measure of the resistance of the atmosphere.

In the programme of launching a satellite into its orbit there is a
rocket thrust to start with, producing vertical motion. Another
rocket thrusb is imparted subsequently to change the direction of
motion. The satellite then coasts along under gravity, until it reaches
the orbit, when the rocket is fired again to give the satellite the
necessary direction and velocity. If the rocket becomes too fast
400 soon considerable energy is wasted in overcoming the air
resistance. Here are two problems. What is the optimal trajectory
for launching the satellite ? How should the limited thrust of the
rocket mobors be most economically employed ? These are urgent
problems the solution of which is complicated by the uncertain
parts played by the air resistance in the process. Oberth*, who
called the optimal trajectory, the “synergy curve,” was probably
the first to suggest a tentative solution.

# Rockets, Missiles and Space Travel” by Willy Ley, Chapman end Hall
p. 335 (1957).



246 V. V. NARLIKAR

Equally urgent and still more difficult is the problem of the safe
return journey of the satellite or space-station to the earth. There
is to be a rapid fall in velocity from about 18,000 miles per hour to
zero. Under the resisting action of the atmosphere there is a danger
of kinetic heating. According to Professor W. J. Duncan® ““ A close
estimate of the temperature increase is obtained from the equation
that the rise in degrees centigrade at the nose of the body is equal
to the square of the speed measured in hundreds of miles per hour.”
Thus at a speed of 5000 miles per hour the temperature rise would
be 2500°C. The problem is how to prevent a heat death and a crask
and provide for a safe return of the satellite.

A smooth landing implies that the world line of the passenger
should touch ultimately the world line of the destination. Under
gravitational forces alone as in the Newtonian theory the world
lines of two objects cannot touch. Even in general relativity this
is not possible on the geodesic principle. An extraneous non-
gravitational controlling force is needed to effect a smooth merging
of the two world lines into each other. This is supposed to be done
by a suitable rocket action.

Groat procision is demanded in the direction and magnitude of
the velocity imparted in the last rocket operation in launching 2
satellite into its circular orbit. The error makes the orbit elliptic
and however distant the apogee may be the perigee is on or within
the eircle and it may be dangercusly close to the earth, in the
denser layers of the atmosphere, affocting the life of the satellite.

In applied mathematios all numbers which arise out of physical
measurement. and which have physical dimensions associated with
them are known to have some fringe. We cannot assert that the
breadth of the fringe is 2¢ and that the positive number € can be
made as small as one likes. If in determining the world line of the
destination or in controlling by rocket action the world line of the
Ppassenger the necessary degree of precision is not achieved, the two
world lines may not meet according to the plan and the passenger

%« High Speed Flight , Engincering, 186, 278, (1958).
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may be left permanently in the cosmic lurch. Let us imagine a
passenger starting for the moon frorh a distance of 350 miles from the
earth. At the precise moment of starting the initial velocity in the
direction of motion is expected to be in the neighbourhood of 6.06
miles per second. From Hans A. Lieske’s' calculations the following
conclusions follow.

If the moon is to be hit at all the error in the velocity of projection
should not exceed 40 ft. per sec. and the error in the direction of
projection should not exceed a fourth of a degree. If the passenger
is to go to the moon orbit, and land back on the earth, with an un-
certainty of 1000 miles in landing, these errors should not exceed
1.12ft. per sec. and 0.01 of a degree respectively. This gives us an
idea of the exacting demands on technology in implementing a
programme of space travel.

The large fluctuations in distance in the case of Sputniks II and
II1, if they were unintentional, mean that the error in the velocity
vector in the last rocket stage was unexpectedly high. It was not
clear at first why the Russians had selected an inclination of 65°
to the equator for the orbit of Sputnik I. The MOUSE was to
have a polar orbit so that receiving stations all over the world and
especially at the poles would be regularly getting the scientific
data transmitted from the satellite and every part of the entire
surface of the earth would be periodically under observation.

We have already remarked that if there is & small error of projeo-
tion at the last rocket stage the orbit of the satellite becomes an
ellipse. The oblateness of the figure of the earth produces cerfain
systematic changes in the ellipse one* of which is that it rotates
in its own plane with an angular velocity proportional to (5 cos?a—1),
where « is the inclination of the orbit to the equator. For «=63.4°
this effect is zero. In Sputnik I, the Russians succeeded in reducing
the rotational motion of the ellipse to 0.4 degree per day by making
the inclination sufficiently close to 63.4°.

+¢ Practical Aspects of Earth Satellites »’, Engineering, 184, 484, (1987).

*¢ Perturbations of the orbit of a satellite near to the earth> by D. G. King.
Hele, Proc. Roy. Soc., Series A, 248, 55-62, (1958).
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Our experience shows that when the last rocket is fired in launch-
ing a satellite there may be twosor more objects almost in the same
orbit. This suggests a simple mathematical problem in which two
satellites are supposed to be moving in the same sense and in the
same orbit. If the velocity of either is changed it starts moving in
a different orbit. Assuming that we want the two satellites to be
brought together and describe the same circular orbit let us see how
it may be done.

Let us suppose that the satellite which is moving ahoad is fitted
with two rockets. The problem may be simplified further by
assuming that the rocket action is fast enough to be treated as an
impulse. The impulse may be so directed that the satellite moving
ahead makes a detour on an elliptic path reaching the original
circle again at & point when the other satellite has just arrived
there. Here another impulse will be necessary so that the elliptic
path is knocked back into the original circle. The questions now
arise: What is the least time in which the two satellites can thus be
brought together? What is the most economical manoeuvre for mak-
ing the two satellites trace a common world line? The mathematical
treatment of these questions is within the scope of an honours
student of the B.A.—B.Sc. mathematics class. But the calculations
involved are so frightful that the trailing satellite would remind
the student of Coleridge’s famous lines quoted in the beginning.

In a single stage of propulsion, when the propellant is all burnt
out, the velocity v of the rocket is given by

v=clog, A — v, — v,

where ¢ is the exhaust velocity of the outgoing gas which roughly
varies directly as the square root of the combustion temperature
and inversely as the square root of the mean molecular weight of
gas, ¥, is the velocity loss due to the gravitational opposition to
the climb and v, is the velocity loss due to the atmospheric resistance.
v; and v, depend upon the path and the burning out time which
may be anything like 100 seconds or more. ) is the ratio of the total
weight of the rocket to what is left when the propellant is all burnt
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out. It may be as high as 6. It is possible to build up a multi-stage
rocket. In such a rocket, the origintl weight w is reduced to w/A,,
after the first burnout. In the second stage the weight is reduced
from w/A, to w/A,A,. If there are » stages A = A  A,...2,. The fluorine-
hydrogen combination** for the propellant is known to give for ¢
as high a value as 7 miles per sec. The other combinations which
can be more safely used give for ¢ a value less than 2.5 miles per
sec. The engineers often speak of specific impulse = which has the
dimension of time and which expresses both the exhaust velocity
@nd the thrust ¢ through the relations,

T :c/g =t/p,

where p is the time-rate of propellant consumption. For the creation
of the modern multi-stage rocket, which has brought space travel
within the realms of practicability, credit must be given to the
recent research done in many branches of science and technology.
But the most exciting adventure has been, as always, in the realm
of thought, in tackling the mathematical problems arising at each
step in research.

Even in very simple problems of space travel we are confronted
with a situation which makes the standard* mathematical pro-
cedure of calculus of variations of little avail. At ¢=0 a rocket is at
one place in space with a cortain velocity. At { =1, the rocket is at
another place with a given velocity. Those two are essential require-
ments for a space trip which is not to end in a disaster. The problem
is to find the optimal path for the rocket. The expected solution
is one for which the velocity cannot be continuous. The ballistic
flight in the gravitational field is to be so organized that at strategic
moments in the course of the journey the rocket is used for changing
the course and speed. The mathematical problem of finding the
trajectory is quite complicated as can be seen from some of the
idealized simple cases that have received attention.

*%¢¢ Soience News 48 °, Penguin Books, p. 30 (1958

*: Mathematical Problems of Astrongutics” by D, F. Lawden, Math. Ga .,
XLI, 172, (1957).
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As I remarked at the outset we are all spuntniks or fellow-travellers
of the earth tracing with it a World line in the midst of stars and
galaxies. As we are falling freely under cosmic gravitation we
experience only the gravitational force of the earth. Mr. Pickwick
travelling in a space-ship would experience the gravitation only
of the ship which would be negligible. For all practical purposes
everything in the company of Mr. Pickwick (including his body)
would be weightless. If “he opened the mouth of a bottle and applied
it to his own” there would be no flow and no gratifying resuits.
The adventures of a dry Pickwick, in & space-ship bound for thé
moon, would be a challenging theme for a scientific fiction.

Already the satellite prograrame has supplied us valuable in-
formation about the figure of the earth, the density of the atmos-
phere, the electromagnetic fields in the ionosphere and among
other things about the intense belts of 40 million-volt protons, a
thousand kilometers or so above the earth in particular latitudes.
We are learning every day of the new hazards of space travel through
the atmosphere and a new subject called “Space Medicine”” has
come into existence. The resources of mechanical calculating
prodigies are being devised for the guidance of rockets. Condon
tells us of a visitor to the U.S. who enquired of the meaning of the
legend, “What is past is prologue”, inscribed on a building in
Washington. The motor driver gave his interpretation in the words,
“You ain’t seen nothing’ yet.” The wonders of Nature and of
human achievement that we have seen will be as nothing compared

to the wonders that we are going to see—if we survive the third
world war.

Banaras Hindu University
" Banaras 5



REMARKS ON INDUCTIONt

By V. 8. HUZURBAZAR

Tre fundamental problem of scientific progress, and a fundamental
one of everyday life, is that of learning from experience. Knowledge
obtained in this way is partly mere description of what we have
alveady observed, but part consists of making inferences from past
experience to predict future experience. This part may be called
peneralization or induction. Induction is the backbone of all
empirical sciences. Inductive inferences are probable, and cannot be
absolutely certain.

Induction by simple enumeration is the following principle:
“ Given a number of n of «’s which have been found to be f’s, and
no o« which has been found to be not a 8, then the two statements:
(a) ‘the next « will be a §°, (b) ‘all «’s are 8’ &, both have a proba-
bility which increases as = increases, and approaches certainty
as n approaches infinity ”. Russell [Human Knowledge, (London
1948)] calls (@) ‘ particular induction’ and (b) ‘ general induction ’
Thus (a¢) will argue from our knowledge of the past mortality of
human beings that probably Mr. So-and-so will die, whereas (b)
will argue that probably all men are mortal.

