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B.Sc (Mathematics) Ancillary Paper — 111
Final Year CLASSICAL ALGEBRA & LATTICE THEORY

Welcome

Dear Students,
We welcome you as a student of the Final year B.Sc degiee

course.

This paper deals with the subject ‘CLASSICAL ALGEBRA & LATTICE
THEORY’. The learning material for this paper will be supplemented by
contact lectures.

In this book the first seven units deal with Classical Algebra and the
last three units deal with Lattice Theory.

Learning through the Distance Education mode, as you are
all aware, involves self learning and self assessment and in this
régard you are expected to put in disciplined and dedicated ef%?)’r/t:v’

As our part, we assure of our guidance and support.

With best wishes,
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UNIT-1

Unit Structure:

Section 1.1 : Sequence

Section 1.2 : Convergence.

Section 1.3 : Divergence and oscillation
Section 1.4 : Series |

Section 1.5 : Series — Convergence and divergence

Introduction: In this unit we develop the theory of sequence of real

numbers. Also we discuss the convergence and divergence of sequences
and the properties, some important theorems on the sequences.

Preliminaries:

Certain letters are reserved to denote particular sets which occur often in

our discussion. They are

Noceerovans the set of all natural numbers.
Y /S the set of all integers
| the set of all rational numbers

Q".......... the set of all positive rational numbers

| 2 SO the set of all real numbers

| G the set of all complex numbers

R".......... the set of all ordered n-tuples (X1,X2,...,X,) of real numbers

C".......... the set of all ordered n-tuples (X1,X2,...,Xs) of complex
numbers

Next we shall see the definitions of least upper bound

(l.u.b.) and greatest lower bound (g.1.b.)

Definition: A subset A of R is said to be bounded above if there exists

an element e R such that a < o for all a € A. Then o is an upper bound

of A.

Definition: Let A < R and ueR. u is called the least upper bound .

(L.u.b.) or supremum(sup) if

(Hu \\is\ an upper bound of A

(i) if \;Xu then v is not an upper bound of A.

Definition: A subset A of R is said to be bounded below if there exists
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an element BeR such that a > 3 for all a € A. Then B is a lower bound

of A.
Definition: Let A — R and feR. u is called the greatest fower bound
(g.1.b)) or infimum(inf) if
(i) ris a lower bound of A
(ii) if m > ¢ then m is not a lower bound of A.
Examples:
1. IfA={1,4,8,12} then glb of A =1 and lub of A = 12.
2. IfA=(0,1)then glb of A=0and lubof A =1.

SECTION-1.1 -SEQUENCES

INTRODUCTION

A great deal of analysis is concerned with sequence and series.

Consider the following collection of real numbers given by
1,2,3,....n,...
1 11 1

s g

These are the examples of sequence of real numbers. (i.e.) a sequence is

an arrangement of elements where we can say which element is first,

which is second and so on. In other words the elements of a sequence

are labeled with the elements of N, the set of all natural numbers,

preserving their order.

In general such a labeling can be made by means of a function f whose

domain is N. -

Definition: Let f: N—>R be a function and let f(n) = a,. Then

a1,a2,83,....,an,... 15 called the sequence in R determined by the function f

and is denoted by (an). a, is called the n™ term of the sequence. The

range of the function f, which is a subset of R, is called the range of the

sequence.

Examples:

I.The function f: N—R given by f(n) = n determines the sequence
1,2,3,....n,...



2.The function f: N>R given by f(n) = n* determines the sequence
1,4,9,.. ..,nz,...

3.The function f: N—R given by f(n) = (-1)" determines the sequence'
—1,1,-1,1,...The range of this sequence is {—1,1}.

4. The function f: N—R given by f(n) = (—=1)™"! determines the sequence
1,-1,1,~1,1,...The range of this sequence is {-1,1}.

5. The constant function f: N—R given by f(n) = 1 determines the
sequence 1,1,1,....
The range of this sequence is {1}. Such a sequence is called constant
s'equence.

n .. .
— ifniseven

6. The function f: N—R given by f(n) = 2
I-n.. .
if nisodd

determines the sequence 0,1, —1,2, —2,....,n, —n,.... The range of this

sequence is Z, the set of integers.
7. Let xeR. The function f: N>R given by f(n) = x™' determines the

. 2
geometric sequence 1,x,X%,..., X",...

8. The function f: N->R given by f(n) = 1 determines the sequence
n

T
92939-"9n9---~

9. Let a, = ~2and amn = J(+a,). This defines the
sequence«/z'.»\/2+\/§ enes

Bounded sequences:
Definition: A sequence (a,) is said to be bounded above if there exist a
real number k such that a, < k for all neN. Then k is called an upper
bound of the sequence(a,).

. - A sequence (ay) is said to be bounded below if there exist a
real number k such that a, > k for all neN. Then k is called a lower
bound of the sequence(ay).

“A.sequence (a,) is said to be bounded if it is both bounded

above and below.
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Note: A sequence (a,) is bounded iff there exists a real number k > 0

such that |a,| < k for all n.
Monotonic Sequences:
Definition:

A sequence (a,) is said to be monotonic increasing if a, < ap+ for
all n (a,) is said to be monotonic decreasing if a, = ay+ for all n. (ay) is
said to be strictly monotonic increasing if a; < ay+; for all n and (a,) is
said to be strictly monotonic decreasing if a, > a,+; for all n. (a,) is said
to be monotonic if it is monotonic increasing or monotonic decreasing.
Examples:

1) 1,2,2;3,3,4,4,.... is a monotonic increasing sequence.
2) 1,2,3,4,.... Is a strictly monotonic increasing sequence.

1 1 1 . . . .
3) 1,—,—,....—,.... is a strictly monotonic decreasing sequence.

53
4) 1,-1,1,-1,1,... is neither monotonic increasing nor decreasing.

Problems:

2n-7). . .
1) 1S a monotonic Increasing sequence.
3n+2

2n-7  2m+1)-7 _ —25
3n+2 3(n+1)+2 (3n+2)(3n+5)

Solution: ap, — ap+; =

Therefore a,; < ap+1.

Hence the given sequence is monotonic increasing.

a +ayt..+a, )
n

2) Show that if (a,) is monotonic sequence then (

also monotonic sequence.
Solution: Let (a,) be monotonic increasing sequence.

;DR I £ R OUUe : PO E I G S —— (1)

‘ a,+a, +....+a

Letb, = —L =2 n

n

a,+a,+...+ta,,; a,+a,+..+a

n+1 n

n

NOW bn+] - bn =

_na,,—(a;+a,+...+a,)
n(n+1)




S na,y, —(a, +ta, +..

.tay)
n(n+1) ( by(l))‘

— n(an;I _an)
n( 1) =20 (by (1))

" bn+1 2 bn -
.. (bn) is monotonic increasing sequence.

The proof is similar if (a,) is monotonic decreasing.

CYP Questions:

1) If (ay) and (b,) are two monotonic increasing(decreasing) sequences

show that (a.+b,) is also monotonic increasing(decreasing)
sequences.

2) If (a,) is monotonic increasing sequence show that (Aa,) is monotonic
increasing if A is positive and (Aa,) is monotonic decreasing if A is
negative.

3) Write the first four terms of the following sequences

). (—(_')HJ (i). (___1—:1—31)“] (iii). [2“2 “} (iv). ()

n 2n? -1

4) Determine which of the following sequences are monotonic.

() (ogn) (i) (D™'n) (i) (;1‘—,) (iv) (24—%)

SECTION-1.2 - CONVRGENT SEQUENCES

Definition: A sequence (a,) is said to converge to a number Zif given
e>0 there exists a positive integer m such that ja,— ¢| <& for ali n > m.
We say that ¢is the limit of the sequence and we write

lima_ =¢ora,— ¢.
n-—co

Note: a, — ¢iff given € > 0 there exists a natural number nm1 such that
a,e(¢—¢, ¢+¢) foralln=>m.

{(i..) All but a finite number of terms of the sequence lie within the

interval (¢—¢, ¢+ ¢).
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Theorem 1.2.1: A sequence cannot converge to two different limits.

Proof: Let (a,) be a convergent sequence.

If possible let 4 and 4 be two distinct limits of (a,).

Let € > 0 be given.

Since a, — 4, there exists a natural number n; such that

lan— 4| < % for alln > n,. -- -—-- (1)
Since a, —> 4, there exists a natural number n, such that
lan— &| < % for alln = ny. ~——=——=- o (2)

Let m = max{ n;, n, }.
Then |4 — 4| =| 4 —am+am— 4

<lam—4[+|am— 4

< §+—28— (by (1) and (2) )

=g.
.| &4 — 6] < e and this is true for every € > 0.
Clearly this is possible iff 4 — 4 = 0.
Hence 4 = 4.

Examples:

1. limi = 0. (or) (lj—>0
n

n—wo N

Proof: Let € > 0 be given.

Lo
n

1 .
=—<gif n>l .
n €

Then

Hence if we choose m to be any natural number such that m > 1 then

€
1
——0i<e for alln>m.
n
s lim 1 0.
n—w N
2. The constant sequence 1,1,-1,1'\,.).. Converges to 1.

Proof: Let € > 0 be given.




Let the given sequence be denoted by (a,).

Then a, =1 for all n.

~Jan—1]=]1—1]=0<g forallneN.

.| an — 1] <€ for all n > m where m can be chosen to be any natural
number.

- lima, =1.
n-—»co

U
3. Mim 2L

n—>w© n

Proof: Let € > 0 be given.

Then |21 4 1+—1-—1l=

n n

1

n

Therefore if we can choose m to be any natural number greater than

we have n+1_1 <e foralln >m.
n
~im 2 o
n—oo n
) 1
4, Iim— =0.

n—w QN
Proof: Let € > 0 be given.

_L_Ol 1 1 (since 2" > n for all neN)
2" 2" n

Then

L)

on <g for all n > m where m is any natural number

' 1
greater than — .
€

- lim —1— = (.
n—o0 2N

5. The sequence ((-1)" is not convergent.

Proof: Suppose the sequence ((—1)") converges to ¢.

<

Then, given € > 0, there exists a natural number m such that J(=1)" — lj<e

for all n > m.
SEDT - ED™ = D - e - (D)™
<D™ — e+ (=)™ — ¢

<g+g=2e.
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But (D)™ — (D™ = 2.

-. 2 <2g (i.e.) 1 <g, which is a contradiction since € > O is arbitrary.

.. The sequence ((—1)") is not convergent.

Theorem 1.2.2: Any convergent sequence is a bounded sequence.

Proof: Let (ap) be a convergent sequence.

Let lima, =¢.
n—oo

Let € > 0 be given. Then there exists meN such that
| an— ¢| <€ for all n = m.
Slan| <} €] +e€forallnz=m.
Now, let k = max {|a; ,|az|,......Jam-1],] €| + €}
Then |a, | < k for all n.

.. (ay) is a bounded sequence.

CYP Questions:

1) Prove that lim Lz = Q.

n—oo n

2) Prove that lim (1+—1—) =1.

n—»o n!
3) Prove that the following sequences are not convergent.

@ (D) (i) (n?)

SECTION-1.3 -DIVERGENT AND OSCILLATING
SEQUENCES

Definition. A sequence (a,) is said to diverge to o if given any real
number k > 0, there exists meN such that a, > k for all n > m. We write

(an) >0 or lima, = co.
n—>»c0

Examples.
1. Prove that (n) — oc.
Proof: Let k > 0 be any given real number.
Choose m to be any natural number such that m > k.

Then n >k for all n > m.




s (n) > oo.
2. Prove that (n*) — co.
Proof: Let k > 0 be any given real number.
Choose m to be any natural number such that m > Jk.
Then n? > k for all n > m.
- (%) > .
3. Prove that (2") — .
Proof: Let k > 0 be any given real number.
Then 2" >k <> nlog2 > log k.
logk

<n>
log2

Hence if we choose m to be any natural number such that

m > logk , then 2" > k for all n = m.

= (2% — .
Definition. A sequence (a,) is said to diverge to —wo if given any real .
number k < 0, there exists meN such that a, <k for all n > m. We write

(@n) > —ooor lima, = —oo.
n-——»o0

Note: A sequence (a,) is said to be divergent if either (a,) —> or
(an) = — co.

Theorem 1.3.1: (a,) = « iff (—a,) —> —

Proof: Let (a,) — <.
Let k <0 be any given real number. Since (a,) —> <o there exists meN
such that a, > — k for ali n > m.

. —ap <k foralln>m.

S.(=ap) = — oo,

Similarly we can prove that (—a,) — — 0 = (a,) > «©

Theorem 1.3.2 : If (a,) — o0 and a, # 0 for all neN then (L)—a 0.

2n

Proof: Let € > 0 be given. Since (a,) — oo, there exists meN such that

a,> —1- for all n > m.
e
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L<8 forall n > m.

a,

an

p
\ @n

<g for all n > m.

1
Theorem 1.3.3: If (a,) — 0 and a, > 0 for all neN then (;—j——) 0.

Proof: Let k > 0 be any given real number. Since (a,) — 0, there exists

meN such that |a, ]| < % for alln > m.
C.oag <l for all n > m. ( since a,> 0)

.'.—1->k for all n > m.

an

(&)

" Theorem 1.3:4: Any sequence (a,) diverging to «o is bounded below but

not bounded above.