From the time of Laplace onward, various attempts have been
made to show that the probable truth of an inductive inference
follows from the mathematical theory of probability. It is now
generally agreed that these attempts were all unsuccessful. Some
extra postulate is ngeded to justify induction. Laplace’s famous
‘Law of suecessioni’ was supposed, for a long time, to justify
induction. As pointed out by Broad [Mind, 27 (1918), 389-404]
it justifies only particular induction but not general induction.

In his logic of scientific inference, Jeffreys (Theory of Probability
Oxford, 1939) lays down the °simplicity postulate ’: ‘Any clearly

+ A summary of the half-hour address delivered at the Golden Jubilee Session
of the Indian Mathematical Society, Poona, December 1958.
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stated hypothesis has a non-zero prior probability unless there is
definite evidence against it.” As a consequence of this postulate, he
shows that repeated verifications of the consequences of a scientific
hypothesis will make the mext consequence almost certain, when
the number of verified consequences approaches iunfinity. This
again justifies particular induction only.

Huzurbazar [ Proc. Camb. Phil. Soc. 51 (1955, 761-762)] has shown
that the simplicity postulate leads to the justification of general
induction also: ‘repeated verifications of the consequences of-a
scientific hypothesis will make any number of further consequences
almost certain, when the number of verified consequences approaches
infinity ’

An interesting point about the propositions proved by Jeffrey
and Huzurbazar is that the propositions hold good irrespective of
whether the scientific hypothesis is true or not. Now in science, one
of our difficulties is that the alternatives available for consideration
are not always an exhaustive set. An unconsidered one may escape
attention for centuries. The propositions of Jeffreys and Huzurbazar
show that this is of minor importance. The unconsidsred alternative
hypothesis, if it had been thought of, wounld either lead to the same
consequences as the considered hypothesis, or to different conse-
quences at some stage. In the latter case, the data would have been
enough to dispose of it, and the fact that it was not thought of has
done no harm. In the former case, the considered and the uncon-
sidered alternatives would have the same consequences, and will
presumably continue to have the same consequences. The uncon-
sidered alternative becomes important only when it is explicitly

stated and & type of observation can be found where it would lead
to different predictions from the old one.

The rise into importance of the theory of general relativity is &
case in point. Even though we now know that the systems of Euclid
and Newton need modification, it was still legitimate to base in-
ferences on them until we know what particular modification way
needed. As Jeffreys remarks, ‘the theory of probability makes it
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possible to respect the great men on whose shoulders we stand ’.
What is more remarkable, laws which wultimately turn out to be
inexact, are often far more exact than the data on which they are
based. As Jeffreys points out, when Einstein’s modification to
Nowton’s law of gravitation was adopted, the agreement of obser-
vations was three hundred times as good as Newton ever knew !

University of Poona
Poona 7
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ALGEBRA AND THEORY OF NUMBERS

M. BnaskaraN Annamalainagar. Factorization in Cyclotomic Field

It is proved in this paper that any algebraic integer » prime to
a rational prime p can be expressed as the sum of two factors of p
in the algebraic number field B {[ ( + p)'*"* ™' — n?]¥% 5, [} where
R’is the rational number field, 1 <7 < p, and { is a primitive pth
root of unity. By making use of this result, the following theorem
is proved:

THEOREM. Let ¢> 3 and lq' + 1 = p be rational primes such that
(21, g —1)=2. Then q spilts in the cyclotomic field of p-th roots of
unity.

J. M. Ganpu1, Patiala. On logarithmic numbers.

This paper is the result of the study of the coefficients Gi™(t)
defined by the polynomial

oo

log (1 — &™) e~ = — > GW(t)a/r!, G(t) = 0.
pe=]
Some results connecting these coefficients (which are called
logarithmic numbers) with the M6bius function p(n), Euler’s function
#(n) and the function r(n) defined as the number of representations
of » as the sum of two squares, are established early in the paper.
The rest of the paper deals with the logarithmiec numbers
G = @™ (1), and L™ = G™M(— 1), arising out of the special cases
when ¢ = 1 and ¢ = — 1respectively. Tables of values of G and other
allied functions defined in the paper, for small values of 7 and =,
have been constructed and some of the interesting properties have
been discussed therefrom. Some results involving the numbers
@™ and LM and the functions d(n) and o(n) and another set of
results connecting these numbers with the well-known numbers like
Bernoulli’s and Euler’s have been obtained. There are also a few
results on these numbers in ¢onnection with the partition function
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p(n). The logarithmic numbers independently by themselves, satisfy
certain congruences which: have also been worked out.

D. R. KaprERAR, Devlali. Circulating constants from five digited
numbers.

Let N, = abede represent a number of five digits whero all the
digits a to e are in descending order of magnitude. The number got
by reversing the digits in V; will be called &,.

Let N, — R, =&,. Now arrange the digits in S, to form a new
number in descending order. It will be called N,. The reversed
number of N, will be R,. Let N, — R, = S,. Arrange the digits of S,
in descending order to get our next starting number ¥;. The process
can be continued for any number of times ; however it will be seen
after a few steps that we come to only one of the three following
circulating number series A, B or C.

A — 62964,  TI973, 83952, 74943
B — 75933, 63954, 61974, 82062
¢ — 59994, 53955 '

The process can be similarly applied to numbers of 6 digits or
more and we get circulating constants of six or more digits. If

however the process is applied to any number of 4 digits we get only
the constant 6174 within 8 steps.

Inpar Sivem LurmAR, Chandigarh. Uniqueness of the invariant
mean on an Abelian semigroup.

Let S be a semigroup and let m(S) be the space of bounded
real-valued functions # on S with || || = Sup, |#(s)|. An invariant
mean on S is a positive linear functional of norm one on m(S) which
is invariant under all the left and right translation operators. It is
known that every abelian semigroup has an invariant mean. It is
proved here that an abelian semigroup S has a unique invariant mean
if and only if S has a finite ideal in it. If the abelian semigroup S is
finitely generated then each of the above two conditions is equivalent
to the third condition that there are no non-trivial homomorphisms
of S into the additive semigroup of integers, Further if S has many
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invariant means, then the diameter of the set of invariant means
is two.

M. B. Paxt, Poona. Divisihility of any number by amy other
number.

In this paper is given a general method for test of divisibility
by any number.

M. RasacoparaxN, Banaras. H-Algebras.

.An H-algebra is an algebra A over the field C of complex numbers
whose underlying vector space is also a Hilbert space. Moreover an
involution operator denoted by * is defined in A such that

(xy,2) =(y, x*2) = (x,zy*) foralla, y, 2, € A.

The first result is that 4 = I, + I, where I, and I, are two closed
ideals of A. I,2 = 0 and I, has no non-zero annihilators. I, is called

a proper algebra. The noxt result is that I, = + I, where I, is an

13

ideal of I, and is isomorphic to a full matrix algebra led by the trace
topology and J is some index set. To prove this result, the first
important step taken is to show the existence of self-adjoint idempo-
tents. First of all, sequence of polynomials P, (z?) in 22 and without
the constant term and decreasing to the step function ¢,(x) is chosen
where ¢, = 0 for 0 < & < dand 1 for @ <« < 1. Then itis shown that

lim P,(a?) exists for a self-adjoint element @ €A and such that the
A—>w©

uniform norm ||| ||| of @ < 1. This element e = lim P, (a?) is & self-
n—>0

adjoint idempotent. Then the existence of minimal idempotents is
proved and the structure of each Z, is proved along the same lines
as for Wedderburn’s structure theorem.

K. Savrrari, Baroda. Quadratic forms on the Rational Function
Fields.

In this paper the generalization of the main theorem of Siegel
on the representation theory of quadratic forms to the rational
function field in one variable over a finite field, is given. The proofs
for definite and indefinite formsup to the evaluation of a certain
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multiplicative constant are summarized. If T is the symmetric
matrix that is representable by the symmetric matrix S, we prove
that this constant depends only on S. The proofs of Hasse’s
theorem, the theorem on the semi-equivalence of quadratic forms as
done by Siegel for the rational number field, the generalization of the
Generalized Formula of Gauss and Eisenstein for definite and
indefinite forms, the modification of the same for indefinite forms
and the method of induction following the results of Artin for binary
forms are indicated in detail. We also have the result that the units
of a given indefinite symmetric matrix are finitely generated. This'is
done by means of the theory of discontinuous groups of Siegel. We
make use of the discreteness of the valuation on the rational funetion
fields in question in almost all the proofs. Finally other possible
generalizations are indicated.

S. V. SirpEsa1, Poona. On the possibility of expressing general
equations of degree n > 4 in the form 4 (x -+ A)* -+ B(x 4 p)* =0.

The following theorem is proved for the general equation of the
nth degree.

TaeorEM: The necessary and sufficient conditions that the equation

1, nn—1 .
ag®" -+ na" 14 ® )azw"—z—i- vo. +a, =0 may be expressed
the form A(x + A)* + B + p)" =0, are

Gy Gy Oy Gy Gy G Gy Op_g Gp_g
Gy Gy G| = 0, G5 G| =...... =10, g G, g 1| =0
Gy G Gy @3 Gy Gy Gp_g Gp_y Gy

and G*? + 4 H3 5 0, where G and H have the usual meaning ; if G* +
4 H® = 0 then A = u and the equation has n — 1 equal roots.

Also, in the first case above

A4=%"0 ap_ b
p—A A—p

B. R. Srintvasaw, Madras. Formula Jor the n-th prime.

A recurrence formula for Pn» the nth prime as a symmetric
function of p,, ps,...,»,_; is obtained ; also the existence of &
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simple formula that expresses p, as a function of » is proved. The
precise results are :

I.  pua.=1I {“Tin(”)"x}, lx] <} =lim vs'y() — @

Sn(LU) —x z->0 sn(x) —x ’
where
1 -1 1
Sn(-’l):‘l__x_ Zl_mpr_‘_ z 1—-:):p7p8+
1 DrF#Dg
(=1
+ e (n #0)
8p(r) = i ia, .
IOg [sn(x) —x]
II. Pppr =T +I1 {207 "2 0<e<}
log %
i 108 [4@) — 21
20 log x
=k
III. p,,, = least of the integers p, Py ps ... ... o, F ( Z p’ )
1 r

except for unity, where F denotes fractional part and k, is any integer,
0 <k, <p,.

IV. The n-th prime can be expressed as the limit of the ratio of
logarithms of rational algebraic functions in n arguments.

M. V. Sussa Rao, Tirupati. Congruence properties of o,(n).

The function o,(n), which represents the sum of the rth powers
of the divisors of n, can be split up into its various components,
the component corresponding to the divisor 8,1 < & < +/7, being
defined as & -+ 8 (where 88 =n)if 8’ # and as §" ifé' =46. In
this paper the notion of strong divisibility of o,(n) by k is introduced
by saying that & strongly divides o,(n), written as ¢,(n) = 0 (mod k)
if and only if £ divides every component of o,(n). Obviously strong
divisibility implies the usual divisibility, but the other way need
not be true.
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It is shown here that

i) If k> 2, r> 1, a necessary condition that

(A) o, (kbn-+41)=0 (mod k) for all integers n s that

(B) I'+1=0 (mod k).

(i) This is also a sufficient condition for (A)to hold if and only
if kb satisfies

(C) w* =1 (mod k) for oll (w, k) =1.

These; results include and go beyond those obtained by Hangraj
Gupta and K. G. Ramanathan [Math. Student, XIII, (1945), 25-29
and 30 respectively] who showed that

(D) o (kn+1) =0 (mod k) for all integers n, k> 2, (k, 1) =1,
holds if and only if (B) and (C) simultaneously hold. This brings out
the interesting result that (A) and (D) are equivalent to each other.

ANALYSIS

B. R. BuonsLE, Jabalpur. Some recurrence relations and series for
the generalized Laplace transform.

HART SHANKAR, Moradabad. On the lower order of ‘a-points’ of a
meromorphic function.

Let w(z) be a meromorphic functlon of order p, lower order A
and of genus P. As usual # (7, a) denotes the number of roots of the
equation w(z) =a, (0 < |a]| < ®©). Put N(r) = n(r, 0) +n(r, ©),
and denote the lim sup and lim inf of the ratio log N(r)/log r by
p, and A respectively, as r— co. The following theorem is proved.
If w(z) is a meromorphic function of non-integral order p then

Mlp— P) + p(P +1 —p)
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CoroLLary 1. If 0<p <1, then A < Af(L4-2, — p).

CoroLLARY 2. If A=p and p S0 n'on-z'nteger, then
A =d=p=p,.

S. K. Larsamana Rao, Bangalore. On the Relative Extrema of the
Turan Expression for the General Hermite Function.

Let H,(x) denote the general Hermite function and

An(x) = (Hn(x))2 - Hn-{—l(x) Hn—l(x)

Jts Turan expression. If M, M, My, and m,,, m,,, m,,...
denote the successive relative maxima and minima of e~2 A, (x)
as x decreases from + oo to 0, it is shown that (i) M,,<M,,,,
(11) mr,n <mr+1,n (111) Mr,n+1 > Mr,n and (IV) mr,n <m’r,n+1. the last
two holding for a fixed 7 such that [#] > r > 1. Corresponding results
for the classical orthogonal polynomials have been established by
G. Szego, J. Todd and O. Szasz in the different cases.

V. Laxsamirawraam, Hyderabad. On the functional boundedness
of solutions of differential equations.

In this paper, some asymptotic problems of solutions of non-
linear equations are considered in a sufficiently general way so as to
include the previous results by A. Winter, B. Viswanatham and the
present author, as special cases. Accordingly, the functional bound-
edness of solutions of differential equations is defined as follows :

A solution z(t) of a differential equation is said to be functionally
bounded if it satisfies a functional order relation of the type

V(z(), t) = O(L(®)) as t — co.
This reduces to ordinary boundedness for the choice of V(z, t) =

z or L(t)x. Functional boundedness of solutions of perturbed differen-
tial systems is also considered.

M. R. PARAMESWARAN, Madras. On the translativity of Hausdorff
and Quasi-Hausdorff methods of summability.

In this paper are considered absolute regularity and transla-
tivity of conservative Hausdorff methods for the class F(I) of sequ-
ences [s(n)] defined by: s =[s(n)] € F(l) if s(n) — s(n — 1) =0 (1)
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and further {s(n) — s(n — 1)} is Borel-summable to . The same
questions are also treated-for ‘quasi-Hausdorff methods for the
class of bounded sequences, [ef. : Kuttner, Proc. London Math. Soc.
6 (1956) ; Ramanujan, Proc. Nat. Inst. Sci. India 24A (1958)].

The proof makes use of an idea due to Ramanujan [Quart. J.
Math. 8 (1957)] that the properties of Hausdorff and quasi-Haus-
dorff methods are closely related to the corresponding properties
of the Euler-Knopp and Taylor methods respectively. The following
results are obtained for conservative methods (H, u), (H*, v).

I If s € F(l) is summable by (H, p) and lim u, # 0, then s(n) —
s(n—1)—1.

1L (H, w) is absolutely regular for s€ F (1) if and only if either
s(n) —s(n—1)—lorlim g, =0.

I1I.  (H, p) is translative in the wide sense for all s € F(1).

IV. (H, p) sums (3) almost all, or (15) NO divergent sequences of
0’s and 1’s according as im y,, is zero or non-zero.

V. Multiplicative Hausdorff methods are absolutely regular for
s € F(0) if absolutely regular in the wide sense for s.

V1. Statements 11, IV and V are true for quasi-Hausdorff methods
also ; for these methods, statements I, TI1 hold for bounded sequences.

M. R. PARAMESWARAN, Madras. A Tauberian theorem for oscillation
of sequences.

Let s* ={s,"}, As=(1—2) T s,2" denote the Cesaro-transform
n=0

(of order «) and the Abel-transform respectively of the real sequence
s ={8,}. Let osc. s, osc. Asdenote the oscillations of {8,}, Asas n— o0,
&— 1 — O respectively. In this note is proved the

THEOREM. Let s be a real sequence and let o, B be real numbers such
that ose. Asf < o and
N1
lim liminf ‘"% 5
=>4 0 n<m<n(1+4-8)
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Then osec. s* = osc. 4s < oo.

This generalizes V. Ramaswanti’s theorem [J. London Math.
Soc. 10 (1935)] which has «=8 = 0. S. Minakshisundaram[J. Indian
Math. Soc. 3 (1938-39)] has given an interesting proof of this special
case. This note adapts Minakshisundaram’s method, with a proof
simplified by the use of ‘‘ product theorem ” for oscillations :

Osc. As < oo implies ose. A (Hs) < osc. Aswhere H is any regulor
positive Hausdorff method.

M. S. Ramanusan, Aligarth: On the “ Total translativity” of
Hausdorff Methods.

Among the well-known Cesaro, Holder and Euler methods it is
known that only the Cesaro methods are totally translative. Con-
sidering a wider class of methods, viz. the Hausdorff methods which
satisfy Conditions A of Kuttner [Proc. London Math. Soc. (3), 6
(1956), 117-138] the following result is proved.

TarorEM. Let A = (H, p,) (g, # 0, for all n) define a multiplicative
Hausdorff transformation which satisfies Conditions A of Kuitner.
Then the method is totally translative if, and only if, it is the Cesaro’s
methods or a multiple of it by a scalar.

The proof consists in an application of Hurwitz’s condition for
the triangular matrices to be totally regular and thus getting the
most plausible form of the y, making the method totally translative.

S. R., SivHa, Allahabad. On the non-absolute Summability (4)
of the conjugate series of a Fourier series.

Plessner proved [ Mitt. Math. Sem. Univ. Giess. 10 (1936) 1-36]
the following theorem for the conjugate series, when the conjugate
function exists as a Cauchy integral :

Let Viz, 0) = z (b, cos n8 — a, sin nd) 2", (0 <z < 1).
1

Then, if for any 0, the condition
t

I P(t) dt = o(t), as t—Q
0
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is satisfied then

z—>1

tim [ V(z, 6) — (1/27) j d(2) oot (¢/2) dt] —o.

The object of the present paper is to obtain an analogue in the
following form, of the above theorem of Plessner for the case of
non-absolute summability (4).

THEOREM 1. If ,(t) € BV (0, ), then
[V(a:, 6) — (1/2n) j (1) oot (4/2) dt] BV, in (0, 1).

An evident conclusion from the above theorem will be the
following

Turorem 1 (a). If ¢,(t)e BV (0, =), then the non-bounded vari-
ation of the conjugate function is a necessary and sufficient condition

for the mon-absolute summability (A) .of the conjugate series of a
Fourier series.

Miss Suvaxana Kumarr, Gorakhpur. On the Riesz summability of
Fourier series.

Supposing that f(6) is integrable (L) over (— mr, a) and periodic
outside this range with period 2, and $(t) =3 { f@+8)+fle—t)—2s},
t

bo(t) = % j (t —u)*~t d(u)du, > 0; Nw) = exp {(log w)'*+£}, B > 0;

[0}
f(8) ~ % + Z (6, cos nf + b, sin n6)= 4 4 z 4,(6).
n= n=1

The following summability and convergence criteria for the

above Fourier' series of f(6), at 6§ = », have been obtained in
this paper.

TaeorEM 1. If for > 0, B> 0,

() ¢)=0 {(log ;)—aﬁ}, ast— 0,
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and
t-
(ii) ] [$(u)| dw = o(t), as t— 0, then the Fourier series of f(6),
0

at 0 = x, is summable (R, Aw), 8), for every § > 0, to the sum s.

TaeOREM 2. If the conditions (i) and (i) are satisfied, and if
A, (x)> —k n"~(log n)?, for k> 0,

then the Fourier series of f(0), at 6 = x, converges to the sum s.

Theorems 3 and 4 give analogous results for the case of conju-
gate series.

C. B. L. VErMA, Jabalpur. On a relationship between the Laplace
transform and generalized Laplace transform of a given function.

A large number of theorems, in which any two functions are
connected with each other through a chain of relations under
Laplace transform andjor its generalizations have been obtained
by various authors from time to time. But it is also interesting to
observe the relationship that exists between the Laplace transform
$(p) and a generalized Laplace transform (p) of a given function
f(®). In this paper an attempt has been made to investigate this
relationship in the case of the Laplace transform and its genera-
lizations as given by Meijer and Verma, and with the aid of the
theorems established, some line integrals involving Bessel and
hypergeometric functions have been evaluated.

C. B. L. VERMa, Jabalpur. On a property of generalized Laplace
transform involving Meijer’s G - Function.

In this paper is proved a theorem on generalized Laplace transform
defined by Meijer in the form

$(p) =p j e~ (pa)TE T Wy ml00) f (%) d 5 B(p) > 0.
0

Connecting this transform, with the classical Laplace transform
the author has utilized the theorem to evalute some infinite
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integrals involving product of Meijer’s G-Function and other
hypergeometric functions.

The theorem deduced is the following :

If (p) is the Meijer transform of 2~ h(x) and if h(p) and $(p) are
the Laplace transforms of 2~%=2 ¢(x) and f(x) respectively then
¢Qﬂ=:p‘%‘1j G%%(m

2%—1+1,0 T
)xf(-)d%
—1L,k+mk—m. P
0

provided B(p)> 0, R} — 2k) > 0, R — k + m)> 0 and the integral
inwvolved s convergent.

@

GEOMETRY

Sams Ram Maxpaw, Kharagpur. Tetrads of Moebius tetrahedra.