Proof: Let (a,) — . Then for any given real number k > 0 there exists

m‘eN such that a, > k for all n > m. - (1)
Therefore k is not an upper bound of the sequence (ap).
Therefore (a,) is not bounded above.
Now let /= min{a;, aj,as,...,ank}
Form (1) we see that a,, > ¢ for all n.
..(ay) is bounded below.
Definition: A sequence (a,) which is neither convergent nor divergent to
o or — oo is said to be an oscillating sequence. An oscillating sequence
Which is bounded is said to be finitely oscillating. An oscillating

sequence which is unbounded is said to be infinitely oscillating.

10



THE ALGEBRA OF LIMITS.
Theorem 1.3.6: If (a,) — a and (b,) —> b then (a, + b,) > a +b.

Proof: Let € > 0 be given.
Now |[(a; +by)—(a+b)|=|a, +bhy—a—b]|
<|an—a]+|by—b| —emmmmeees M

Since (a,) — a, there exists a natural number n;, such that

lap— a| < —;— for alln > ny. -—---- - (2)
Since (b,) — b, there exists a natural number n,, such that
|bu— b| < % T IR T —— (3)

Let m = max{n;, ny}.

Then |(an + bn)—(a +b) ! <|a,—al+| by —b [ (by (1))
< %+§ for all n > m (by (2) and (3))

= €.
s.(ap +by) > a+b.

Theorem 1.3.7: If (a,) — a and keR then (ka,) — ka.

Proof: If k = 0, then the sequence (ka,) becomes the constant sequence
0,0,...,0 and hence converges to 0 = 0.a = ka.

Now let k = 0.

Then |ka, —ka| = k| |ay — @] -—=====mmmmmmmmmeee ¢))

Let e > 0 be given.

Since (a,) — a, there exists a natural number m, such that
lap— a} < % foralln > m. -—==-———mmmmeeeee 2)
. [ka, —ka| = k| |a, — a| (by (1))
< K| |-1—8(-| foralln>m (by (2))

=€

~.(kap) — ka.

Theorem 1.3.8: If (a,) — a and (b,) — b then (a,b,) — ab.

Proof: Let € > 0 be given.

11
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Now |a,b,— ab| = |abp— agb + asb — ab|
< |lanbn— anb| + |anb — ab|
= [aal[ba— b] + [bllan — a] ~--=----=--=-=- ().
Since (a,) — a and every convergent sequence is bounded, (a,) is a

bounded sequence.

.. there exists a real number k > 0 such that ja,| < k for all n ------ 2)
Now equation (1) becomes |a,b,— ab| < k |b,— b] +1b||an — a| ~-~---- 3)

Since (a,) —> a, there exists a natural number n;, such that

lan— a| < for all n = nj. ===m=mmmemmmmm e e 4)

Since (b,) — b, there exists a natural number n», such that

Iba— b| < -2% for all N = Ny, =mmmmmmmmmmmmm e e (5)

Let m = max{n;, na}.
Then |a,by,— ab| < k |by— b| + |blla, — a] (by (3))

< k[ij + |b] [%b!j foralln =2 m ( by (4) & (5))

+ =€

£ELE
2 2
..(apby) — ab.

Theorem 1.3.9: If (a,) — a and a, # 0 for all neN and a = 0 then

1 1
— (> —.
)3

Proof:'Let € > 0 be given.

1 1

a a

an-al 1 (1)

| a,a | |a,|la|

Now

n
Also a = 0. Hence |a| = 0.

Since (a,) — a, there exists a natural number n;, such that

lap— a} < %Ial for all n = n,.

Hence | ay| > %lal foralln>ny. e 2)

By using (1) & (2) we get

12
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a, a

_ ]
la, |la]

—a |<——z—— la, —a| foralln=n;_..(3)

EY

Again since (a,) —> a, there exists a natural number no, such that

lan

lan— a] < %8|a|2 for all n = np.---==m=mmmmmmm- (C))

Let m = max{nj, ny}.

1 1

a a

Ia2|2%|a|28 =¢ foralln>m (by 3) & (4))

(1) 1
a, a

Theorem 1.3.10: If (a,) — a and a, > 0 for all neN then-a > 0.

n

Proof: Suppose a <0. Then —-a > 0.

Choose € such that 0 < € <-asothata+ e <O0.

Now, Since (a,) — a, there exists a natural number m, such that
la,—a] < € forallnz=m.

Thereforea— s<ap<a+ € foralln>m.

Sincea + £ <0, we have a, <a+ £<0 for alln > m, which is a

contradiction, since a, = 0. Hence a > 0.

Theorem 1.3.11: If (a,) — a and (b,) —> b and a, < b,thena <b.

Proof: Since a, < b,, we have b, — a, = 0 for all n.
Also b, — a, = b — a. (by theorem 1.3.6).

.. b—a>=0, (by theorem 1.3.10).

Hence a < b.

Theorem 1.3.12: If (a,) — ¢and (b,) — ¢and a, < ¢, < b, for all n, then

(cn) > ¢4
Proof: Let € > 0 be given.

Since (a,) — ¢ there exists a natural number n,, such that
{—¢g <a,<{¢+ ¢ forall n>n;. |

Also since (b,) — ¢, there exists a natural number ny, such that
/—g <b,<¢+¢g forall n>n,.

Let m = max{nj, na}.

13
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SLé—e<a,<cp<b,<¢+eforalln>m.
S é—g<cp<é+egforalln=m.
Slen—€| < gforalln>m.

S(ch) o4

Theorem 1.3.13: If (a,) — o and (b,) — < then (a, + by} — oo.

Proof: Let k > 0 be any given real number.

. 1
Since (ap) —> oo, there exists n;jeN such that a,, > —2— k for all n > n;.

. 1
Also since (b,) — oo, there exists n,eN such that b, > 5 k for all n = n,.

Let m = max{n;, ny}.

ffhenan+bn> %k+ %k=kforalln2m.

S.(ap +by) — oo,

Theorem 1.3.14: If (a,) — <o and (b,) —> o then (anbp) — oo.

Proof: Let k > 0 be any given real number.

Since (a,) —> oo, there exists n; N such that a,, > \/E for all n > n;.
Also since (bp) — o, there exists npeN such that b, > vk foralln> n;.
Let m = max{n,, ny}. |

Then a,b, > \/E JE =k for all n > m.

. (apby) — oo.

Theorem 1.3.15: Let (a,) — . Then (i) if ¢ > 0, (ca,) —> <o,

(ii) if ¢ > 0, (ca,) — — co.
Proof:.

(i) Let ¢ > 0. Let k > 0 be any given real number.

Since (an) —> oo, there exists meN such that a,, > k for all n > m.
c

s.cap>k foralln > m.

~.(cap) —> oo.

(ii) Let ¢ < 0. Let k < 0 be any given real number. Then k > 0.
c

Since (a,) — oo, there exists meN such that an > LS for all n > m.
C

14



.'.clan <k for all n = m. ( since ¢ <0)
s (cay) —> — 0.

Theorem 1.3.16: If (a,) — o and (by,) is bounded then (a, + b,y) —> oo.

Proof: Since (bn) is bounded, there exists a real number m < 0 such that

by > m for all n. - - - (1

Let k > 0 be any real number.
Sincem <0, k—m > 0.
Since (a;) — oo, there exists npeN such that

a, > k—m for all n = ng. -------=~-==m~-- (2)
Sagn+by,>k—-m+m=Kkforalln>ne. (by(1)and (2))
~.{ap + by) — oo.

Problems:

2 .
1) Show that fim > *20+7 _1
n»o6n“ +5n+6 2

3+2+ /
2 o2
Solution: Let a, = 3n2+2n+7 = 2 n6
6n“ +5n+6 6+>+—
n n
Now, lim 3+2+—7—=3+21im l+7lim—1—
n—x n n2 n—w© 1N n—>o0 n2
=3+0+0=3.
Similarly lim 6+£+£2 =6+ 5 lim —1—+6 lim —1?
n—>0 n n n—w 1N n—w pn
=6+0+0=6.
, 3+2+ 7
2 PR
. limay = lim > 207 Lo
n—>e 2o 6n° +5n+6  n—ow 6+ +—
n n
2 7
li — 4
_am a3
11m6+—+—67 6 2
n—»o n n
2 ~2 2
2) Show that lim(1 2 +3.....+n ):l
n—»oo n 3
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2 _ n(n+1)(2n +1)

Solution: W.K.T. 12 +2% +..... +n 6
2 2 2 2n+1
- lim 1" +2°+..... +n” ) lim n(n+1)(3n )
n—»oo n3 n—o 6n
= lim —1—[1+l)[2+—1—)
n—wo 6 n n
6 3
3) Show that lim ———— =1
n—>o /(n2+1)
Solution: lim ——-o lim !
olu : —_— —
n—oo 2 n—oo
—= J(n? +1) [1+i)
n
1
= (by theorem 1.3.9)
1
lim [1+—]
n-—>»o0 n
_ 1
1
lim{ 1+ —
\/ﬂ—m( nzj
= 1.

N
4) Show that if (a;) — 0 and (by) is bounded then (a,b,) — 0.

Solution: Since (b,) is bounded, there exists k > 0 such that |bn| < k for
all n.
<. | anbn | < kay|.

Now let £ > 0 be given.

Since (a,) — 0, there exists meN such that lan | <E for all n > m.

. [ anbn [ <€ forall n > m.
(anbnp) — 0.

5) Show that lim > — .

n—w n

Solution: Since | sin n| < 1 for all n, (sin n) is a bounded sequence.

Also (i) — 0.
n



By the above problem, (sm n) — 0.
n

1
6) Show that lim (a/" ) = 1 where a > 0 is any real number.

n-—»o

' 1
Solution: Case (i) Let a= 1. Then aA = 1 for each n.

| ,
Hence (a/“) — 1.

N
!

Case (ii) Leta> 1. Then a’n > 1.
Let ayn =1 + h, where h, > 0.
.a=(1+hy)"
= 1+nh, +.....+ h,".

> 1+nh,.

a—1

S 0<h, < — 0 as n —oo.

n

.'.(ay“) =(1+h;) > 1 asn —oo.

Case (iii) Let 0 <a< 1. Then 1/a> 1.

(%1% — 1. ( by case (ii))

“(afh) o> 1

1
7) Show that lim (n/“)= 1.

n—»co
. Yy
Solution: We know that n/? > 1 for all n.

A
Let n“® = 1+ h, where h, > 0.
Then n = (1+h,)"

== 1 +n01hn + n02hn2+. . ...+ hnn.

1
> En(n—-l)hﬁ .
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2
n-1

2
hy <

S ohy < \[21—>Oasn—>oo.

. hy — 0 as n —o0. (since h, = 0)

L
.‘.(n/n )=({1+hy) > 1asn—>ow.
Theorem 1.3.17:

(i) A monotonic increasing sequence which is bounded above

converges to its l.u.b.

(ii) A monotonic increasing sequence which is not bounded
above diverges to oo.

(iii) A monotonic decreasing sequence which is bounded below
converges to its g.1.b.

(iv) A monotonic decreasing sequence which is not bounded
below diverges to — oo.
Proof: (i) Let (a,) be a monotonic increasing sequence which is bounded
above. Let k be the l.u.b. of the sequence.

‘Then a, <k foralln. ------ 1

Now let € > 0 be given.
Sk—g<k.
-k —e¢isnotan upper bound of (a,).
Hence there exists a,, such that a, > k — €.
Since (a,) is monotonic mcreasing, a, > an for all n > m.
Hence a, >k —¢ forall n > m. ~~——memmemeeeee (2)
~k—ege<a,<k<k+eg foralln > m. (by (1) and (2) )
.'.Ian—k|<sforalln2m. '
" (ap) — k.
(i1) Let (ay) be a monotonic increasing sequence which is not
bounded above.
Let k > 0 be any real number.
Since (an) is not bounded, there exists meN such that a,, > k.

Also a, > a,, for all n > m.

18




o an>k foralln > m.

"o (ag) > o _
Probf (ii1) and (iv) are similar to that of (i) and (ii) respectively.
Note: A monotonic sequence cannot be an oscillating sequence.
Problems:

1)Leta,=1+ %Jrl F s +—1— . Show that lim a, exists and lies

2! n! n—»oo

between 2 and 3.

Solution: Clearly (a,) is monotonic increasing sequence.

-Alsoan=1+l+—1—+ ..... +l
1 2! n!
SI+1+’_—;—+%+ ..... +23_1
I—Lﬂ
1——
2
=1+2( —4——1—]
2[1
_ 1
=3 - — <3.
. ap < 3.

.. (ay) is bounded above.

. lim a, exists.

n-—oo

Also 2 <a, <3 for all n.

co2< lima, <3.
n—»oo

Note: The limit of the above sequence is denoted by e.

2) Show that the sequence [rl + —1—] converges.
n

Solution: Let a, = [1 + —1—) .
n

By the Vbindi‘:ﬁial(theoi‘em, |
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1 1 1

a, = 1+ nclg+ nczn—2+n03;§+.....+ ncnnn .

n(n-1) 1 +n(n—1)(n-—2)_1_+
2! n? 3t n’

oooooo

=1+1+

N n(n -1)(n-2)....n—(n-1)) _L

n! n"
’ 2
=1+1+ _1_ l—l +—1— 1—-1)(1——)+ .....
21 n 3! n n
+—l-(1~l)(1~—3)....(1~“—_l]
n! n n n

< 3 (by the above problem)

.. (ap) is bounded above.
Alsoan+,=l+1+l(1————l——)+—l— 1- 1 1- 2 J+ .....
20 n+1) 3! n-+1 n+1

1 1 2 n
; (1_ ](1___)....(1-_“)
(n+D! n+1 n+1 n+1
>1+1+ l(l—i]+l(l——l-)(l——2—)+ .....
2! n/ 3! n n

= a,.
S @per > ap .
. (an) is monotonic increasing sequence.
. (an) is a convergent sequence.

. N 1 1 1
3) Show that lim [1+— | = lim 1+——'~:——+ ..... +— | =e.

n—c0 n n—o

n
Solution: Let a,, = (1+l) and b, = (1+1+—1—+ ..... +ij
n o2

1 n
Then a, = []+—-) =1+ nc1—1—+ nc2—1—+n03——1?+.....+ ncn—1~.
n

n n n 2 n n

20



=1+ 1+

nn-—1) 1 +n(n—1)(n—2) 1 +
ol

n? 3! n’

+ nn-D(n-2).{n—-(n-1) 1

n!

=1+1+ i(l_l +_1_[1_-1_) 1——%)+ .....
2! n/ 3! n n

< l+l+——+» ..... +—1—=bnforalln.
2! n!

(i.e.) a, <b, for all n.

ST T 11 N F— (1)
n—»o0 n—»o0 ;Y

Now let m > n.

am = 1+—1— =1+1+—1— ]——1— +l 1——1~ (14—2—)+ ..... '
m 2! m 3! m m

+-1—(1——1—j(1—3)....{1—3—?—1)+...+J—(1—-1—](1——2—)....(1—3’——-1

n! m m m m! m m m

>1+1+i(1——1—)+l(1—-1—)+ ..... L1 1——1—)(1——2—]....{1—"—1)
2! m 3! m n! m m m

Now taking limit as n — o we get

[ 513 T PRI §15' U o SN —— (2)
m—>»o0 n—coo

From (1) and (2) we get

lima,=1limb,=e.
[!——-)w n—oo

: | 1 1 1
Slimll+4— ) =lim|l+=—4+—+.....4— | =e.
n—>a n n—ro 1 2! n!

n

Solution: Clearly (a;) is a monotonic increasing sequence.

21
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Letm=2"-1.

=1+(n—l)—;- =—:1):(n+1)

1
.-am>—n+1
S+ D)

. (ay) is not bounded above.

Hence (a,;) — oo.
5) Discuss the behavior of the geometric sequence (") . .
Solution:
Case(i) Letr = 0.

Then (") re;duces to the constant sequence 0,0,.... and hence
converges to 0.
Case(ii) Letr=1.

Then (r") reduces to the constant sequence 1,1,.... and hence
converges to 1.
Case(iii) Let 0 <r< 1.

In this case (r") is a monotonic decreasing sequence and " > 0
for éll neN.

-.(r") is a monotonic decreasing sequence and bounded below
and hence (") convergés.

Let @) — ¢

Sincer" >0 foralln, ¢ > 0 —=eeeeeaeu (1).

Claim: ¢= 0.

Let € > 0 be given.

Since (r") — ¢, there exists meN such that £ < 1" < Z+¢ for all n >m

Fixn>m.

Then ¢ <™ e ()

22




Also 1" = 11" <1(£+g) —-mmmmmmmmemnn (3)

¢ <™ <r(¢+g) (by (2) and (3))

e < (—r—Je
I-r

Since this is true for every € > 0, we get <0 -—-- “4)
S ¢=0(by(1)and 4))
Case(iv) Let —1<r <.
Then " = (-=1)" | r|” where 0 <{r| < 1.
By case (iii) (| r |") — 0.
Also ((—1)") is a bounded sequence.
(D" | ™ converges to 0.
- (") = 0.

Case(v) Let r=-1.

In this case (") reduces to —1;1, —1,1,... which oscillates finitely.

Case(vi) Letr > 1.

Then 0 < —1—< 1.
r

By case(iii) (in) -0
r
s (") > o,

Case(vii) Let r <—1.

Then the terms of the sequence (") are alternatively positive and

negative.
Also |r| > 1.
By case (vi) (| r {") is unbounded.
-~ (r") oscillates infinitely.
Thus (i) (r") converges if -1 <r < 1.
(ii) (r") diverges if r > 1.
(iii) (") oscillates if r < —1.

6) Let (a,) and (b,) be two sequences of positive terms such that
1
an+] = ) (@ntbn) and by = y/(a,b,) . Prove that (a,) and (b,)

converges to the same limit.

23
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Solution: By hypothesis a,+; and bp+are respectiveiy AM and GM of a,

and b, .
Also we know that AM > GM.

<. @n+i > bn+1- (1)

Moreover AM and GM of two numbers lie between the two

numbers.

". @y = ap+ = by, for all neN.--- -- 2
and a, > by+ > by, for all nEN.————ameeemmeemee 3)
. @n = ap+i = by 2 by forall neN.(by (1), 2) & (3))
.. (ap) is a monotonic decreasing sequence and (b,) is a monotonic

increasing sequence.

Also a, > b, > by for all neN and b, < a, < a; for all neN.
S.(ap)isa monoionic decreasing sequence and bounded below by bjand
(bs) is a monotonic increasing sequence and bounded above by a,.

~.{an) —> ¢(say) and (b,) — m (say)

Now-a,+ = —;—(an+bn).

Taking limit as n — oo, we get ¢ = % (¢+ m).

S =m.
Cauchy’s first limit theorem:
Theorem 1.3.18:

Statement: If (a,) — ¢ then (al +ap +..-ta, J_> .
n

Proof:
Case(i) Let £= 0.

Let € > 0 be given.

Since (a,) —> 0, there exists a natural number m, such that

la,— 0] < g—for alln>m.

24



(i.e) |ay| < —Z— for all n = m. - (D

Now let n > m.

= la; +a, +...+a, +a ., +...+a,]

Then |by
n |

< la; +a, toetay|, @ +otay|

| n ' on
< |a]f+|a2|+...+|am|+|am+,|+....+|anl
B n n

_ Kk lagg |+,

,where k= |a;|+|a,|+..+]|a,|

n n
k n—-m) €

< —+ ( ) — (by (1))
n n 2

<X % (since (“’m)< 1) S )
n 2 n

Since (E) — 0, there exists ngeN such that k <& foralin> no.--- (3)
n n

Let ny = max{m, ne}
Then [ba| < §+§ (by (2) & (3))

=g for all n > n;.
~(bp) = 0.
Case(ii) Let ¢+ 0.
Since (a,) > ¢ , (an—¢) — 0.

(@ -D+@,~1)+..+(a, —1)

s — 0. (by case(i))
. n
(a, +a,+...+a, ~n/ J__) o.
N n
( ]
(i ta, +.ita, —I)»O.
\ n -

(a, +a, +...+

O it Wl An | 44,
\ n

Note: The converse of the above theorem is need not be true.

For example, consider the sequence (a,) = ((-1)").

25
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a, +a, +...+a 0 if niseven
Then b, = —1——2 n — | .
n ——ifnisodd
n

Then (b,) — 0 and (a,) is not convergent.

Cesaro’s theorem
Theorem 1.3.19

Statement:

a,b, + azbn_I. +...+a,b, ] s ab.

If (a,) — a and (b,) — b then [ o

a,b, +a,b, ;+...+a_ b,
n

Proof: Letc, =

Put a, = a + r so that (r,) — 0.

Then ¢, = (a+r)b, +(a+r)b, |, +...+(a+r,)b,
n

a(b, +b,_; +...+b)) 4 b, +r,b, |, +...+r1,b
n n

_a(b;+b, +...+b,) 4 b, +,b,_, +...+1,b,
n n

Since (b,) — b, by Cauchy’s first limit theorem,

(b] +by +...+b, )——>b.

n

—> ab.
n

) [a(b1 +b, +...+bn)] :

Hence it is enough to prove that (
n

nb, +r,b, | +..+ rnblj_) 0

Since (b,) — b, (by) is a bounded sequence.

.. There exists a real number k > 0 such that |b,| < k for all n.

Inb, +6,b, | +...+1,b, P k-lr] +1y +..41 |
n I_ n |

n+r,+..+r,

Since (r,) — 0, [
n

)—) 0 (by Cauchy’s first limit theorem)

(rlbn +1,b, +...+rnb1)_> 0
n

26




_ (albn +a,b, | +...+a,b,

]—) ab.
n

Cauchy’s second limit theorem:
Theorem 1.3.20:

Statement: Let (ay) be a sequence of positive terms. Then

n—o n—w g

whether finite or infinite.

Proof:

) . a .
Case(i) Let lim =2l = ¢ finite.
n—w  a,

Let € > 0 be any given real number.
Then there exists meN such that

t—ls < 8Ban 4 %8 for‘alanm.

a,

Choose n>m,

Then l——l—s <Bmi 4y ls
a, 2
g_lg < a_m:'i<g + 18
am+1
l—lg < an <l+ls
2 @n——l 2

Multiplying these inequalities, we get
[1—18) <2 (1+la) ,
2 a, 2
) .

" am _—<an<am

1"
ook (l ——e| <a,<k; (1 +—;»s) , where kj,k; are some constants.
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o klln (1—%8) < a:,A < k% (l‘i’";—gj. mmmmmmmmmmeee (1)
o
Now, (k,l/"(l—-?ll—sD —f —é—s ( since (k,/“) — 1)

.. There exists n; N such that

1 1 Sl o) ol l for all n > ny. -~ (2)
(4__2_8)__£g<k1 (1 28] ( 28) 28 _ 1

.
\

Similarly, there exists noeN such that

¢ +la)—%s < kzlA (l—;—ej <(£+—;—e)+%s for all n = ny. ~--(3)

Let np=max {m,n;,n;}
Then £—g < kll/n (l——;—e) < aI:A < kz%‘ (l+—21—s] < ¢+ g for all n = no.
(by (1).(2) & n(3))
Y
. €—g < ai" < ¢+ ¢ foralln = n,.

|
Hence (aﬁ) — 4

.. .. a
Case(ii) Let lim —2*L = oo,
n—»>o 3

Then lim (a

n—o

.. By case(i), (aij — 0.
“(agh) > o,

Problems:

1) Show that lim —l—(l+%+§1~+ ..... +—1—]= 0.

n—>w© N

Solution: Let a, = —.
n

Then (a,) — 0.
By Cauchy’s first limit theorem,

28



a,+a, +...+a
( { 2 n)__>0
n

(i.e) (l(l+l+l+ ..... +1D—->O.
n 2 3 n

!
2) Show that lim nA = 1.

n—»0

Solution: Let an»= n.

- lim 204l = [im (iﬂ) = lim (1+-1-) - 1.

n—»co an n—»o0 n n—»o0 n

3) Show that 1 [(n+D(n+2)....(n+n)]'"™ — 4/e.
n

Solution: Let a, = 1 [(n+1)(n+2)....(n+n)]'"
n

rll'l

[l
Let b, = (1+L‘-)(1+-§-)"..(1+§_].

1
Then a, = bé.

[ 1 )( 2 ) n+1
I+—— 1+ —— . 1+
b, _ n+1 n-+1 n+1
by (1+1)(1 +"'3]....(1+-’1J

n n n

n

n
= (2n+1 )(2ﬂ+2) m

_ {(n +1D(n+2)....(n +n):l%

Now

22n+1) n”
n+l  (n+D)"

=2(2+1/n) 1
[+1/n ) (A +1/n)"

T'aking limit as n — o, we get

lim E'E“—]— = 4/e.

n—»a0
n

29
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1
By Cauchy’s second limit theorem, lim bn/1 = 4/e.

n—oo
~.(an) — 4/e.

1/n

(i.e) l[(n+1)(n+2)....(n+n)] — 4/e.
n

SUBSEQUENCES

Definition: Let (an) be a sequence. Let (k) be a strictly increasing
sequence of natural numbers. Then (a,, ) is called a subsequence of (ap).
Note: The terms of a subsequence occur in the same order in which they
occur in the original sequence.
Example:

1) (azn) is a subsequence of any sequence (ap).

2) 1,1,1,.... is a subsequence of the sequence 1,0,1,0,1....

3) Any sequence (a,) is a subsequence of itself.
Note: A subsequence of a non-convergent sequence can be a convergent
sequence.

Theorem 1.3.21: If a sequence (a,) converges to 4, then every sub

sequence (a,, ) of (a,) also converges to .

Proof: Let € > 0 be given.

Since (an) — 4, there exists a natural number m, such that
lan— ¢| <efor alln = m. --————-=-emmmemn- (1).
Now choose nik , = m.
Then k 2 ko= nk = ng , (since (ny) is a monotonic increasing)
= ng=m
=>lan, —¢|<e (by (1))
Thus |ank —£¢| <g forall k > ky.
{an, ) >4

Theorem 1.3.22: If the subsequences (az,.1) and (az,) of a sequence (a,)

converge to the same limit ¢then (a,,) also converges to 4,
Proof: Let € > 0 be given.