The present paper is one in continuation of the two published
lately [Amer. Math. Month. 64 (1957), 471-78, 65 (1958), 247-51] by
the author and deals with nets of quadrics associated with tetrads
of Moebius tetrahedra. There the treatment is synthetic, while
here it is analytic. A good work has been done by Edge [Proc.

Lond. Math. Soc. (2), 41 (1936), 338-60] for such a net associated with
a pair of Moebius tetrads.

We may indicate here the main topics with which the paper is
concerned. It is divided into three sections. In §1 it is shown, after
giving a simple algebraic confirmation of some known results, that
-there exist two eonjugate tetrads of Moebius tetrahedra.

In §2 eighteen nets of quadrics are established as related to the
two conjugate tetrads of Moebius tetrahedrs, nine nets for either

tetrad of them. It is also shown there how they are interrelated.
Associated Plicker surfaces are also mentioned here.
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In §3 two reciprocal sets of thirty six each new associated
quadrics are discovered and their distribution in the above nets is
shown.

SautB Ram Mawpaw, Kharagpur. On four intersecting spheres.

The following results have been arrived at :

The radical tetrahedron of four intersecting spheres coincides
with a diagonal tetrahedron of the desmic system of intersection
of those spheres. The pairs of opposite vertices of the system referred
%to this tetrahedron form pairs of conjugate points for the orthogo-
nal sphere of the given four spheres and are the centres of similitude
of the tetrad of associated spheres.

The planes of perspectivity of the eight pairs of complementary
tetrahedra of intersection of four intersecting spheres form two
tetrahedra desmic with their radical tetrahedron and are the radical
planes of the corresponding pairs of complementary spheres of
intersection, and are the planes of similitude of the associated
tetrad of spheres.

The diagonal tetrahedra of either desmic system of intersection
of four intersecting spheres form the other desmic system of
intersection of those spheres.

The eight centres of similitude (other than the orthogonal centre
of four intersecting spheres) of the eight pairs of complementary
spheres of intersection of the four given spheres form two tetrahedra
desmic with their central tetrahedron and thus form a set of eight
agsociated points.

The desmic system of intersection of four intersecting spheres
is inscribed in the one conjugate to that of centres for those spheres
and reciprocally their other desmic system of intersection is circum-
seribed to that of centres for them.

The perpendicular from the orthogonal centre of four intersecting
spheres upon the Newtonian plane of their associated tetrad of
spheres passes through the circum-centre of their radical
tetrahedron.
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Each sphere of anti-similitude of the associated tetrad of spheres
is orthogonal to eight of the spheres of intersection and to two of
the four given intersecting spheres.

In the end, corresponding results for four mutually orthogonal
and real spheres are deduoced.

Finally, umbilical projection is suggested as a process to get
these results rather quickly.

Sanrs Ram Mawpanw, Kharagpur. Harmonic Inversion.

The purpose of this paper is to introduce the idea of Harmonic
Inversion w.r.t. a pair of complementary sub-spaces in an n-dimen-
sional space and then deduce a number of properties as an immediate
consequence of the definition of this operation, e.g. a pair of mutually
self-polar simplexes invert harmonically into another such pair. The
oxistonce of Moebius simplexes, that are mutually interlocked, i.e.
inscribed as well as circumscribed to each other, is established in
a space of an odd number of dimensions. Successive inversions
w.r.t. the vertices of a simplex and its respective opposite prime faces
form a cycle, whereas all the inversions w.r.t. all the pairs of opposite
elements of a simplex together with identity form a group leading
to a set of 2" associated points such that any quadric variety, for
which the simplex is self-polar, passing through any one of these
points, passes through all of them. Finally it is shown that all the
reflections, w.r.t. all the axial elements of a rectangular system of
axes, together with the inversion w.r.t. the origin of the system and
identity form a group.

Mgrs. NieMavA PRraRASH and Ram BrmArI, Delhi. Parallellism
of Vectoroids.

In this paper the parallelism of a bundle of vectoroids U = {u4}
along a curve ¢ =C (¢) {C € M, } has been defined and the condition
for a set of vectoroids to be a parallel field has been obtained. It is
shown that parallelism is preserved even when a new connection
M4, given by the relation M % = L4, -+ 284 u, is introduced in the
bundle.
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Further, by considering the set of closed curves at an arbitrary
point PeM, as the set of automorphisms which map the set of
vectoroids onto itself by parallel displacements, Holonomy groups
for vectoroids have been obtained.

S. C. SaxENA, Delhi. Generalized Riemoann space and unified field
theory.

S. C. Saxena and Ram BerART, Delhi. Special types of Kiehlerian
manzfolds.

APPLIED MATHEMATICS

(. Baxpyorapryay, Kharagpur. Inferrelation between two rigorous
solutions in unified field theory.

This note establishes a method of passing over from a certain
rigorous solution of a restricted type to another special rigorous
solution of more general type. The process has its counterpart in
physical interpretation. The paper also brings out a peculiar
consequence of unified theory, viz. that the magnetic field which can
be superimposed on a certain gravitational and electric field has an

upper bound.

O. P. Baurani, Kharagpur. Viscous flow through pipes (elliptic).

In the first part of the paper an exact solution of pulsating
laminar flow superposed on the steady motion in an elliptic pipe is
presented under the assumption of parallel flow to the axis of the
pipe. The asymptotic expressions for the velocity distribution have
been obtained for the extreme values of the frequency of the pressure
gradient. For this type of flow it has been found that the ratio of
the total mean mass flow for the elliptic and circular cross-sections
having the same area remains as in the case of steady flow.
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In the second part, making use of the Laplace transform the
Navier Stooke’s equation and- the equation for the temperature
distribution for one dimensional unsteady flow in the case of natural
heat convection inside the vertical tube, have been transformed
to standard Mathien equations and the contour integral involving
Mathieu functions have been solved completely.

MapaN MomAN Gamwp, Kharagpur. A #wo dimensional mized
boundary value problem of elasticity for inverse of an ellipse.

The stress distribution in a thin elastic plate in the form of an
inverse of ellipse subject to mixed boundary conditions is solved by
reducing the problem to the solution of a non-homogeneous Hilbert
problem which determines a sectionally holomorphic function having
given lines of discontinuity.

P. C. Jain, Delhi. Isotropic temperature fluctuations in isotropic
turbulence.

In stationary, homogeneous and isotropic turbulence in an
incompressible fluid where there is no over-all heat transfer, the
theory due to 8. Chandrasekhar [ Proc. Roy. Soc. Ser. A 229 (1955)]
of taking correlations at two points and at two different times, has
been used to obtain a differential equation in temperature fluctuation
m(r, t) io terms of Q(r, t)—the defining scalar of the second order
isotropic velocity correlation tensor Q- This equation and the
differential equation in @ obtained by S. Chandrasekhar (loc. cit).
are the basic equations of the present paper. The equation in
m(r, t) and p(r, t) has been solved for the special cases of very
small and very large Peclet numbers and the results so obtained
have been compared with those given by S. Corrsin [J. Aero. Sez.

18 (1951) ]. An attempt has also been made to solve the basic
equations in a very special case.

J. N. Karur, Delhi. The internal ballistics of a supergun.

In a recent paper, Jain and Sodha [Appl. Sci. Res. Sec. 4. 7
(1958), 69-74] have discussed the internal ballistics of a supergun
(hoch-druck pumpe) designed by Coenders [German Research i%
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World War 1T (New York) 1947, p. 191] during the second world war.
In the present paper, it has been shown that their theory is the same
as that for the burning of moderated charges in an orthodox gun
[Kapur, Proc. Nat, Inst. Sci. India 22A (1956), 73-92 and 24A
(1958)] and that their implicit assumption that the powder in the
rth chamber is ignited only when the powders in the first (r—1)
chambers have been completely burnt out is not likely to lead to
an efficient supergun. An alternative theory without this restriction
and including their theory as a particular case has been discussed
amnd its relation with the general theories of composite and moderated
charges [Kapur, loc. ¢it. and same journal 22A (1956), 63-81, 23A,
(1957) 469-482] has been given.

R. MaNOHAR, Aligarh. Pointwise bounds for the solutions of certain
boundary value problems.

Diaz and Greenberg [J. Math. Phys. 27 (1948) 193-201] find upper
and lower bounds for the solution of a biharmonic boundary value
problem analytically using Schwartz inequality. On the other hand
pointwise bounds can also be obtained by using the method of
hypercircle of Synge [T'he hypercircle method in mathematical physics,
Cambridge (1957)]. It has been shown that the bounds obtained by
hypercircle method are closer than the bounds given by Diaz and
Greenberg. However, it is possible to improve the results of Diaz
and Greenberg. No doubt the hypercircle method is more general
but for all practical purposes the results obtained by either methods
are same. Applications of these methods to other boundary value
problems yield same sets of inequalities for the particular problem
considered. For the derivaties also, the bounds determined by the

two methods are the same.

R. S. Misura, Gorakhpur. A Study of Einstein’s equations of
unified field—I1.

R. 8. Naxpa, Kharagpur. Steady canal flow with suction or injection.

Heat transfer by laminar flow of a viscous incompressible fluid
with suction or injection in the case of flow through a straight
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channel is considered. Exact solutions of the Navier-Stooke’s equa-
tions and the energy equations have been obtained. Two types of
problems are considered, one in which the two plates are kept at
different temperatures and the other in which one of the plates is
insulated. It is found that the temperature at any point of the
fluid increases as the suction velocity increases.

K. Papmavarri, Madras. A4 note on o Poincare problem.

In a paper which has been submitted for publication in the-
Journal of the Indian Mathematical Society, poincare problem where
the boundary consists of two st. line segments at right angles to each
other, had been studied. In the present paper the effect on the
solution, of replacing this boundary by a closed continuous curve
enclosing each of these line segments in a narrow strip of the plane,
is investigated.

P. 8. Rav, Tirupati. On the curvatures of a dynamical trajectory.

If ¢*(2), q%(2),..., ¢¥(¢), which are N functions of time ¢ belong-
ing to class C, represent the coordinates of a dynamical system
with V-degrees of freedom whose kinetic energy is T’ = } = m,; ¢, ¢;,

i

then the configurations of the dynamical system can be put in 1-1
correspondence with the points q(¢) = [q%(t), ¢2(f), ..., ¢¥(t)] of the
N-dimensional Riemannian manifold whose metric is my dq’ dg’.
Hence the problem of motion of the dynamical system under given
forces is equivalent to that of the trajectory of a single generalized
particle, viz. ¢(f) on this manifold. The question arises : How are
the curvatures of the trajectory related to tho force under which

the dynamical system describes the trajectory ?