Since (az,.1) — “there exists a natural number n;, such that

30



lazn-1— €| <g forall 2n— 1= ny.
Similarly there exists a natural number n;, such that

|azn— €| <€ for all 2n > ns.
Let m = max{n,, na}
Then |a,— 4| <€ foralln >m.

s(ap) > 4

LIMIT POINTS
Definition: Let (a,) be a sequence of real numbers. a is called a limit
point or a cluster point of the sequence (a,) if given € > 0, there exists
infinite number of terms of the sequence in (a — €, a + €) . If the
seciuence (an) is not bounded above then <o is a limit point of the
sequence. If the sequence (a,) is not bounded below then —c is a limit
point of the sequence.
Examples:

1) Consider the sequence 1,0,1,0,... . For this sequence 1 is a limit
point since given € > 0, the interval (1 —¢, 1 + €) contains
infinitely many terms of the sequence ai, as, as,......

2) For the constant sequence 1,1,1,...., 1 is the limit point.

3) The sequence (a,) = (n) is not bounded above and hence « is a
limit point.

Theorem 1.3.23: Let (a,) be a sequence. A real number a is a limit point

of (a) iff there exists a sg?&“gguence (an, ) of (a,) converging to a.
Proof: Suppose there exists a subsequence (a, ) of (an) converging to a.
Let € > 0 be given.

Then there exists a natural number kg, such that a, L € (a—eg,a+eg)
for all k > k.

. (a—¢, a + g) contains infinitely many terms of the sequence (ay).
.a is a limit point of the sequence (ay).

Conversely suppose a is a limit of (a,).
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Then for each € > 0 the interval (a — €, a + €) contains infinitely

many terms of the sequence. In particular we can find n; €N such that

an,e(a—-1,a+1).
A 1 1
Also we can find n; > n; such that a,, e(a — 5 a-+ —2—).

1 1
Proceeding like this we can find n;<n;<ns...such that a, « e(a——l—(-,a+E )-

Clearly (an, ) is a subsequence of (a,) and [a,, —a| < 1/k.
Forany €> 0, |a;, —a| <g ifk> l/e.
"(an, ) > a.
CAUCHY'’S SEQUENCES
Definition: A sequence (a,) is said to be a Cauchy sequence if given > 0
there exists npeN such that | a, — a,, | < & for all n,m > nq.
Note : The condition | a, — ap, | < € for all n,m > no can also be written as
| an+p — an | <€ for all n = no and for all positive integers p.
Examples:
1) The sequence (1/n) is a Cauchy sequence.
Solution: Let (a,) = (1/n).
Let € > 0 be given.

Now |ay—an | = 'l——!—
' n m

Therefore if we choose ng to be any positive integer greater than 1/g, we
get | a, — am | < € for all n,m > ny.
.. The sequence (1/n) is a Cauchy sequence.
2) The sequence ((—1)") is not a Cauchy sequence.
Proof: Let (a,) = (-1)".
Sl an—ane | =2.
.. If € <2, we cannot find ng such that | an — an+y | < & for all n > ny,.
. The sequence ((—1)") is not a Cauchy sequence.

Theorem 1.3.24: Any convergent sequence is a Cauchy sequence.

Proof: Let (a,) — a.
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. . €
Then given € > 0, there exists npeN such that |a,—a| < 5 for all n = ny.

Slan—am|=|an—ata—ay]

< —+ —, for all n,m > ny.

ELE

2 2
= g.

..(an) is a Cauchy sequence.

Theorem 1.3.25: Any Cauchy sequence is a bounded sequence.

Proof: Let (a,) be a Cauchy sequence.
Let € > 0 be given.
Then there exists noeN such that | a, — ap, | < € for all n,m > no.

~|an} <lan,| + € for n = no.
Now let k = max{lail,|azl,...,|lan , |+ &}

Then |a,} < k for all n.
Hence (a,) is a bounded sequence.

Theorem 1.3.26: Let (a,) be a Cauchy sequence. If (a,) has a

subsequence (an, ) converging to a, then (a,) — a.

Proof: Let e> 0 be given.

. . €
Then given € > 0, there exists noeN such that |a,—ap)| <—2— for all n,m > ny.

Since (a, k) — a, there exists koeN such that |a, = a| <—;— for all k = ko.

Choose ng such that ny > ny 0 and no.
Then |a;—a| = |ay— a,  + a, 4
<l|an—an, | +| an, —al
<:24 E = g for all n > n,.
2 2

Hence (a,) — a.
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Cauchy’s general principle of convergence

Theorem 1.3.27:

Statement: A sequence (a,) in R is convergent iff it is a Cauchy

sequence.
Proof: We already proved that any convergent sequence is a Cauchy
sequence.

Conversely, let (a,) be a Cauchy sequence in R.

Since any Cauchy secuence is a bounded sequence, (a,) is a bounded

sequcence.

.. There exists a subsequence (a,, } of (a,) such that (a,, ) — a.

By the above theorem (a,) — a.

- Definition: Let (a;) be a bounded sequence. Then the lub of the set of all

limit points of (a,) is called the upper limit or limit superior of the
sequence and is denoted by lim a, or lim sup ay .

The gib of the set of all limit points of (a,) is called the lower limit or
limit inferior of the sequence and is denoted by lim a, or lim inf a, .

If a sequence (ay) is not bounded above, then its upper limit is defined to
be o and if (a,) is not bounded below, then its lower limit is defined to
be — oo

CYP Questions:

1) Prove that any sequence (a,) diverging to — oo is bounded above
but not bounded below. '

2) If (ay) — aand (a,) — a where b, = 0 for all neN and b # 0 then

o |

prove that n >
b,

3) If(an) —> a, prove that (Ja,|) — |al.

4) If (an) —> a and a, > 0 for all n and a # 0, then prove that

(Ja, ) > +a.

5) Show that

Iim 1

N> [1/(2n +1) w/(Zn +2) \/(2n +n]
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6) Let an = 1 + ! 4+ et ! . Show that (a,) converges.

n+l n+2 n+n

7) Show that‘if]r| < 1then (nr") — 0.

a,
a

8) Let (a,) be any sequence and lim = ¢, If £> 1, then prove

n—e

n+l

that (a, ) —> 0.

n

9) Prove that lim X _-o.

n—x n!

!
- 10) Prove that lim —an = 0.

n—>o n
=11)Prove that every bounded sequence has a convergent
subsequence.

12) Prove that every bounded sequence has atleast one limit point

13) Prove that (a,) converges to ¢iff (a,;) is bounded and ¢ is the only

limit point of the sequence.

SECTION-1.4 -SERIES OF POSITIVE TERMS

INFINITE SERIES

Definition: Let (a,) = a;,az, -..., a,... be a sequence of real numbers.

Then the expression a; + a;+ .... + a,... is called an infinite series of real

numbers and is dented by > a, or Y a, .
1

)
Let s; = a;, s, = a;+ay, s3 = a;+atas, ....., Sp = a;+ar+....+a,,....

Then (s,) is called the sequence of partial sums of the given
series > a,, .
The series 2 a, is said to converge, diverge or oscillate

according as the sequence of partial sums (s,) converges, diverges or

oscillates.
Examples:

1) Consider the series 1 + 1+ 1+ ....
Here s, = n. Clearly the sequence (s,) diverges to w.

Hence the given series diverges to o
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2) Consider the geometric series 1 +r+ i o G SO

_ 1-r"
Heresn=1+r+r2+....ﬂ-r 1 = N

Case(i)0=<r<1.

Then (") — 0.

g = 1
SR P
o _ 1
. The given series converges to -
‘ —r

r" —1
—r

Case(ii) r> 1.Then s, =

Also (") > oo whenr>1.
Hencé the series diverges to oo,
Case(iii) r = 1.
Then the series becomes 1 +1+ 1 +...
.. (sp) = (n) which diverges to oo,
- Case(iv) r =1
Then the series becomes 1 -1 +1 -1 +...
. {Oifniseven
" |lif nisodd
.. (sn) oscillates finitely.
Hence the given series oscillates finitely.
Case(v) r <-1.
.. (") oscillates infinitely.

Hence the given series oscillates infinitely.

3) Consider the series 1 + l+l+ ..... +l+...
' 1 2! n!
Thensn=1+—1~+l+ ..... +——1—
2! (n-1)!

The sequence (s,;) — e.
.. The given series converges to the sum e.
Note 1) Let > a, be a series of positive terms. Then (s,) is a monotonic

3

increasing sequence. Hence (s,) converges or diverges to oo according as
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(sn) is bounded or unbounded. Hence the series 3 a, converges or
diverges to «. Thus a series of positive terms cannot oscillate.

Note 2) Let 3 a, be a convergent series of positive terms converging to
the sum s. Then s is the lub of (s,). Hence s, < s for all n.

Also given £ > 0 there exists meN such that s — e <s, for alln > m.
Hence s — g <s, <s for all n > m.

Theorem 1.4.1: Let Y a, be a convergent series converging to the sum s.

Then lim a, = 0.
n—»0

Proof: lim a, = lim s, — Sn1
n—co n—oo

= lim s, — lim s,
n—»00 n—co

=s—§s=0.

Cauchy’s general principle of convergence

Theorem 1.4.2: The series Y a, is convergent iff given € > 0 there exists
noeN such that |as+; + a2 + ...+ apsp | <€ for all n = npand for all
positive integers p.
Proof: Let > a, be a convergent series.

Let s, = a;+az+....+a,.

.. (sn) is a convergent sequence.

Since any convergent sequence is a Cauchy sequence, (s,) is a Cauchy

sequence.

.. There exists npeN sucl.l that |Sp+p—Sa| < € for all n > npand for
all peN. .

San+1 +ans2 + ...+ ansp | < & for all n = noand for all peN.

Conversely if jag+1 + ans2 + ...+ ansp | <€ for all n = npand for all
peN then (s,) is a Cauchy sequence in R and hence (s;,) is convergent.

. The given series converges.

Problems:
1) Apply Cauchy’s general principle of convergence to show that the
series 2. (1/n)is not (fonvergent.

Solution: Lets, =1 + l+m+l

n
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Suppose the series > (1/n)is convergent.
-. By Cauchy’s general principle of convergence, given € > 0

there exists meN such that |s,:p—sn| < € for all n = m and for all peN.

1 1 1 1
i l+—=—+...+ —1l4+—+...+—
2 n+p 2 n

1 1
+ +...+

‘In+1 n+2 n+p

< ¢ for all n > m and for all peN.

< g for all n > m and for all peN.

In particular if we take n = m and p = m then we get
1 1 1 1 1 1 1
+ +...+ > + —
m+1 m+2 m+m 2m 2m 2 2

3 < £ which is a contradiction since € > 0 is arbitrary.

.. The given series is not convergent.

2) Apply Cauchy’s general principle of convergence to show that the

series 1— 1 + L +(—D" 1 +..... is convergent.
2 3 n
. 1 1 nl
Solution: Let sy = 1——+——.....+(-D)" —.
- 2 3 n
—1)P
.‘. lSn+p_Snl = I 1 - 1 +...+ ( 1) .
ln+1 n+2 n+p
_1)P
Now 1 +...+( D
n+1 n+2 n+p
1 1 ...
— if piseven
1 1 n+p—-1 n+p
n+l n+2) 7
= if pisodd:
n+p
>0
1 —1)P
'-']Sn+p*5n,= - 1 +...+( 1)
n+1 n+2 n-+p
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_ 1 B 1 B 1 N
n+1 n+2 n+3
| .
n+1

<

<g provided n> (l — 1)
€

.. By Cauchy’s general principle of convergence the given series
is convergent.

CYP Questions:

1) Let > a, converges to a and > b, converges to b. Then prove

that 3 (a, £ b, ) converges to a + b and > ka, converges to ka.
2) Show that the series Z(E!;‘_) converges to the sum 1.

3) Show that the series 1 +2 + 3 + .... diverges to .
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UNIT —2

Unit Structure: |
Section 2.1 : Test for series of positive terms — Comparison test

Section 2.2: D’ Alember’s test — Ratio test — Root test — Rabbe’s
test
Introduction: In this unit we discuss the convergence and divergence

of series by using various tests like Comparison test, Kummer’s test,

ratio test , raabe’s test and Cauchy’s root test. This unit contains many

solved examples.

SECTION 2.1 : TEST FOR SERIES OF POSITIVE
TERMS — COMPARISON TEST

COMPARISON TEST:
Theorem 2.1.1:

(i) Let 3 c, be a convergent series of positive terms. Let

2> a, be another series of positive terms. If there exists meN
such that a, < ¢, for all n > m then Y a_ is also convergent.
(ii) Let 2.d, be a divergent series of positive terms. Let Y a_ be
another series of positive terms. If there exists meN such
that a, > d, for all n > m then 2.a, is also divergent.
Proof: (i) Since the convergence or divergence of a series is not altered
by the removal of a finite number of terms, without loss of generality we
may assume that a, < ¢, for all n.
Lets,=ci+ca+....+cpandt,=a; +ar, + ... + a,
Since a, < ¢, we have t,<s,, .
Since 3 c, is convergent, (s,) is a convergent sequence.
.".(sn) is a bounded sequence.
. There exists a real positive number k such that s, < k for all n.
Soth<sp <k for ali n.

.t <k for all n.
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Hence (t,,) is a bounded above.
Since a, > 0, (t,) is monotonic increa_lsing sequence.
so(tn) cbnverges. \
Zan' converges.
(i) Lets,=d;+dx+.... +drand t,=a; +ax +.... + an,
Let > d_ diverges and a, > d, for all n.
o th 2 Spe
Since > d, diverges, (s,) diverges to .
.".(sn) is not bounded above.