If v represents the magnitude of the velocity vector ¢(t) = [4(t);
¢*(@); .., ¢"(®)], K, is the ith curvature of the trajectory, ¢ = 1, 2, ...,
N—1,Q=1(Q @, ..., Qy) is the force and Dig represents the ¢th
covariant derivative of  defined by affine transference along the
trajectory, then the following results are established :—

1. Component of Q along the first normal is K 1V
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2. Component of D'~ Q along the r-th normal is
KK, ..,Kv? r=23_':.,N—1

S. K. Suarma, Kharagpur. Visco-elastic steady flow.

Using a modified form of the stress-strain relations for visco-elastic
materials, some problems on steady flow have been solved in a
closed form. An extra normal effect lacking in both the Newtonian
.and the non-Newtonian approaches has been found. The analysis is
shown to have application in the study of gels formed by Iyophillic
solutions, an extreme illustration of which is table jelly. The results
are found to be in good agreement with experiments.

Avrar Sivem, Kharagpur. Stress distribution within transversely
isotropic bodies of revolution bounded by ome or two cones due ta
rotation or gravity.

In this paper the problem of axially symmetric stress distribution
within semi-infinite transversely isotropic solids bounded by one
or two cones, due to (i) rotation about the axis of symmetry and,
(ii) gravity, has been considered. The boundaries are taken to be
stress-free and the displacements, within such solids, can be expressed
in terms of two stress functions which satisfy two second order
partial differential equations. These equations have been solved by
the method of similarity solutions.

By various choices of the semi-vertex angles of the two bounding
cones, various types of solids can be obtained, such as, circular
plate of infinite radius and linearly varying thickness ; semi-infinite
conical shell of linearly varying thickness, semi-infinite solid cone,
somi-infinite solid, semi-infinite solid with conical depression or

conical exclusion.
A. C. Srivastava, Kharagpur. Flow of non-Newtonian fluids
between two infinite plates—one rotating and the other at rest.

The equations of motion for the flow of a non-Newtonian fluid
between two infinite plates, one of which is rotating and the other is
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at rest, have been approximately solved. It is found that under
certain conditions depending pn the distance d between two plates
and the angular velocity Q, the plate experiences a suction, but if d
is decreased and Q is increased sufficiently, it experiences a thrust
which increases with w. This latter phenomenon is not exhibited by
Newtonian fluids. For a particular liquid and speed of rotation the
normal thrust on the non-rotating plate varies as d which agrees
with the experimental results of Ward and Lord. The theory
developed also explains some experimental results of Pooper and
Reiner [Brit. J. Appl. Phys. 7 (1956), 452-453].

P. C. Vaioya and K. B. SaH, Ahmedabad. Electromagnetic field
of radially flowing radiation in an expanding universe.

In this paper is presented a rigorous solution of the field equations
of general relativity which has the following characteristics : (1)
It is regular everywhere. (2) For 0 < » < R(f), it represents the field
of electromagnetic radiation travelling radially away from the
origin through a distribution of matter of non-zero density and
pressure. (3) The boundary r = R(t) is the wavefront of flowing
radiation. (4) The field passes off continuously at » = R(t) with the
expanding universe of zero curvature, the pressure and density of
the interior matter being continuous with the pressure and density
of cosmic fluid. It is further found that the electromagnetic field
in the radiation zone disappears as soon as one switches over from
the expanding universe of zero curvature to flat universe for the
background. This is due to the existence of a relation between the
density of flowing radiation and the rate of expansion of the universe.
This solution is quite distinct from either the Einstein-Straus
solution [Rev. Mod. Phys., 17 (1945), 120], or the McVittie solution
[Monihly No . Roy. Astron.Soc. 93 (1933), 325], or the generalization
of the latter for a radiating star [Vaidya and Shah, Proc. Nat. Inst.
Sei., India, 23 (1957), 534], in as much as the source of radiation in
the present case does not produce a static gravitational field because

when the electromagnetic field is switched off, the entire solution
reduces to flat space-time.
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D. N. Verma, Delhi. A supplement to Allen’s relaxation method
of * Blocking outward’.

Introduction of ‘skew block relaxation operations’ is suggested
with reference to the equation
d*y
— 4+ w(x) =0,
T T

corresponding to any given number of points of subdivision (in an
equal-width mesh). These are defined by the property that they
affect residuals at two symmetrically situated points only, in
magnitudes whose sum is zero. A superposition of these operations
forms a natural supplement to Allen’s method of ‘blocking out-
wards’ the residuals, the two making into a systematic procedure
for complete liquidation. An improvement of this method is also
suggested, consisting in the “‘pooling inward” (towards the centre)
of the residuals from the anti-symmetric pattern in which Allen’s
method leaves them, and then using just one skew block operation
to achieve final ]iquidaﬁon of all residuals. The methods are compared
with some other systematic relaxation and numerical solutions.

P. D. S. VerMa, Kharagpur. Deformation energy for hypoelastic
materials.

Using the conditions under which the deformation energy of the
moving volume remains & scalar invariant of the stress tensor and
the rate of strain tensor for an isotropic medium, an expression for
the deformation energy for isotropic hypoelastic materials of grade
zero has been found. It happens to be the same as in the ordinary
or classical theory of elasticity.

STATISTICS AND PROBABILITY

S. R. ApkE ‘a.nd 8. W. DHARMADHIKARI, Poona. Gain due fto
sequential sampling from gamma population.

It is well known that the use of the sequential probability ratio
test usually results in a considerable saving in the average number
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of observations required to reach a decision, over that required
by the classical Neyman-Pearson test of the same strength. A. Wald
has evaluated this gain when observations are drawn from a normal
population with a known variance to test a simple hypothosis
about the mean against a simple alternative. The present authors
obtain corresponding results for the gamma population defined by

[, 0) =exp[ — x| o]’ 1/' (7).
Assuming that [ is known, the test of a simple hypothesis on ¢ against
a simple alternative is considered. It is shown that the percent gain

in the number of observations is independent of I, the parameter
specifying the gamma function. Numerical results are also presented.

A. K. BuarracHarsT, Kharagpur. A note on a stochastic model for
dependent binomial events.

The paper is concerned with the derivation of a stochastic
process generated by a series of binomial trials which are not mutua-
lly independent. Starting with some postulates defining the stochastic
model, the probability of success at an abrupt trial has been
obtained using the method of generating functions. Dandekar’s
modified binomial distribution is found to be a particular case of the
stochastic model considered.

M. V. JamBUNATHAN, Mysore. The use of repeated ogives in the
computation of moments.

The method of computing the moments of a frequency dis-
tribution employing repeated ogives or successive cumulations was
first given by Hardy, and a modification of this method was sug-
gested by Elderton (Frequency Curves and Correlation) wherein
there is appreciable saving of arithmetical work. Subsequently
Dwyer (Annals of Math. Stat., TX, 1938) and the present writer
(11th Conference of the Indian Math. Soc. 1939 and 3rd Session of the
Ind. Stat. Conf. 1940) obtained symmetric formulae giving the
moments in terms of the entries under a single column of cumulated
frequencies. The multipliers needed in the formulae had to be built
up step by. step. This paper furnishes a new method of proof and
also derives explicit expressions for the multipliers, namely,
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o=y { (1) v (f21)vo s v

The paper also brings out the interéstiné fact that the entries of the
table required for the three different formulae constitute the three
sides of a triangle. Hardy’s formula uses the entries S, S,, S3, -,
along the horizontal side, Elderton’s method uses entries along
the sloping side consisting of §;, AS,, AZ%S,,..., while the Dwyer-
Jambunathan formula employs S,, vS,, v? S, ..., which constitute
the third side (the vertical side) of the triangle. The multiplicrs in
the three cases are the ascending differences of zero, the descending
differences of zero, and the set of coefficients a’s given by the formula
above. These three exhaust all possible “‘straight entry ” formulas.

Mzs. MaRAkATHA KRISHNAN, Madras. Approzimations to the
non-central F,’-distribution.

Suppose two independent variates y,’? and x,'* follow two non-
central y2-distributions with v, and v, degrees of freedom and non-
central parameters A; and A, respectively. Then the distribution of

2
the ratio F," = &%ﬁ has been obtained by P. C. Tang (Statistica-
X2 (Va2
Research Memoirs, 2, 1938). Evaluating the probability integral
and percentage points of the F,’ distribution involve a considerable
amount of labour. Two approximate methods of evaluating the

above probability integral are discussed here.

Method 1: The distribution of F,’ is approximated by that of
an F-distribution with v,” and v," degrees of freedom, multiplied by
a scale factor &, both F,” and kF having the same first three
moments. »,', v, and & can be got in terms of v, v, A;, A, ; and the

probability integral [ p(F,")dF,"is approximately given by [ p(F)dF
z zlk
which can be calculated using the tables on incomplete bsta func-
tions (K. Pearson, 1934).
Method 2: TUsing P. B. Patnaik’s method of approximating a
non-central y'2-distribution by a weighted x2-distribution (Biometrika

1949) in both numerator and denominator of F,’, another approxi-
mation of F,’ is given by the distribution of gF (", »3"), where the
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constant g, and the degrees of freedom »,”, v,” can be got in terms of
Vi, Vas A, Ag; and the approximate value of the probability integral
}o p(F)AF can be evaluated.

zlg
On ‘comparing the true values of the probability integral with

the approximate values in certain cases, it is seen that the approxi-
mation is very close in both methods.

B. Rasa Rao, Poona. 4 double inequality on Mills’ ratio for the
class of distributions admitting sufficient stotistics.

This paper originates from the author’s investigation into the
properties of the members of the class Q of distributions admitting
sufficient statistios. Precisely it establishes the monotonicity, and
_ obtains a double inequality on Mills’ ratio R, for the continuous
and differentiable distributions belonging to the class Q. A very
elegant inequality on R, for this class is obtained and it is worth
recording since it satisfactorily locates this ratio. The Beta distri-
butions is treated in a more detailed form and the closeness with
which the double inequality can locate R, is studied by means of a
table. Some recurrence relations and monotonicity properties of
functions involving R, for the Beta distribution are established.

A. B. L. Srivastava, Kharagpur. The distribution of regression
coefficient in samples from bivariate non-normal populations.

Assuming the parent population to be represented by the
bivariate Edgeworth surface, the sampling distribution of regression
coefficient b,, has been derived by the method of characteristic
function, and also the distribution of the ¢-statistic used for testing
its significance has been obtained. The formulae of this paper give
the corrective terms which can be used to show how the ‘ normal
theory ’ values of mean, variance, probability points of by, and the
critical region of the t-test for b, are affected by non-normality of

the parent population if we have some idea of its third and fourth
order semi-invariants.

M. N. Varrax, Bombay. Relations among the blocks of the
Kronecker products of designs.
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TOPOLOGY

R. VENKATARAMAN, Madurai. Symmetrically ordered seis.

Adopting usual terminology, & class of ordered sets called symme-
trically ordered is defined and characterized. If A is any ordered
set of the ordertype of an ordinal number 6, the ordertype of the
ordered set of all integer-valued functions defined on 4, each
of which has utmost a finite number of non-zero values, ordered
according to “last differences”, is denoted by (w* + w)1®, Let I be
an ideal of ordered set P. If I has an ultimate segment which is
similar to the dual of an initial segment of the co-ideal determined
by set complementation of I, I is said to have symmetric character.
An ordered set, every proper ideal of which has symmetric character
is called symmetrically ordered. That every symmetrically ordered
set is a segment (Viz. a subset which includes with every pair of its
olements all intermediate elements as well) of the ordered type
(w* + )%, for a suitable ordinal, 9, is established by proving :

1. (w* 4 o)¥, for § any ordinal is symmetrically ordered.
2. If §is any ordinal, the ordertype of any initial segment of it, is
A, = v+ (0*+ o)o+ .. + (w* + o)+ ...,a <.

3. Every symmetrically ordered sot with a first element is
isomorphic to an initial segment of 4, for a suitable ordinal 4.
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BOOK REVIEWS

Elements of Calculus. By Shaukat Abbas, Educational Book Depot,
Hyderabad, W. Pak., xiv 4 304 pp. Price Rs. 5/8.

TuE book under review is meant to be a text-book for the Inter-
mediate classes of the Pakistan Universities. It covers both differen-
tial and integral calculus. As is to be expected we do not find any
novelty of treatment which could mark out this book from among
tl}ose of similar scope.

From natural considerations the notions of limit and continuity
are not seriously studied at the Intermediate level. The author
has taken some pains to try to explain these notions, but in a way
which does little credit to him. Thus we find him stating on page
13 «“If we can find & small positive number ¢ such that |z| can be
less than e, we say that ¢z tends to zero’ ”. Again, in page 37, he .
states ““ Hence z sin 1/z is discontinuous at z=10".

The book contains many solved examples. Defects and mistakes
in printing are by no means wanting.

One feels on the whole that the author has made an earnest
attempt to write a ‘““good” book without however any remark-

able success,
R. RAMACHANDRAN

Algebra. By J. W. Archbold, Sir Isaac Pitman & Sons, London,
(1958) xix + 440 pp. sh. 45.

Tur book under review is written mainly to meet the requirements
of the B. A. and B.Se. syllabus of the London University. The
contents fall into three broad divisions : The first six chapters
dealing with numbsrs, induction, summation of finite series, inequa-
lities and complex numbers form a broad introduction to the
following chapters. Chapters 7-14 are concerned mainly with
polynomials, polynomial equations, factorization, rational functions,
symmetric functions and the cubic and quartic equations. Chapters
15-25 (barring chapter 15 on determinants of orders 2, 3 and 4)
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contain the elements of linear and abstract algebra, under the
heads: groups, ring and, fields, vector spaces, matrices, rank,
symmetric group, determinants of order =, characteristic equation
some matrix types, quadratic forms and discriminants and resultants.
The reviewer feels that the above could have been arranged in the
more natural way as vector spaces, determinants of order »n, matrices
rank, etc. followed by the chapters on abstract algebra.

The book is well written and the treatment is, throughout, lucid
and rigourous. There are many graded examples some of them
chosen from among the mathematical notes appearing in the
Gazette or Monthly enhance the usefulness of the book for further
reading. The book contains a very good and exhaustive index.
The author’s efforts to bring within these 440 pages considerable
matter of algebra, both classical and modern, is laudable.

The printing and get up are fine. The book should prove a useful
addition to any library and a valuable companion to a mathema-
tically minded reader.

M. S. RAMANUJAN

Proceedings of the Third Congress on Theoretical and Applied
Mechanics. The Indian Society of Theoretical and Applied
Mechanics, Indian Institute of Technology, Kharagpur, pp. 362.

Tar Third Congress on Theoretical and Applied Mechanics was
held from December 24 to 27, 1957 at the Indian Institute of
Science, Bangalore, and the Proceedings under review consist of
the papers presented at that Congress.

The proceedings are divided into the following three parts:

Part I: Elasticity, Plasticity and Rheology, Part II: Fluid
Mechanics, Part I1I: Vibrations, Thermodynamics, Mathematics
of Physics, Statistics and Computation, and contain in all thirtysix
papers of which fifteen have been contributed by the visiting

scientists from U.S.A., U.8.S.R., Poland, Hungary, Japan, Burma
and Australia,.
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Part I starts with the Presidential address by Dr. S. R. Sen
Gupta on some modern trends in the Design of frame struct res,
theory of design based on plastic failure, and contains in all sixteen
papers dealing with a wide variety of topics in Elasticity, Plasticity
and Rheology.

Part II consists of nine papers on Fluid mechanics covering
problems on ground-water flow along a plane impermeable base,
turbulence, flows of visco-elastic and non-Newtonian fluids, shock
waves, etc.

Part III contains eleven papers on a wide variety of subjects
like stability criteria for and response function of forced vibrations
in non-linear systems, solution of Fredholm integral equation of
second kind, discrete models and matrix methods in engineering
mechanics, theory of the synthesis of mechanisms for the repro-
duction of certain kinds of algebraic and transcendental curves,
use of analogue computors to solve some elasticity problems,
transport of heat by convection and boiling in liquids enclosed in
vertical tubes.

The Proceedings, apart from giving the representative sample
of the type of work which is engaging attention in India, contain
papers which are of high academical value. The get-up is attractive
and the printing is nice except for some misprints here and there.
Prof. B. R. Seth (Executive Editor) and his colleagues on the
editorial committee deserve congratulations for bringing out these

in such an attractive form.
P. L. BHATNAGAR

Nomography—By L. Ivan Epstein, Interscience Publishers, New
York—(1958) pp. 134—Price $ 4.50

TaE author has taken pains to develop the subject from elementary
level and has given the theoretical background in constructing the
nomographic charts. The author himself has stated that there are
other books on this subject dealing with the praectical applications
of these charts in industrial use; here the author has dealt with
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only basic principles of nomographic chart construction and the
allied subjects to understand the same, viz. Determinants, Matrix
method, Projective transformation, ete.

I feel that this kind of treatment of this subject will appeal only
to a man who knows a bit of this subject, and for a beginner he will
lack the precise approach, as he could not get at a glance what are
the necessary conditions, etc. required to tackle a problem by the
use of nomograms. Moreover the book is wanting in concrete illus-
trations of applied problems to impress upon the mind of a reader
the usefulness of this subject. The author expects the student to do
the spade work at many places and it is very likely that he may
lose interest. As such I do not think it will be of much use to
students who want to learn this subject from their practical point
of view. The broad generalization of the theory behind may not
have the catching effect on an untrained student mind.

No doubt the author deserves congratulations for the efforts
he has taken to present the theoretical background to this subject.

R. THRIVIKRAMAN

Pure Geometry for Degree classes: Parts I and II By N. ch. Pattabhi
Ramacharyulu, Light House, Agraharam, Eluru (1959); Part I
198 pp. Rs. 4/-; Part II pp. 88 Rs. 1.25.

THESE books are intended. for the new three year degree course in
mathematios for the South Indian Universities. Part I treats about
ranges and pencils, Properties of triangles and circles, Inversion,
Conic sections, Properties of Parabola and central conics. Part II
deals with the elementary solid geometry of planes, solids, sphere,
cylinder, cone, simple cases of conical and orthogonal projection.

The topics are dealt with in a clear manner and the book
contains well chosen worked examples and exercises for students
at the end of each chapter. The printing is good.

S. MAHADEVAN
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Structure of Rings. By Jacobson, N. American Mathematical Society
Colloquium Publications, vol. 87, pp. 263 (1956).

Tr1s book deals with the structure of rings which do not necessarily
satisfy the chain conditions for one sided ideals. The author who is
one of those chiefly responsible for the development of this new
structure theory, has given in this volume a thorough-going treat-
ment of the subject. The tools employed not only yield better
insight into the older structure theorems, but also apply to a much
wider class of rings. This theory is applied, in the last chapter of the
book for instance, to the study of algebras satisfying a polynomial
identity. We give first a brief summary of the contents.

The first chapter introduces the notion of the (Jacobson) radical
and (generalized) semi-simplicity. The notion of a primitive ring
is also introduced.

The main result of chapter II is a generalization of a classical
theorem of Burnside (on irreducible representations of a multipli-
catively closed system). This theorem is first stated in algebraic
language and later in a topological way (by introducing the familiar
topology on a set of operators) which says that an irreducible
ring of linear transformations is dense in the bicommutant.

In the third chapter, the author uses the new techniques to give
short proofs of the classical theorems of Artin-Wedderburn (on semi-
simple rings with minimum condition).

The aim of the fourth chapter isto prove a fundamental structure
theorem of primitive rings with non-zero minimal one-sided ideals.
This theorem asserts that such a ring is isomorphic to a dense subring
of linear transformations of a vector space over a division ring,
containing non-zero linear transformations of finite rank. Other
equivalent formulations are also given. The question of uniqueness
is also stated.

Chapter V introduces the notion of tensor product of modules
and algebras. The problem of studying the structure of the tensor
product of two algebras of known structure is treated. The Brauer
group of similarity classes of central simple algebras is also introduced.
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Chapter VI is devoted to semi-simple modules and Galois theory.
Among various other things, several theorems on extensions or
derivations and isomorphisms of algebras are proved.

Chapter VII specialises to division rings (which are not necessa-
rily of finite rank over their centres). The Galois theory of such
rings is considered.. A proof of Wedderburn’s theorem that every
finite division ring is commutative and the Cartan-Brauer-Hua
theorem (as also its analogue for derivations) are included.

In Chapter VII the author discusses several types of nil radicals,
especially the upper and lower nil radicals of Baer. A very short
proof of & theorem of Levitzki, that in & ring with maximum condi-
tion every nil ideal is nil potent, is given.

In Chapter IX, a natural topology is put on the set of primitive
ideals of a ring. The problem of representing a ring as a ring of
continuous function on a certain topological space is considered.

The final chapter deals with some applications of the preceding
structure theory. First, several theorems (e.g. a theorem of Herstein,
which generalizes a theorem of the author) on the commutativity
of certain types of rings are proved. Next, Kaplansky’s solution
of the analogue of the Kurosch problem for algebraic algebras
with polynomial identities is presented.

The presentation of the material is masterly. Though the book is
almost self-contained, the mathematical maturity expected of the
reader is much more than that of a new comer to this field. The
author has given very illustrative examples and they lie scattered

all through the book. But in several places, the author has preferred
to omit the motivation.

The reviewer found several minor misprints, none of them serious.
There is a small error in one of the examples that follow Chapter L.