.. (ty) is not bounded above.

Also (t,) is monotonic increasing and hence (t,) diverges to co.

s 2 a, diverges to oo.

Theorem 2.1.2:

(i) If > ¢, converges and if lim (ELJ exists and is finite then

n—oo| C.
> a, also converges.

(ii) If 3 d,, diverges and if lim [a—“J exists and is greater than

n—o
n

zero then > a, also diverges.

Proof: (i) Let 1im(ﬁj -k

n—w\ C,

Let € > 0 be given.

) a
Then there exists n; N such that —2 <k + ¢ for all n = n,.

Cn

coap <(k+e¢g), foralln=n;.
Also since > ¢, is a convergent series, 2. (k+€)c, is also

convergent.

By Comparison test, > a, is convergent.

n—oo

(ii) Let lim(:—“J ~k>0.

a1
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Choose e = —K.

N | =

1
Then there exists n; N such that k — %k < :—" <k+ Ek for all

n

n=n;.

.. 3n lk for all n > n;.

d

n

San > %kdn for all n = n;.

. i . . 1 .
Since ) d,, is a divergent series, Z:Ekdn is also a uivaigom

series.

By Comparison test, > a, is divergent.

Theorem 2.1.3:

(1) Let > c, be a convergent series of positive terms. Let

2.a, be another series of positive terms. If there exists meN

a c )
such that —2*L < Z2*L for all n > m, then Y a, is also
an cn
convergent.

(i1) Let >.d, be a divergent series of positive terms. Let > a_ be

another series of positive terms. If there exists meN such

a d . .
that —24L > —8+ for a]l n > m, then Y a_ is also divergent.

a 2

n n

s a C a a
Proof: (i) Since -2 < 0+l e have —2+L < Zn

an cn Cl’l+ cn .

a . . -,
", [—“J 1s a monotonic decreasing sequence.
Cn

", 3—“—$kforall n where k = 31—.
c C

n

. ap < ke, for all neN.
Since 3 c, is convergent, 2. ke, isalsoa convergent series of positive
terms.

By Comparison test, 3 a, is convergent.
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Proof of (ii) is similar to that of (i).

Theorem 2.1.4: The harmonic series ZLP converges if p> 1 and
n

diverges if p < 1.

Proof:

Case(i) Let p = 1. Then the series becomes Zl which diverges.
n

Case(ii) Let p < 1. Then nP < n for all n.

. ~ 1 ..
By comparison test, Z—? diverges.
n

Case(iii) Let p> 1

Let‘sn= 1+ —L+i+....+——l—~.
2P 3P

ST S I I

et
2F 3P Q" -1
=1+(—1—+L)+(1 + : + ! + 1)+
2P 3P 4P 5P 6P 7P
+ 1 + ! + +——1—
( n)P (2!’1-’-1)) (2n+1 __l)p

<1+2[—1—)+4(L)+....+2"( L J
2P 4P (2U)P

1 N 1 N 1
2Pf1 22P—2 2(p-Dn

2 n
. - 1 1 1
TS S 1+ = +(2p_lj +....+(2p_l)

Sincep>1,p—1>0.

Then s
2

n+I_l

Hence —1—< 1.
pla
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Let n be any positive integer. Choose meN such that n < 2m .

Since (s,) is a monotonic increasing sequence, s, < S m+1_, -

Hence s, <k for all n.
". (sn) is a monotonic increasing sequence and bounded above.

". (sn) is convergent.

1
. 2,—— converges.
nP

Problems

1

\/(n3 +1) .

1) Discuss the convergence of the series 3

1

1 <
w/(n3 +1p 0’2

1s convergent.

Solution: Clearly

Also >

3/2

By Comparison test, >

\/—3;.— is convergent.
(n” +1)

2) Discuss the convergence of the series > - (n+ lz —vn .
n
Solution: Let a, = 2 (n *+D y(n+1) v+ +
n? 1/(n +1) ++/n

n+l-n 1
n?(Jm+)+vn) 1/(n+1)-h/_)
1
Letbn=—p+1/—2

n

1/2
. a ) nP*
. lim %= lim

e b, noe nP(finrD) +vn)

= lim 1

ns (JA+U/n) +1)
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1
2

Also Y b, is convergent if p + 2> 1 and divergentp + 2 < 1

. Y a, is convergent if p > 2 and divergent if p < 2.

12422 +...+n?

3) Discuss the convergence of the series > i1
n" +

1°4+2%4+...+n°

Solution: Let a, =

nt+1
_ n(n+1)(2n+1)
6(n* +1)
1
Now let b, = —.
n
2
o lim 4n = Iim n“(n+H@2n+1)

n—o bn n—»o0 6(1‘14 +1)
(1 + l)(1 + %)
n n
" 6(1 + L)
. n4

Also > b, is divergent.

S 2a, is divergent.

.
4) Show that = —,
) z 4n2 -1 2

Solution: Let a, = 21
4n° -1

Then a, < —1—2-
n

1.
Also 3 — 1s convergent.
n

. By Comparison test, the given series converges

By partial fraction, we get

1 1 1 1
an = = — ~
4n2 -1 2 [2n-1 2n+1
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SPACE FOR HINT Now let n > m. Write (1) for m, m+1,...... ,(n—1) and adding we get

d,a, —d,a,>k(an+1+.....+ ap)
= Kk(Sn—Sm)-

... dmam> k(Sn_Sm).
d_a

.. Sn < _M+ Sm
k

.. The sequence (s,) is bounded and hence } a, is convergent.

(b) Let lim [dn n -~dn+1) ~¢<0.

n—w a n+l

Suppose ¢is finite.
Choose e > QO such that ¢ + € <Q(.
Then there exists meN such that

a ,
i——d, ;<¢ +¢e<0foralln>=m.

¢—e<d,
ar|+1

s.dpa, <d ,a,, foralln>m.

Now let n > m. Then
dmam < dm+lam+l
dm+lam+l < dm+2am+2

------------------------

........................

By hypothesis, Zdl is divergent.

n

Hence dzam is divergent.
n

By Comparison test, 3 a, is divergent.

The proof is similar if ¢ = — co.
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Note: The above test fails if lim [dn &n -d_ +])= 0.

n—e An+

Cor: 1 (D’ Alembert’s ratio test)

Let 3> a, be a series of positive terms. Then X a, converges if

. a
lim —&
n—w g

> 1 and diverges if lim <

n—o g

n+l n+l

Proof: The series 1 + 1 + 1 + ..... is divergent.
Put d, = 1 in Kummer’s test.
a, a

—_ n
o dn+l - -1
an+1 an+l

Then d,

.. 2.a, converges if lim ( 2n —1) > 0.

n—> an+l

P
. 2.a, converges if lim —2- > 1

-0 a n-+l

Similarly > a, diverges if lim <.

n—w an+l

Cor: 2 (Raabe’s test)

Let 3 a, be a series of positive terms. Then Za'n converges if

n—o an4 n—o0 a

lim n[ 2 —1] > 1 and diverges if lim n( “n —IJ <1.

n+l
Proof: The series Z-l—is divergent.
n

Put d, = n in Kummer’s test.

Thend -2n —d  =np-on —(n+1)=n( 2 —1j -1

an+l an+1 an+l

o | @
- 2a, converges if lim | ———-1|>0.
n— an+l

o 1 a
- 2a, converges if lim n| ——-1| > 1
n—o an+l

n—w a

Similarly > a, diverge§ if lim n( il —1} <1.

n+l
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Let > a, be a series of positive terms.

| a
Then 3 a, converges if lim log n[n[ = -—1]-1il>1 and

n-—»o0 A

n—> Ani

d}!iverges if lim log n[n[ . —IJ—IJ < 1.

i L . .
Proof: The series 3’ is divergent.
T I

nlogn

Put d,/ = n log n in Kummer’s test.
/

an

an — (n+1)log(n+1)

—d_ ;= (n logn)

A4 n+l

Then ‘g‘[ d n

-
=ldén n[ ol —1]—-1 +(n+1)log n — (n+1) log(n+1)
N

/ R Adni
| [ a, 1 n-+1
= logn|n —1{-1| —(n+1)log
B An4 i n
- lim (d,L 2 d,mJ
n—wo i an+l .

n—»c0 n

‘ N n+l
= lim (logn) n[ al! —1]—1 — lim log (l—i——l-)
n—»w ' _J

= lim (logn)[_n[ In —IJ—I — 1.
} ]

n—>»00 |

-
. X a, converges if lim logn n[ %0 —1)—1:’>1 and

> An4

diverges if lim log n[n( 2n —-IJ—IJ <1.

n—>w ) an+1

_ Note: General form ’Qf Kummer’s test.

Let > a, be a given series of positive terms and Zd—— be a series
/7 n

of positive terms diVerging to co. Then

an+l :

(a) Za, converges if lim inf(dn 2 —dn+lj> Oand
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(b) Sa, diverges if lim sup (dn % g, ) <0
an+1
Gauss Test

Theorem 2.2.2:

Statement: Let > a, be a series of positive terms such that

a,’.‘/: 1+ E +£‘— where p > 1 and (rp,) is a bounded sequence. Then
_ Ann n nP

the series > a, converges if 3 > 1 ahd diverges if B < 1.

a, T
Proof: —2-=1 + E+——“—, p>1
An4 n np

Since p> 1, lim L

Also (rp) is a bounded sequence.

) r
Hence lim "l = (.
n—>wo pnP~

- lim n( n —1} =B.
n—e An4

. By Raabe’s test > a, converges if B > 1 and diverges if B < 1.

If B = 1, Raabe’s test fails. In this case we apply Kummer’s test by
taking d, = n log n.

Now d, n

an+1

.

=—(n+1)log (1 + l) + In logn
n nP!

e nlog n [l + 1 +—r—“—) — (n+1)log(n+1)
n nPf

n+l
U n - nP?

It is clear that (logn ) - 0.
nP!

Since (ry) is a bounded sequence, (I,ll;)_gl_n] —0.
~ n

51

SPACE FOR HINT




SPACE FOR HINT

o lim [dn —a'l——dn+,)=— loge =— 1<0.

n—w a n+l

-.By Kummer’s test > a, diverges.

Problems:
2 . 1.2.3
1) Test the convergence of the series §—+ :1;.5 + 357 +....
Solution: Let a, = — 1.2.3..n
3.5.7....2n +1)
a, _ 1.2.3....n < 3.5.7...2n+1)(2n +3)
a ., 3.5.7..2n+1) 1.23...n(n+1)

2n+3 _ 2+3/n
n+1 1+1/n

. a
Co lim n_=2>1.
n—»oo an+1

-.By D’Alembert’s ratio test > a,, is convergent.

n

2) Test the convergence of the series Zn—'
n!

n
Solution: Let a, =

n!
a, _n" (n+1)!
= X
anyg Nl (n+DD
_ (n+Dn" _ 1
(n + 1D 1)"
)
n
o lim 2n_ = 1 < 1.
n—>»w 9 c

n+l

.. By D’Alembert’s ratio test 3 a,, is divergent.

. -
3) Test the convergence of the series 3 2" nr1
n
n!
Solution: Let a, = 2 n:
nn
a, _ 2n n! x (n +1)(n+l)
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. By D’Alembert’s ratio test >_a, is convergent.

4) Test the convergence of the series > x" where x is any positive

n+1
real number.

Solution: Since x is positive the given series is a series of positive terms.

Now, a, _ n(n+22)l
Ann (l’l+1) X

_ [a+2/n) 1

(1+1/n)? x

a, _

oo lim
n—wo g

1
1 X
.. By ratio test, > a,, converges if x <1 and diverges if x > 1.
If x = 1, the ratio test fails. ”

Whenx=1,a,= n_ - !

n+l . Ja+1/n)’

) a
S lim —2—-=1,
n—w q

n+l

.. The series diverges.

n?+1
n

5) Test the convergence of the series >

n? +1

Solution: Let a, =
51‘1

a, _n>+1 5nH

. x>
a,, 5" (n+1)° +1

_ 5(n*+1)
m+1)>2+1

5(n% +1)
n+2n+2
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1
5|1+ —
_ ( nzj
2 2
I+—+—

n n

) a ‘
Jo lim 1_=5>1.
n—w g

n+l
-.By ratio test the series converges.

6) Test the convergence of the series

) 1 1 2" +3"
Solution: Let a, = X +3n = NPT
2“ +3n 2n+13n+1
. X

an+1 2“3!‘1 2n+] +31‘1+1

6(2" +3")
2n+l +3n+1

_ 201+ (2/3)"
d+ /3™

o lim 20 =2>1,

n—oo g n+l

. By ratio test the series converges.
7) Test the convergence of the series

1 12 , 123 ,

—X+—X"+—X" +......