In (1)(%), the author defines the equality %’ = g if and only if
ad = be. This will not be transitive if the ring has zero divisors. The
correct equality should read : % = g if and only if, there
exists a ¢ ¢ ¥ such that adt — bet.
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There is no doubt that this book will be of immense help to workers
in this field and will be an outstantling reference book for several
years to come.

R. SrIDHARAN

Mathematics of Engineering Systems (Linear and Nonlinear): By
Derek F. Lawden, Methuen & Co. (1954) pp. 380, 30 sh.

Or this book the author says in his preface, *“ This volume
gives an account of a number of mathematical methods which
may be used to analyse the behaviour of a large diversity of physical
systems. These methods, and their applications were found widely
dispersed amongst texts dealing with many branches of engineering,
research reports and papers. They have been gathered together
in this book and developed in logical sequence to form a modern
course in applied mathematics, suitable for students in electronics,
electrical engineering, applied physics and instrument technology. ”’

The book has five chapters. The first, an introductory chapter,
“ yevises the more important results (of advanced caloulus?) and
derives others which are required for use in the later chapters ”,
In 50 and odd pages, the author very rapidly touches on practically
all the topics included in Hardy’s Pure Mathematics !

Chapters 2 and 3, covering roughly half the book, deal with
linear differential equations with constant coefficients. The former,
subtitled * classical methods ”’, introduces the operator notation
and develops the usual methods for obtaining the solutions in terms
of the Toots of the characteristic polynomials. After a brief mention
of systems of such equations, the notion of the stability of linear
systems is introduced and the well-known Hurwitz’s criteria for
stability are given. Chapter 3, subtitled ¢ modern methods ”,
treats the same problem of the analysis of linear systems in terms
of their response to the unit step function, the unit impulse and
sinusoidal functions. The major part of the treatment is confined
to the steady state analysis and the stability problem is again
touched on, this time, from the point of view of the Nyquist diagram.
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The chapter ends with a very sketchy introduction to the use of
Laplace transform methods i this context.

Chapter 4 deals with Fourier analysis and summarises the main
results in about 50 pages and contains numerous worked examples.
The chapter is again a very rapid survey of nonlinear differential
equations. The method of isoclines and the perturbation method
are outlined and brief references are made to limit cyocles, sub-
harmonic oscillations, hard and soft oscillators and other notions
of nonlinear theory.

The major drawback of the book, that strikes one even on a
cursory first reading, is the inefficient allocation of space to the
various topics. The bulk of chapter 2 would seem to be totally
unnecessary. A unified treatment with the use of Laplace trans-
forms right from the outset should have enabled the author to de-
velop a more elegant and certainly more coherent picture of all the
topics touched on in chapters 2 and 3, in substantially the same
number of pages. Such treatments were, of course, already
available when the present book was published; and although
the author has included them in hig bibliography, it is a pity, that
he should have chosen to ignore tham elsewhere in the treatment
of his material. (It must be said, that in general, the bibliography
which the author appends to the chapters are more reassuring
than the chapters themselves.) Also, one feels, that the chapter on
Fourier analysis could have been left out with profit and its space
utilized for a more thorough and less hurried development of non-

linear differential equations—at least of the two dimensional
autonomous systems.

By far the best aspect of the book, as it stands, is the variety of
worked examples, mostly taken from the fields of electronics and
servo systems. Some of them, especially the one on oscillators in
chapter 2 and that dealing with Van der Pol’s equation in chapter 5,
have been developed in great detail and deserve special mention.
Because of this, for those interested in the analysis of these specific
problems, the book should be of great interest. Otherwise, in the
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reviewer’s opinion, the merit of the book lies in what it refers to
(by way of topics) rather than in how it deals with them.

R. NARASIMHAN

Tauberian theorems. By H. R. Pitt. Oxford University Press, (1958).
pp. 104174 Rs. 22.50.

Ta1s book is the second of a series of monographs being published
under the auspices of the Tata Institute of Fundamental Research.
Although some of its subject matter has been dealt with in other
books, such as Hardy’s Divergent series, the book contains much
material which has hitherto been available only in the original
papers. While a number of Tauberian theorems on particular kernels
(such as the Cesaro or Abel kernels) are given, the emphasis through-
out is on general Tauberian theorems. Indeed, so far as Tauberian
theorems for Cesaro or Abel summability are concerned, the subject
is in some respects more fully dealt with in Hardy’s book; it is
in its treatment of the general theorems that the essential value of
the present book lies.

Chapter I is introductory in nature. Chapter II (*elementary
Tauberian theorems”) deals, broadly speaking, with those general
Tauberian theorems which can be proved without the use of Fourier
transforms or complex function theory. The first section deals with
Tauberian conditions as such, and with inclusion relations between
classes of functions satisfying different Tauberian conditions; in
the remaining section, the Tauberian theorems are ohtained. This
chapter contains one or two minor inaccuracies. Thus the definition
of the Tauberian class 7' given on page 7 requires that there should
be a 8 =235 (e) defined for all z and e <O such that (inter alia)
§ <0 [equation (2.1.8)]; but in proving (in Theorem 2) that the
Tauberian class S is contained in 7, we take § = 0 for x < X(e). Of
course, since we are concerned mainly with what happens when
#— oo, this cannot be regarded as more than a point of detail.

A point which seems worth mentioning, since a reader might
well be misled, concerns Theorem 10 of this chapter. It would be
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natural to take the enunciation of the theorem as requiring that the
stated conditions should hold for an gny € > 0. But in proving the
theorem, we take some ¢>0 and keep it fixed throughout. Thus
we need suppose only that the conditions are satisfied for some
particular € > 0. This remark applies also to the assumption that
s(v) belongs to T'; we do not need the full force of assumption, but
require only that the equations defining the class T should be
satisfied for the particular value of e considered. These remarks
are of importance because of the assertion (made without proof)
that Theorem 9 may be deduced from Theorem 10. It may be
proved (though it is by no means obvious) that, if the condi-
tions of Theorem 9 are satisfied and if we put
b, v) = c,,(ou) < —-v<ni1) (v<0),

then the conditions of Theorem 10 are satisfied for a suitably
chosen e. But it is not necessarily true that they are satisfied for
any € > 0. Thus Theorem 9 follows from Theorem 10 only if Theorem
10 is taken in the sense indicated.

In Chapter III (““Classical Tauberian theorems’) the “‘standard”
theorems for Cesaro, Abel and Borel summability are obtained. The
treatment of these has some features of interest; use is made, as far
a8 possible, of the general theorems of Chapter II, whereas in the
past, except when Wiener’s theorems have been used, adhoc
proofs have usually been constructed for each particular method.

Chapter IV (“Wiener’s theory””) and Chapter V (* Mercerian
theorems ) constitute the most important part of the book. Toge-
ther, they may be described in gensral terms as dealing with the
applications of Fourier transforms to summability theory. Since the
pioneering work of Wiener in this field, much has been done in
oxtending and generalizing Wiener’s results, and in simplifying
his proofs. The time was therefore ripe for the material of the
various original papers to be gathered together in a convenient
form. With the exception of Wiener himself, Pitt has probably
done more than any other one man in the deveiopment of the theory
and he was thus particularly fitted for this tagk. It would have been
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impossible, without expanding the book uuduly, to put in every-
thing that has been done in this fiald; but all the more important
results are here. These two chapters reach a high standard of
accuracy and a careful study of them has failed to reveal any
mistakes more serious than a small number of minor misprints.

Chapter VI (‘“Tauberian thsorems and the prime number theorem”’)
deals with the various proofs of ths prime number theorem. The
first scction doals with Tkehara’s theorem. This is of interest for its
own sake, and its extensions are therefore carried-further than is
Tequired for the proof of the prime number theorem. There is an
unfortunate slip in the proof of Theorem 7. Defining

F(u) =2 | el-t*cos ut dt,

Sl §

where a> 1, it is asserted that “ It is plain that F(u)> 0”. The
result that F(u)> 0 for all u is, however, false if > 2. Its falsity
may be proved so simply that I give a proof here. Since sufficient
conditions for the validity of Fourier’s integral thoorem are clearly

satisfied, we have, for > 0,

Q|

[ F(u) cos ut du =e™",
0

and hence

kis

Jiw

: j F(x) (1 — cosut)du = ! jF(u) (3 — 4 cos ut + 603 2ut) du
¥

—(2
w3 —de e

If we expand the expression on the right in powers of which the
first term is (4—2°) %, which is negative if a > 2. Thus the expression
itself is negative for sufficiently small ¢; whereas if it were true
that F(u)> 0 (or even that F(u)> 0), the integrand on the left
would be everywhere non-negative. If a < 2, however, the assertion
that F(u) > 0 for all uis true (though gertainly not trivial). Thus the
proof of Theorem 7 is, as it stands, valid only in the cases 0 < a <%
or & = 1. (This remark does not, of course, imply that the result
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is necessarily false in the other oases.) Fortunately, no use is
made of this theorem elsewhere in the book.

The next section deals with the various * classical ”’ proofs of the
prime number theorem. One would have welcomed & rather fuller
treatment of Ingham’s method, but no other adverse criticism could
be made. A final, and very interesting, section deals with Selberg’s
“ elementary >’ proof of the prime number theorem, and with tho
related Tauberian theorems.

This book is likely to come to be regarded as the standard waqrk
on the subject. While it is logically complete in itself, a studont
with no previous knowledge of Tauberian theorems might find it
difficult reading; but for anyone aspiring to original work in this
field, this book is recally essential.

B. KurrNeR

Introduction to the Physics of many-body systems, by D. Ter Haar,
Interscience Publishers, New York 1 (1958), pp.viii + 125, § 1. 95.

It has been long realised that the problem of nuclear structure and
phenomena connected with it is essentially a many-body problem.
In atomic structure also where we have to deal with systems invol-
ving many electrons there was a great simplification in that the
electrons move in a common external field of the nucleus and the
interaction between these electrons is treated as a perturbation.
In the nucleus however the interactions between the nuclei are very
strong and there is no common potential. It is only recently that
methods have been devised using equivalent potentials and the
problem has become tractable numerically. Thus interest in the
physics of many-body systems has received a new impetuous espe-
cially with the recent successes of the Brueckner theory.

This monograph gives a brief survey of this rapidly expanding
field with emphasis on the diversity and range of the problems
engaging the attention of physicists rather than on detailed discus-
sions and derivations. It is divided into two parts representing
roughly two modes of reducing the system of a large number of
interacting particles to a system of non-interacting or weakly in-
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teracting partioles—a procedure necessary to evaluate the physical
properties of the system.