3 3.5 3.5.7

1.23...n n

Solution: Let a,, = X
3.5.7....2n+1)

2 3 22 32 23

1

33

n 1.2.3....n nX3.5.7....(2n+1)(2n+3) 1

T, X 2
a,, 3.57..@2n+D)" 1.2.3..n(n+1)

:2n+3[l =2—{—3/n l
n+1 {x 1+1/n \ x )’

\

54

X

n+1



. . )
. By D’Alembert’s ratio test the series > a, converges if — > 1
X

and diverges if 2 < 1.
X

(i.e.) the series 3 a, converges if x < 2 and diverges if x > 2.
If x = 2, the ratio test fails.
2n+3 _ 1+ 1

) a
In this case, —2— =

a,, 2n+2 2nf2
An g 1
a, 2n+2

n a, _1l= n__ 1
" \a,, ) 2n+2 2+2/n

. Iim n( i —1]=l<1
n—e0 an+1 2

. By Raabe’s test, the series diverges.

Cauchy’s Root test
Theorem 2.2.3:

Statement: Let 3 a, be a given series of positive terms. Then Y a_ is

convergent if lim a}/™ < land divergent if lim a

n—co n-—o0

1/n
n

> 1.
Proof:

Case(i) Let lim al/"=¢<1.
n-—w

Choose € > 0 such that ¢+¢g < 1.

Then there exists meN such that a/"<¢ + ¢ for all n' > m.
oo ap <(€ +¢g)" forall n > m.

Since £+¢& <1, ¥ (I +€)" is convergent.

.. By Comparison test > a_ is convergent.

Case(ii) Let lim a!/"=¢> 1.

N—»

Choose € > 0 such that /— > 1.

Then there exists meN such that al/"> ¢— ¢ for all n > m.

c.ap>(é—¢)' foralln>m.
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Since £—€> 1, Y (I —¢)" is divergent.
. By Comparison test Y a, is divergent.
Note: The following is the more general form of Cauchy’s root test.

Let Y a_ be a given series of positive terms. Then X a, is

. . . . . 1/
convergent if lim sup al/" < 1and divergent if lim supa, > 1.
n— n—»o0

Cauchy’s condensation test

Theorem 2.2.4:

Statement: Let a, +a,+ta;+....fa, +...... (D

be a series of positive terms and whose terms are monotonic decreasing.

Then this series converges or diverges according as the series

ga, +g’a; +....+g"a;

converges or diverges where g is any positive integer > 1.

Proof: Let s, = a,+a,+az+....+a, and

--------------------------------------------------

<ga, +Hg*—g) a,+....+ (g—¢"™) ag’] . (since the terms
of the series are monotonic decreasing)

=ga,+g(g-1)a, +g’(g-1)a’+....+g"'(g-1) aj .

=ga;Hg-1)(a, +g? aé +..+gt] ag'l ).

— 8y +(g—1) th-1-

cosg< ga,Hg-1) th.

.. If the series (2) converges then (1) converges.

Now s; >ga, +Hg’-g) az +....F(E@—g" D) ag.
— g'—l n _n
—gag+————g (g2a§+.....+g ag)

_ -1
_gag-f--—é——(tn-gag)
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~1
=a, +8 4,

g

.. If the series (2) diverges then (1) diverges.
Problems: S

1) Test the convergence of the series Z———l—-— .
- (logn)”
Solution: Let a, = —1——
| (logn)"
cnfa o
S Q¥a, =
logn

~“lim Ya, , =0<1.
n-—»w

*..By Cauchy’s root test Z—l——- converges.
's (logn)"
| | 2

-n
2) Test the convergence of the series Z(l +l) .
n

" ~n
Solution: Let a, = (1 +l)
n

. -n '
*..By Cauchy’s root test Z(l +—1—) converges.

n
: 3
. n” +a
3) Test the convergence of the series 3 .
2" +a
3 3
. n" +a n
Solution: Let a, = - and b, = —
2" +a 2

a, n3+axzn
b, 2"+a n’

_(@’+a)2" _(n’+a){ 2"
n’(2" +a) n® )\ 2" +a
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=(1+ a) 1 J.
n® )l 1+@/2")

o lim a—“=\ 1.

\
n-—>wo
n

.. By Comparison test, the given series is convergent or
/7

3
. . n- . .
divergent according as 2:-——2n is convergent or divergent.

o0

1/n
o/ =(nsj _ n3/n .
! 2

Also lim n*'"=1.

n—»oo
- lim jfb, = 1
n—»c0 2

.. 2.b, is convergent.

. 2 a, is convergent.

4) Test the convergence of the series 3 .
nlogn

Solution: By Cauchy’s condensation test the series 3 converges

nlogn

or diverges with the series Z.—2—= 3 - 1 _ 1 Zl
2" log2" nlog2 log2  n

We know that the series Zlis divergent.
; , n |

.. The given series diverges.

5) Test the convergence of the series

(L)o( L t)e(L
573 YT P + e

Solution:
( 1 1/n
[3‘n/2 ) if niseven
aL/n =
1 1/n
[WJ ifnisodd
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(1

—— ifniseven
Jf;' .

Wlfﬂ isodd
.

1
The sequence (-2—1—,—2(—}%) converges to (——J as n —o.

NG

1 1 .
.. —= and —= are the only limit points of the given sequence
2 NE) Y

lim sup al/®= L 1.

n \/’5
~.By Cauchy’s root test the given series is convergent.

CYP Questions:

. X X
1) Test the convergence of the series 1 + > +—+ 5 +eeen where

X is any positive real number.

P
2) Test the convergence of the series ZP—'- »(p>0).
n!

n

. . x
3) Test the convergence of the series > —.
‘ n

4) Test the convergence of the series

1+ 2B, HotDBB+D o
r r(r+1)2!

5) Prove that the series Ze“/;x“ converges if 0 <x <1 and
diverges if x >1. |

6) Test the convergence oﬁlﬁs@es ZT}—?.
n(logn

| . 1 Y
7) Test the convergence of the series Y| 1 +—

Vvn
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UNIT -3

Unit Structure:

Section 3.1: Cauchy’s Integral test
Section 3.2: Harmonic series
Section 3.3: Absolute Convergence

Section 3.4: Conditional convergence

Introduction: In this unit we discuss the convergence by cauchy’s

integral test and the Harmonic series. Also we discuss the absclute

convergence and conditional convergence of the series and some

important theorems on the series.

SECTION-3.1 - CAUCHY’S INTEGRAL TEST

CAUCHY’S INTEGRAL TEST

Theorem 3.1.1:Let f be a non-negative monotonic decreasing integrable

n
function defined on [1,0). Let I, = {f(x)dx . Then the series
1

2.f(n)converges iff the sequence (I,) converges. Further the sum of the

series lies between I = lim I, and I + f(I).

n->»oo

Proof: Let f(n)=a, .

\\§\ince f is monotonic decreasing f(n — 1) > f(x) > f(n) where n— 1 < x <n

S Ape = f(X) = ap.

n-1

Tan_ldxz ff(x)dxz ?andx .
-1 n-1
A== 1an > [f(x)dx> (0~ (n— 1)a,.
n-1

apg > [f(x)dx > ag. —mememee e (D
n—1

Replacing n by 2,3,4,....,n in (1) and adding we get

n
atatazt..ta, > [f(x)dx 2 a,+as+a,+...+a,
1
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. Sp—ap=> I > s,—a; where s, = a;+a,ta;+....+a
a1 sp— Iy = an

Since f is non-negative, f(n) =a, = 0.

ar= sp—1y 2a,>0.

Let sy — In = An.

Soar2 A 20, e e 2)

. (Ap) is a bounded sequence.

Also Ap+1 — An = Sp+1 — Sn— Ine + 1

n-+l

=apn — [f(x)dx
n

n+l
<ap— f[a,,dx =0
n

. An-}-] S An .
. (Ap) is a bounded monotonic decreasing sequence.

oo lim Ap = lim (s, — L) exists.

n—w n—»0
- lim s, exists iff lim I, exists and lim A, =s — I ~——-—-- 3)
n—>oo n—oo n—,w

where s is the sum of the series and 1 = lim I,.
0n—>w

. The series Y f(n)converges iff the sequence (In) converges.

In this case, from(2), a; > lim A, = 0.

n—

By@3),a;=>s-1=0.

SI14+a;> s>1

S I+f(1)= s21L
Problems:

. 1 1 1 . .
1) Show that lim | 1+—+—+.....+——logn |exists and lies between 0
n-—>o0 2 3 n .

and 1.(This limit is known as Euler’s constant)

Solution: Consider the function f(x) = 1 defined on [1,0).
X .
Then f(x) is non-negative and monotonic decreasing.

n
Let1,= j—l—dx= (log x)} =logn.
1 X ;
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3) Using the integral test discuss the convergence of the series Y ne™

Let f(x) =an,= 1 .
n
1 1
sn—In=1+5+—+ ..... +——logn
By Cauchy’s integral test s, — I, converges and its limit lies between 0
and a,.
Buta; =f(1)=1.
. lim (l + 1 + —:1): + et 1_ log n) exists and lies between 0 and 1.
n—co n
2) Discuss the convergence of the series Z‘, 1. where a = 0.
n=2 n(logn)“
Solution: Let a, = ———1———,a >0,n=2.
n(logn)“
Consider the function f(x) = _ so that f(n) = an.
| x(log x)“

Clearly f(x) is non-negative and monotonic decreasing on [2, o).

Case(i) Leta = 1.

z{ x(log x)*

2[1_1

_ (logn)™  (log2)'™®
l1-o l1—-a

n

(log X)"“]
o

2

».(In) converges if & > 1 and diverges if a < 1.
Hence by Cauchy’s integral test, the given series converges if
a > 1 and diverges if o < 1.
Case(ii) Let a = 1.
~.1n = [log (log x)]3
= log (log n) — log (log 2) — o« as n — . |
.. (In) diverges and hence the given series diverges.

2

. 2
Solution: Let a, = ne™
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Consider the function f(x) = xe""2 so that f(n) == a,.

Clearly f(x) is non-negative and monotonic decreasing on [1, o).

.2
xe ~ dx

In=

e =]

s > %e" asn — oo,

By Cauchy’s integral test, the given series is convergent and its

sum lies between —;—e”l and %e“l‘

ALTERNATING SERIES
Definition: A series whose terms are alternatively positive and negative
is called an alternating series.

(i.e.) the alternating series is of the form

aj—ap+az —aq +....... = 3 (-)™'a_ where a,> 0 for all n.
Examples:
4
2) 1-2+3—-4+....= 3 (=)""n.

Leibnitz’s Test:
Theorem 3.1.2:

Statement: Let Y (-1)""'a be an alternating series whose terms a,

satisfy the following conditions

(i) (as) is a monotonic decreasing sequeﬁce.
(ii) lim a, = 0.
n-—>w

Then the given alternating series converges. |
Proof: Let (sn) denote the sequence of partial sums of the given series.
Then spn=a; —ay +a3 —aj +....... az,;_l - a;;n.
San+2 = S2n + A2ne1 — A2n42.
o S2ne2 = Son = g+ — Az2n42 = 00(by (i)

. S2n+2 2 Son.
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.. (s2n) is a monotonic ‘increasing sequence.
Alsosyy=a;—(ag —az)—(ag—as ) — ....... — (azn—2—azn-1)
< aj.
.. (s2n) is bounded above.
.. (s2n) is a convergent sequence.
. Let (szp) — s.

Now sap+1 = Son + azn+i-

. lim Spp+1 = lim sop + 1im aspsg.
n—>»co n—oo - n—we

=5 + 0 ( by (ii))
. (S2n+1) — S.
Thus the subsequences (szp) and (s2p+1) convergé"s to the same limit.
| c.(sn) — s.

.. The given series converges.

Problems:
] 1 1 1
1) Show that the series 1 — > +§— " +.... converges.
. 1 )
Solution: Let a, = —.
n

Then the given series is 3 (—D)™" (lj = > (-D""a,
n

] 1 1
Since — > —— | we have a,> a,. for all n.
n n+1

.".(an) is monotonic decreasing sequence.

Also lim a,= lim —1—-= 0.
n->wo n—o n

.. By Leibnitz’s test, the given series converges.

: n+1
2) Show that the series Z[(—_l)—) converges.

log(n +1)
Solution: Let a, = 1
log(n +1)
Then lim a,= lim 1 =0
n—>e n—e log(n +1)
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Solution: Let a, =

Also lim a;= lim

Solution: Let a,

Also 1lim a,,'= lim = 1

1

. 1 '
Since > , we have a,> an+ for all n > 2.

logn log(n +1)

. By Leibnitz’s test, the given series converges.

3) Show that the series 3 (—i)"" (—3—9—5) oscillates.

n
3n—-2"

Then a, > a,+; for all n.

= 0.

= Hm 1
n—>w© n—>w 311—2 n»>o 3—2/n 3

.. The given series oscillates.

1+24+3+....+n
(n+1)°

4) Show that the series Z(—l)"”( Jconverges.

_ 1424+3+....4+n
(n+1)°

_ n(n+1) _ n
2(n+1)°  2(n+1)?

Then a, > a,+; for all n.

5 im ! >
n—»mo n—w 2(n + 1) n—0 211(1 +1/ n)

.. By Leibnitz’s test, the given series converges.

CYP Questions:

1) Discuss the convergence of the following series using Cauchy’s

integral test.
® 1

1 ey &8 1
1) >———— (iii
n?+1 0 1 n(logn)? (1) ?nlogn(loglogn)2

() i

2)4 Test the convergence of the following series by using Leibnitz’s

test.
) I 1 1
l-——+— ..
M 5 9 13
(i) L1 + L1 +..neee
1.2 34 5._6 7.8
_ n+l
(iif) Z( D" (n+1)

2n
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(_1)n+1 n
Sn+1

(iv) X

™) »z(—-n“[l +1)
n

SECTION-3.2 - HARMONIC SERIES

Definition: The series Z—? is said to be harmonic series.
n

Theorem 3.2.1: The harmonic series Zip converges if p > 1 and
n

diverges ifp < 1.

| Proof:

"Case(i) Let p = 1. Then the series becomes lehich diverges.

n

Case(ii) Let p < 1. Then n®P <n for all n.

. 1 .. »
By comparison test, Z—p diverges.
n

Case(iii) Let p > 1

Lets, =1+ —+—1— +——1—
2P 3P n? )
Thens .., =1+ —1—+—1— ]
2 2P 3P @™ -1




Sincep>1,p—1>0.

Hence. .—1—< 1.
2p-1

( 1 )
-+
2r

S S < k.

Let n be any positive integer. Choose meN such that n < 2™ — 1.

Since (sn) is a monotonic increasing sequence, Sy < S m+l_; -

Hence s, <k for all n.
.. {sn) 1s 2 monotonic increasing sequence and bounded above.

. (sn) is convergent.
1

S, Q.—— converges.
n? '

CYP Questions:

1) Show that the sum of the series ZLP lies between and

n p—1

p
p—1

ifp>1.

SECTION-3.3 - ABSOLUTE CONVERGENCE:

Definition: A series 3 a, is said to be absolutely convergent if the series
>.|a, | is convergent.

Examples:

n g
1) The  series Z( 12) is  absolutely  convergent, for,
n

1"
n? |

_ 1 o .
=2 —5 , which is convergent.
n

>

67

SPACE FOR HINT




SPACE FOR HINT

n
" 2) The series Z(ml) is not absolutely convergent, for,
n
n
2 D =Zl, which is divergent.
n n

Note: If Ya, is a convergent series of positive terms, then 2 a,is

absolutely convergent.

Theorem 3.3.1: Any absolutely converge series is convergent.

Proof: Let > a, be absolutely convergent.
.. X la, | is convergent.
Lets,= a,+a,+a;+....+a, andt,= |a, |+|a, |+]a;|+....+]a, |
Since Y |a, | is convergent, (t,) is convergent and hence it is a Cauchy
sequence.
.. Given £ > 0, there exists njeN such that
| tn — tm| <€, for all n,m > nj.-=~==memmmmmnenm- (1)
Letm>n.
Then | sp—sm|=jay, tagFa,t.tay]
<lapyg | Flag, [ Flags |t Flay |
=] th — tm]
<g, for all n,m = n; (by (1))
..(sp) is a Cauchy sequence in R and hence it is convergent.
.. >.a, is convergent.

Note: The converse of the above theorem need not be true. For example

. -D". . ..
The series Z( ) is convergent. However > — is divergent so that the
n \ n

series is not absolutely convergent.

CYP Questions:

D"
nP

(="

1'13

1) Test the convergence of the series >

2) Test the convergence of the series 3
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SECTION-3.4 - CONDITONAL CONVERGENCE:

Definition: A series Y a, is said to be conditionally convergent if it is

convergent but not absolutely convergent.

— n
Example: The series Z(——l—)— is conditionally convergent.
n

Theorem 3.4.1: In an absolutely convergent series, the series formed by
its positive terms alone is convergent and the series formed by its

negative terms alone is convergent and conversely.
Proof: Let 3 a, be the absolutely convergent series.

0 ifa_ <0

n —

a, ifa, >0 0 ifa =20
Define p“={ " " “an qn={ !

—a, ifa, <0
(i.e.) pn is a positive terms of the given series and q, is the modulus of a
negative term.

" 2P, is the series formed with the positive terms of the given
series and Y.q, is the series formed with the moduli of the negative
terms of the given series

Clearly p, < |an| and qn < |a,] for all n.

Since the given series is absolutely convergent, > |a, | is a
convergent series of positive terms.

By Comparison test, > p, and . q, are convergent.

Conversely, let 2 p, and ¥ q, converge to p and q respectively.
By the definition of p, and qn we have |an] = pn + qn.

S 2la, [ = Z(pn +94)

= 2pn 24,
=p+q.

~. >, a, is absolutely convergent.

Theorem 3.4.2: If > a, is an absolutely convergent series and (b,) is a

bounded sequence, then the series > a b, is an absolutely convergent

series.
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Proof: Since (b,) is a bounded sequence, there exists a real number k > 0
such that |b,| < k for all n.

. |anbn] = |an|ba| < k|aq| for all n.

Since Y a_ is an absolutely convergent, >’|a, | is convergent

- 2 k|a, |is convergent. |

.By Comparison test, 3’| a, b, |is convergent.

- >a,b, is absolutely convergcnt.

Problems:

: -n"
1) Test the convergency of the series Z(—g
n

Solution: Case(i) Let p > 1.

D"
p

n

Then 3

| B
= > —is convergent.
nP

.. The given series is absolutely convergent and hence convergent.
Case(ii) Let 0 <p < 1.

. i 1 1 ). . .
Since > ;| — |is a monotonic decreasing sequence
n

n? (m+DP

and [—-LJ — 0.
Ilp

.. By Leibnitz’s test the given series converges.

. . . | I
In this case the convergence is not absolute since Z—-p diverges

n
when 0 <p < 1.
Case(iii) Let p = 0.
Then the series reduces to —1 + 1 -1 + 1 — .....which oscillates finitely.
Case(iv) Let p < 0.
1 ). '
Then the sequence (—;) is unbounded. Hence the given series oscillates
n
infinitely.
2) Show that the series X (=1)"[{(n?+1)-— n]is conditionally
convergent. | .
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Solution: Let a, = 4/(n 24 )—n= !

(n2 +1)+n

Then a,> a,+; for all n.

Also lim a,= lim 1 = Q.

n-—oc n—oo ’(nz +])+n

-. By Leibnitz’s test, the given series converges.

Next we prove that 3| (=1)"[/(n? +1) —n]|is divergent.

D2+ —n]} = J(Z+D) —n=a, = L
‘ J@Z+1) +n

Letb.1=-1—
n
N n _ 1
b, Jm*+D+n f(l 1) 1
+— |+
n
. a, 1
o.v l[m-——_-z_-
n—>wo b 2

n
. By Comparison test, Zan is divergent.
.. The given series is not absolutely convergent.

.. The given series is conditionally convergent.

n-1 ’ -
3) Show that the series 3, (X s converges absolutely for all values of x
n-—1)! :
n-1
Solution: Let a, =
(n—-D!
o]
Ian+l | I X I
. a
. lim |—2-| = oo forall x # 0.
n—>o 1A, R : o
Xn—l ' ‘ _
-.By ratio test the series 3, Y is convergent for all' x = 0
o n-—

and the convergence is true for x = 0.

.. The series converges absolutely for all x.

"1
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. —1D" sinno
4) Test the convergence of the series Y, ) 3
n

l(—-l)“sinnoc|< 1

Solution: Since | sin 8] < 1, we have | 3 i_ 3
: n n
. 1. ) -D"sinnao .
Since 2.—51s convergent, the series Z( ) 3 is absolutely
n n
convergent.

Theorem 3.4.3: Let (a,) be a bounded sequence and (b,) be a monotonic

decreasing bounded sequence. Then the series X a, (b, —b,)is

absolutely convergent.

Proof: Since (a,) and (b,) are bounded sequences there exists a real
number k > 0 such that |a,| < k and |b,| < k for all n.-------- (1)

Let s, denote the partial sum of the series > |a, (b, —b,.)]-

Then s, = il ar(br —br+1) |
r=1

= il a,|(b, —b,,;) {(by) is monotonic decreasing)
r=1

<k 3 (b, —b,,;)

r=1
=k(bi —bn+1)
= k(|b1f = b))
< k(k+k) = 2k>2.
.".(sn) is a bounded sequence.
- 2la, (b, —b,.,)|is convergent.
- 2a, (b, —b,,,)is absolutely convergent.

Dirichlet’s test
Theorem 3.4.4:

- Statement: Let > a, be a series whose sequence of partial sums (sn) is

bounded. Let (b,) be a monotonic decreasing sequence converging to 0.

- Then the series > a, b, converges.

Proof: Let t, denote the partial sum of the series >ayb, .
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Sth= Xab,
r=} -’
n
=gb; + Zl(sr ~s, )b, ("o s, —s,; =a,)
=

n-1 _
= zlsr(br —br+1)+snbn """""""" (1)
Since (sp) is bounded and (b,) is a monotonic decreasing

n-1
bounded sequence 3 s (b, —b,,,)is a convergent sequence.
=1

Also since (sp) is.bounded and (b,) — 0, (shby) > 0
-.From (1) it follows that (t,) is convergent.
~. 2a,b, is convergent.

Abel’s test

Theorem 3.4.5:

Statement: Let > a, 6 be a convergent series. Let (b,) be a bounded
monotonic sequence. Then the series Y a,b, is convergent.
Proof: Since (b,) is bounded monotonic sequence, (b,) —> b (say)

Let b—b,if(b,) is monotonic increasing
etcp, =
" b, —bif (b,) is monotonic decreasing

e = a,b—a b, if(b,) is monotonic increasing
«+ Anbn T . . . .
a,b, —a_bif(b,) is monotonic decreasing

ab = ba, —a,c,if(b,) is monotonic increasing
. nYn . . N .
ba, +a,c,if(b,) is monotonic decreasing

Clearly (cn) is a monotonic decreasing sequence converging to 0.
Also since 3 a,is a convergent series its sequence of partial sums is
bounded.

.By Dirichlet’s test > a, c, is convergent.

Also 3} a, is convergent.

. 2. ba, is convergent.

~By (1) >a_b,is convergent.
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Problems:

a
1) Show that the convergence of ¥ a_ implies the convergence of Z—;l‘-‘— .

Solution: Let > a, be convergent.

1). .
The sequence (—) is a bounded monotonic sequence.
n

a,.
..By Abel’s test 3 —% is convergent.
n

sin nO

2) Show that the series > converges for all values of 6 and

cosnf

converges if O is not a multiple of 2.

2

n

sin nO

Solution: First consider the series Y.
"~ 'n

. 1
Let a, = sinnb and b, = —
n

Clearly (by) is a monotonic decreasing sequence converging to 0.

Now s, = sin® + sin26 + .... + sin nB.

l cos:::c9 2sin Gsin—9—+ ........ + 2sin n()sin—Q
2 2 2

1 e [ o 39] ' (2n—1) (2n+1)
= —cosec— || cos——cos— |+........ +| cos 0 —cos 3]
-2 2 2 2 2 2

o 0 (2n+1
.. |sn| = |—cosec—| [cos— —cos 0
2 2 2
(
< 1 cosec—e— cos—|+|cos 2n +1 0
< 1 cosec9 X2 = [cosec—
2 2
0
S sal = cosec—z—
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S.(spisa bounded sequence when 0 is not a multiple of 2.

. By Dirichlet’s test Ya b, = ¥ Sinn® converges when © isnota
n |
multiple of 2x.
When 0 is a multiple of 2% the series I sin nb reduces to
n

0+0+0+......which trivially converges to 0.

sinnO

converges for all values of 0.

cosnf
n

Next consider the series 3

Sn = c0sSO + c0s206 + .... + cos no.

1 0 . (2n+1) . O
=— cosec— | sin 0 —sin—
2 2 2 2

cosel

0
cosec—
2

. (sn) is a bounded sequence when 0 is not a multiple of 2.

cosnf

. By Dirichlet’s test 3a b, = X converges when O is not a

multiple of 2r.

cosnO
n

reduces to

When 0 is a multiple of 2x the series 3

1+ l+ 1 + l+ ......which diverges.
2 3 4

cosnf

.. The series Y, converges except when 6 is not a multiple

of 2.
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CYP Questions.

(1) Discuss the convergence of the following series.

. (-D™
@) 2 log(n+1)

. nj 1 1
() 2D {nz +(n+1)2}

(2) Prove that ;’_oj >1In
n=2 logn

n .
1S convergent.

- . . - ' . . . 1 -
(3) Discuss the convergence of the series 2(1 + % bt _) sinnO

n n
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"UNIT -4

Unit Structure:

Section 4.1 : Binomial theorem for a Rational index
Section 4.2 : Binomial theorem — Greatest tern

Section 4.3 : Binomial Co-efficient — Approximate values

Introduction: In this unit we discuss the Binomial theorem for a

rational index, particular cases of Binomial expansion, greatest term of

the expansion, and finding the approximate value by using Binomial

expansion.

SECTION - 4.1 - BINOMIAL THEOREM FOR A
RATIONAL INDEX

If n is a rational number and — 1 <x < 1(i.e. |x| < 1) the sum of

i(ll———llx2 Foveent n@-D..Mn-r+1) X" +.... is the

the series 1 + nx +
2! r!

real positive value of (1+x)".

n n n
Letfin)=1+ —L+x+-—2x% +...o+—2x"+....
1! 2! ; 1!

We can sum this series only when it is absolutely convergent.
Denoting this series by u; +uz +uz +..... |

u n

Then Srtl = Mo yr o et yrd
u, r! (r—-n!
n—r+1
= X
r
|u | n—r+1
r+! =I IXI
lu, | | r
n-+1
= - I} x|
r
. u
o lim —E = x|
oo U,
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. The series [u;| + |ua| + |us] + ..... is convergent if [x| < 1.