The first part deals with the effective field theories and the second
with theories of collective behaviour. In Chapters 2 and 3 of Part I
is given a brief account of the Hartree-Fock theory of the self-
consistent field, the statistical model of the atom and their relative
merits. Chapter 4 deals with the adaptation of the Hartree-Fock
theory to nucleus and a brief reference to the importance and success
of Brueckner’s theory. Chapter 5 deals with the effective mass
approximation according to which a particle of mass m interacting
with a field can be replaced by an equivalent free particle called
quasi particle of mass m,. Following this there is a discussion of
other quasi particles like excitons and polarons that occur in solid
state physics.

In Part II systems exhibiting collective behaviour are described.
The methods of Tomanaga, Skinner, Yevick and Percus, Zubarev
and of Bohm and Pines have been discussed. A special stress is
laid on Tomanaga’s method as it is applicable to a large number of
cases. The treatment is classical and the method of quantization
is also indicated. The application of these methods to sound waves
in gases and crystals, electron plasmas, nuclear collective behaviour
and liquid helium are dealt with in later chapters.

Tt would have been desirable if more attention had been paid to
the recent work of Brueckner, Bethe, Goldstone and others. The
book fulfils the main object of the author which is essentially to
give a broad survey of a wide field high-lighting the main points,
indicating the trend of recent developments, and referring for more

detailed discussions to the literature. ”
ArLpAaDI RAMAKRISHNAN

Modern Geometrical optics. By M. Herzberger Pure & Applied
Mathematics Series-Vol. VIII, New York, Interscience (1958),
pp- X + 504, $ 15.00.

THis book is an attempt at providing a systematic presentation
of the mathematical theory of geometrical optics and as the author
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says in his preface, it is ““the result of more than fourteen years’
continuous labour . To the average physicist who generally skips
over geometrical optics and devotes himself only to a detailed
study of physical optics, this book would come as an eye-opener.
Not only are the mathematical techniques in this field both elegant
and varied, but the physical laws also bear a close relation to other
fields of study such as mechanics. In fact, Dr. Herzberger has in
this book succeeded in transforming geometrical optics from an
empirical field of study to an exact science. As he has himself stated,
lens design has generally been in the past more an art than a science.®
The blame for this must be laid as much upon the average designer
whose familiarity with higher mathematics was very limited as
upon the physicist who rarely tried to interest himself in it from a
theoretical point of view.

Dr. Herzberger has attempted in this book to develop  a mathe-
matical model of an optical system that is complex enough, so that
all the characteristics of the geometrical optical image can be
obtained from it 7. For doing this, he had necessarily to develop a
calculus suited for the purpose. The book is divided into seven parts
and concludes with an appendix containing tables and a brief
historical survey. Parts I and II deal with the propagation of a
single ray through an optical system while in Part IIT is discussed
the theory of a manifold of rays based on the basic formulation of
Hamilton and Lagrange, which contain within them the famous
Fermat principle of least action. One wishes that the author had
tried to give an account of the relationship between these optical
laws and the corresponding laws in mechanics, at least in an
appendix. The general laws of image formation are then considered,
in particular for systems possessing an axis of symmetry. Finally, the
theory of higher order aberrations, mainly developed by the author,
arc considered in detail. Therc is a short mathematical appendix
giving the essentials of vector analysis, tensors, matrices and
method of least squares which finds application in the book.

There is no doubt that this book will stimulate much original work
in the theory of geometrical optics and it seems to be appropriate
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that it should be published as a monograph in the series on Pure and
Applied Mathematics. A few minor defitiencies must, however, be

" . -
pointed out. The notation used for vectors (viz. ) and their products

-

(e.g. r s for dot product) differs completely from what has come to be
the standard usage now-a-days (e.g. r and r. s, etc). Asa consequence,
the reviewer at least found considerable difficulty in automatically
following the book and he had to pause at each stage to obtain
tl'le significance of the formulae concerned. There is an extensive
bibliography, but surprisingly some work on concentric systems and
on higher order errors in X-ray microscopes using Herzberger’s own
techniques do not find a place there (e.g. * Theory of Image-forma-
tion in Combinations of X-ray focussing Mirrors” by Y.T. Thatha-
chari, Proc. Ind. Acad. Sei., 4, 37, 14(1953).

These are, of course, minor blemishes in what is otherwise
an excellent attempt to systematize the body of knowledge comprised
under Geometrical Optics into a coherent system. The book is
warmly recommended to all libraries in Physics and Applied

Mathematics.
(. N. RAMACHANDRAN

Introduction to algebraic geomeiry. By Serge Lang, Interscience tracts
in pure and applied Mathematics, Number 5, Interscience publi-

shers, Inc., New York (1958), pp. ix + 260, § 7. 25.

Ta1s book provides an excellent introduction to all the fundamental
conceptions of modern algebraic geometry (excepting intersection
theory) which have become by now more or less classical. We
find here a treatment of the general notion of varieties, generic
points, correspondences, Zariski’s main theorem, normality, divisors
and linear systems, differential forms, notion of a simple point,
some fundamental aspects of algebraic groups and finally on the
Riemann-Roch theorem of an algebraic curve. Thus there are
some important topics in this book which are not to be found in
Weil’s © Foundations of algebraic geometry » The author has a
style which is rather informal and at the same time very clear.
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The chapters dealing with projective normality, linear systems and
differential forms can be very thseful since the facts pertaining to
these topies lie somewhat scattered and we find them treated here in
a concise and clear manner.

The author intends this book as an introduction to Weil's
“ Foundations ”’ and indeed the value of this book would have been
greater had it not been for the fact that algebraic geometry.is
undergoing great changes, even in its foundations, with the introduc-
tion of sheaves and schemes. But a well-written book is always an_
asset and we welcome it therefore very warmly.

C. 8. SESHADRI



NEWS AND NOTICES

The following persons have been admitted to the life membership
in the Society : B. N. Sahaney, J. A. Siddiqi, K. M. Sundaresan,
and P. C. Vaidya.

The following persons have been admitted to the membership
in the Society : |

C. Adimoolam, Afzal Ahmad, Zafar Uddin Ahmad, P.
Balasubramanian, V. Balakrishnan, R. L. Barajatya, M. N. Bhat,
K. D. Bhattarai, J.I. S. Brinda, B. B. Chakraborty, K. Chandrasekar,
K. R. Chaudhury, M. L. Chaudhury, M. N. Deogan, B. N. Dixit,
S. Goel, S. C. Goel, Lata Gupta, K. C. Gupta, R. C. Gupta, V. K.
Handa, R. K. Jain, P. Jothilingam, H. R. Krishna, M. R.
Krishnamurty, N. R. Kulkurni, D. C. Kapur, R. N. Kesarwani,
M. L. Kochar, Masood Khan, S. M. Luthra, R. P. Marwaha, Shaik
Masood, Syed Md. Mazhar, K. N. Minakshi, D. N. Misra, J. N.
Mittal, V. 8. Nanda, P. P. Narayanaswami. Lakshmi Nataraj,
N. S. Natarajan, S. Nijhawan, T. V. Panchapagesan, 1. G. B.
Panikkar, K. R. Parthasarathy, R. K. Parthia, Om Prakash Satya
Prakash, L. Radakrishnan, M. Rajagopalan, G. K. Rajeswari,
R. V. Ramachandran, Rammohan, R. Ranga Rao, S.N. Rao, H. N.
Rawal, P.'S. Rema, R. N. S8abharwal, M. M. Sarma, M. P. Sastry,
N. K. Sharma, Bhupender Singh, Sahib Singh, B. R. Srinivasan,
Bhama Srinivasan, V. K. Srinivasan, R. P. Srivastava, P. Subba
Rao, D. S. Subramanian, V. V. Subramania Sastry, M. Sugunamma.,
M. A. Sundaram, B. Tamuli, T. Varadarajan, G. C. Varma, K.
Vijayaraghavan, B. Viswanathan, N. Viswanathan.

Mr. Michael Canter of A. M. S. has been admitted as a member
under the reciprocity agreement.

Dr. K. M. Saxena of D. G. B. College, Nanital, has been appointed
as Professor to assist the Indian Aid Mission, Nepal.

Sri M. R. Parameswaran has been appointed as Reader, Madras
University at Madurai.
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Dr. V. Venugopal Rao has joined the Poona University as Reader
in mathematics.

Prof. B. S. Madhava Rao has been appointed as Tilak Professor
of Applied Mathematics, Poona University.

Sri M. N. Khatri, Research Student, M. S. University of Baroda,
has been awarded a special allowance of Rs. 2,000/- by the India
Government for 1960-61 to enable him to continue his research.

Dr. M. V. Jambunathan has been appointed as Statistical Officer .
National Tuberculosis Inst. Bangalore.

Dr. N. Padma has gone to Connecticut College, New London,
as visiting lecturer.

Dr. M. V. Subba Rao has gone to the University of Missouri
as a visiting professor.

We regret to report the death on the 17th March 1960, of Prof.
R. Vaidyanathaswami who recently retired from the Madras and
Venkateswara Universities. He was an honorary member, editor of
the Journal for many years and a former President of the Society.
We offer our condolences to the bereaved family.

We regret to report the death on the 31st August 1960, of Dr.
N. G. Shabde of Nagpur University. He served as professor and
Principal of the College of Science, Nagpur. He was chairman S. S. C.
Board Poona at the time of his death. He was an ardent member
of the Council of the Society and we offer our condolences to the
bereaved family.

Smt. K. N. Kamalamma has been awarded the Ph. D. degree
of the University of Delhi for her thesis on ‘Differential geometry
of ruled surfaces of a rectilinear congruence’.

The University Grants Commission has appointed a Review
Committee in Mathematics to effect improvements in teaching and
research in mathematics.

Second South Asian Confereuce on ma,thematlcal education
was held in the Tata Institute, Bombay from January 20-27, 1960.
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This was preceded by the International Colloquium on Function
theory.

The twenty-sixth Conference of the Indian Mathematical Society
will be held from December 27-29, 1960, in Chandigarh under the
auspices of the Panjab University.

The fifth Congress in Theoretical and Applied Mechanics was
held in Roorkee from December 23-26, 1959. The subjects discussed
includ~d elasticity and plasticity, fluid mechanics. vibration and
lubrication, thermodynamics, statistios and computation. This was
i)receded by the UNESCO symposium on Non-linear physical
problems on December 21 and 22, 1959. This was held in Roorkee,
the participants included K. G. Odgqvist, President of the Inter-
national Union of Theoretical and Applied Mechanics, E. Saibel,
8. Kumar, A. N. Khosla, Sir H. Williams, B. R. Seth, S. N. B.
Murthy and A. K. Chaudhury. The next Congress will be held in
Delhi from Descember 23-26, 1960.

The Silver Jubilee of the National Institute of Sciences of India
will be held in Delhi for a week from the 29th December. We offer
the Institute hearty congratulations and good wishes.