(i.e.) the series u; + uy +uz + ..... is absolutely convergent if Ix] <1.

m m m |
Ly 4 —2x2 4. +—ExT+....
1! 2! r!

Similarly the series f{(m) =1 +

m-+n
(m+n),  (m+m), o (mtn) .

I 2! r!

are also absolutely convergent if |x] < 1.

fim+n) =1+

By Vanderminde’s theorem, f(m)f(n) = f(m+n) for all values of
m and n, provided |x| <1

Note: f{m)f(n)f(p) .... S factors = f(m+n+p+....s terms)
) -so
S

Some important particular cases of the Binomial expansion.
DA-x)"=1+x+x*+x +.....

2) 1—-x)2=1+2x +3x% +4x> + ....+@+1)x" +....

3) A-x)7= = {12 +2.3x +3.4x% + 4.5 +....+Ho+DO+2)x" + ...}

4) 1=—x)*= = {123 +23.4x+3.4.52 +4.5.6C +.....

A= N~

+n+1)(n+2)(n+3)x" + ...}

n{n+1) <2 4 n{n+1)(n+2) 3
2! 3!
6) (1 - x)'l/2= 1+l X +£x2 +l£x3
2 2.4 2.4.6
7) (1—x)"”3= l+lx+ 1.4 x2+1'4'7 <34
3 3.6 3.6.9

5 A-x)T"=1+nx+

I'roblems:

1) Find the general term in the expansion of (1+ x)2/?

2( 2 2 N {2 .. v
—3—(5 - 1)(— - 2)....(~ —r+ 1J
Solution: The (r+1)™ term = 3 3 r

X
r!

= 2DEAED- B +5)
37 (1)
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The number of factors in the numerator is r and (r — 1) of these are

negative.

- The (~+1)" term = (~1)" 2.14.7...3r—5) X"
37
2) Expand (1+3x)%'? given [x| < %

Solution: The function can be expanded in ascending powers of x if

3x] < 1 (i.e.) if x| < %

2 3 4
=1+5_(3x)+ 5.3(3){) +5.3.](3x) +5.3.1.(—1)(3x)
2) 2(2) 32 4! 2

The terms which follow are alternatively positive and negative

and the general term is

5.3.1.(-D)(3)(=5).....(=2r = 7) (3){ )‘
r! : 2

Q) (_1),_35.3.1.1.3.5).’ ..... (2r+7)[32x) >3,
ri

3) Find the first term with a negative coefficient in the expansion of
(1+2x)1*7,

Solution: The (r+1)™ term in the expansion of (1+2x)'*?

14 (14 14
?{—3— —1).{? -r +])
= 2 2x)', .

r!

The first negative term will occur for the 1east value of r such that

14 i1<0
3

2
ie)r> 5—
(i.e.) 3
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Thus the first negative term is obtained by taking r = 6 and its value is

E.[E_l}..{li_sj
_ 313 3 )

6!
141185 2(-§)
_ 33333\ 3),6.6
6!
_ 14.11.8.5.2.1 3)6x6
6! 3)

éign of terms in the Binomial expansion

Let us denote the r' term by u;

Then we get
Upg _ D1+l _(1_n+ljx
u, r r

u,.,, . ..
Ifx>0andr>n+1, —Lis positive.

Up

U .. .
Ifx<0andr>n+ 1, -2 s negative.

u,

After a certain stage, the terms are alternately positive and
negative if x is positive and are all of the same sign if x is negative.
CYP Questions:

1) Find the general term in the expansion of the following function

in ascending powers of x. In each case, state when the expansion

is valid.
() (1+x)™"? (i) (1+x)"3 (i) (1 —x)™°

(iv) (8+3x)°” (v) {(27 — x*)*} 17 (vi)

1
Vi-2x
2) Find the named terms in the expansion of the following
functions, when the expansions are valid.
() 4™ term in ( 1+4x)™ (ii) 6" term in (1+7x)172
@) 5™term in (8 — 5x%) 712 (iv) 10" term in (4 — 7x) 22

3) Find the first negative term in the expansion of
28/5 23/4
. 5 3
D|1+=x i) | 1+—
0 1+3x) G (1+3x)
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SECTION 4.2 : BINOMIAL THEOREM — GREATEST
TERM

Numerically greatest term

nm-b. ., no-bh..(-r+l) X" ...
2! r!

The numerical value of any term is not affected by changing x

A+x)" =1+nx+

into — x and so x may be assumed to be positive.
nn-DH(n-2)...n—-r+2)n-r+1) ,
r! *
_n(n—-DHn-2)...(n—r+2) nE
r! ’

U+l =

LT n—r+1X

u, r
We also know that x must be numerically less than unity, unless
nisa positive integer
S. Up+1 2 Up, numerically ifin—r+1jx>r
Ifr<n+1,n—r+1j=n-r+1
r>n+1l,n—-r+1]=r—-n-1.
In the first case
u;+.1 2u, if(n—r+)x>r
(n+Dx -

(l.e)r<
x+1

In the second case

U 2u if(r—n—-1)x=>r

. —(n+1)x
Le)rz——>—
(i.e.) —_—
since 1 — x is positive.
Problems:

1) Find the greatest term in the expansion of (1 +x)'*'? when x =

2
2
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pia e J {31
Solution: Here uc = 2

alBUEk {———”2) .

(r—D!
E—r+1
u, _ \ 2 _ (13- 2r+2) _1s-2r
u, r 2r 2r
_15-2r2 _ 15-2r
2r 3 3r
.U 2 U, if 15—2r >r

3r
(i) .. U >y, if 15 —2r = 3r

(i.e) . U 2y, ifr<3.
Hence the third and the fourth terms are numerically

equal, both being the greatest.
1313

j )
The numerical value of the 3™ term = 2 ; (l;‘-)

_ 13. 11(1]
2! \3

2) Find the greatest term in the expansion of (1 —x)*!"? when x

YY) 5,
Solution: Here u;+ =

B Eds (—~-r+2J ;

(r—1!

-2
7

and u, =

(31 )

—~—r+1

U,y \3 _ (31-3r+3)  _ 34-3r
- = ' X= — X

u, r : 3r 3r :
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o U 2 Uy, I 68 —6r >r

21r
(i.e) .. Uy =1y, iIf 68 —6r>21r
(i.e.) .. Uq; = uy, if 27r < 68.

] 68 14
.e) . U+ 22U, ifr< —=2—.
(i-e.) .. ur >7 =257

L Ifr=2, u4 >0,

". The third term is the greatest term.

2

o

The value of the third term = 3 —
2! 7 63
2
3) Find the coefficient of x" in the expansion of 1+(i3x +)24X in
—X
ascending powers of x.
2
Solution: 13X+ 24" = (1+3x+2x2)(1-x)™
(1-x)
= (1+3x +2x2){1 +4x+%x2 2205, L @rbOr2)@+3) .

3! n!

Coefficient of X"

_ (n+D(n+2)(n+3) +3 n(n+1)(n+2) + 2(n—-Dn(n+1)
6 ' 6 6

= ___(n;—l) {6n2 +9n+6}

_ (n+1)(2n% +3n+2)
= 5 .

4) If n is a positive integer, prove that the coefficient of x*" in the

. I+x . . . .
expansion of >3 1n a series of ascending powers of x is
: d+x+x°) .
-;— (n+1)(3n+2).
1+x  _  (1+x)(1-x)

Solution:

A+x+x%)? ((A-x)A+x+x2))>

_ 1+x)(1-x)°
(1-x3)’

= 1-2x+2x3 —xH)(1-x3)73
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= (1-2x+2x>-x%) {1+3x3+3—;—l-x6+. >
_ (n+1)(n+2)+2 n(n+1)

Coefficient of x>" 5

% (n+1)(3n+2).

5) If n is a positive integer, prove that the coefficient of X" in the

expansion of (3_x—__2)7 is 1 —2n.
(1-x)
. n _ _ n
Solution: Gx 2)2 _d=3d );) }
(1-x) (I1-x)

Numerator = {1 — 3(1 —x)}"

=1-3n(1 -x)+ 9—(32'"—1132(1—)()2—“(“ ~D0=2) 331y

3!
+ ..
=1-3n(1 —x)+ 11_(112_;—1_)32 (1—x)?— terms containing (1 — x)}"
and higher powers of (1 — x).

1 3n(l-x)
(1-x)? (1-x)?

.. Given expression =
' powers of (1 —x) upton — 2.

_ 1 __3n
1-x? (1-x)

+ an expression containing

powers of (1 —x) upto n— 2.

= (1-x)"2-3n(1 —x) "' + terms not containing x".

;. (n {-1)(n+2)x3n .

+ an expression containing

= 1+2x + 3x* + ...+ DX" +...—3n(1+x+x>+...)

+ terms not containing x".

_ n
. Coefficient of x" in S(gll{———z))z——is n+1)-3n=1-2n.
—-x

6) Prove that if n is a positive integer, the coefficient of x" in (1+x+x%)"

i< 1+ n(n—l)+n(n—1)(n—2)(n—3)+
an? (21°

Solution:  (1+x+x%)" = {(1+x(1+x)}"

ooooooo

= 1 + ncy x(1+x) + ncy x*(1+x)? +
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+ ncpx™( 14%) "'+ nepx"(14x) ",
Coefficient of X" in nc,x"(1+x) " = nc,,
Coefficient of X" in ncp_1x "'(1+x)™ ! = ncyr.(n—1)ci.

Coefficient of X" in ncpox "*(1+x)™ %= ncy_2.(n-2)c,.

------------------

-1+ 11_(n-~1)+ n(n-1) (n——2)(n—-3)+
| L || 2! 2!
-1+ n(n—l)+n(n—-1)(n—2)(n—3)+
1n? (21’

------

-------

7) Expan in a series of ascénding powers of x, and find

d

(1-2x)(1+3x)
when the expansion is valid.
Solution: By partial fraction

1 __2 . 3
(1-2x)(1+3x) 5(1-2x) 5(1+3x)

2 -1 3 -1
=—=—(0-2x)"+ = (1+3x

5 ( ) 5( )
= %U +2x +25% + 253 + 2% L)

+ % {1-3x+3%" -3+ .+ (D% +...)

1—x+7x2.. ..+ % (27 4 (DM

=1+ _;_ §{2n+1 +(___1)n 3n+1}xn .
n=[ '
The expansion is valid if and only if [2x[ < 1 and {3x| < 1 and both thses

. . . 1
conditions are satisfied if |x| < 3

X +1
x-D3x-2)

8) Find the coefficient of x" in the expansion of

Solution: By partial fraction

x+1 3 3 2
x-D*(x~2) (x-2) (x-D (x-1)’
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__3 +13 -2 >
Z(I—EJ -x (x-=D

-1
_ _g[l_g) +30-x)"1—2(1-x)?

X
= _§{1+£+[§J +} + 3{1+x+x>+....}

—2{1 +2x +3x>+4x> + ... Hn+1)x" +....}

". Coefficient of X" = — %51;— +3-2(n+1)

3
2n+1 :

=]1—-2n-—

1+x . s
A+x2)(1-x)?

9) Prove that the coefficient of X" in the expansion of

according as n is even or

%{(2n+3)+(—1)1>—1}, where p = %or ntl

odd.

1 1
+x  _ %7V 5

Solution: =
(A +x2)1-x)? 1+x2  1-x (1-x)?

= S&=DA+x) T+ L -0 -7

= l(x— Dl —x*+x* .+ %{1 +x+x*+ ...}

2
+ 1 +2x+3x2+4x3+....

Put n = 2p.

If p is even, coefficient of x*P = — %+ —21— +2p+1)=2p+1

If p is odd , coefficient of x*F = %4— % +Qp+1)=2p+2

. When % =p,coefficientof x" =n+1orn+2
Letn=2p—1.

If p is even, coefficient of x?P 1= _ %+ % +2p =2p
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If p is odd , coefficient of x?*! = %+ —;- +2p =2p+1
n+1 . n
~.When p = > coefficient of X" =n+ 1 orn + 2.

When p is even, coefficient of X" =n+ 1 = -;—{(2n +3)+ (=D},

When p is odd, coefficient of X" =n +2 = %{(2n +3)+ (=DHP .

CYP Questions:

1) Find the greatest term in each of the following expansions:

(D) (1+x)° when x = 4 .

(i) = (1—2x)*'? whenx =

Wl

(i) (1-x)"2 whe'nx=—97—.

W

5 V2
(iv) (1 + 3 xJ when x =

SECTION 4.3 : BINOMIAL CO-EFFICIENT &
APPROXIMATE VALUES

Sum of coefficients:

If f(x) can be expanded as an ascending series in x, we can find
the sum of the first (n + 1) coefficients.

Letf(xX)=ap+ajx+ax’ +asx +....+ax"+ .....
A-x)"'=1+x+x>+x>+.....

RiCOpE

- (a0 +a;X + apX” +agx° + ...+ ax" + ...,

(1 +x+x2+x3+.....)

.. Coefficient of x" in f(x)

" =apt+tar+ayt+azt+.....+a,
__X !
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Thus to find the sum of the first (n+1) coefficients in the
expansion of f(x), we have only to find the coefficient of x" in the

f(x)

expansion of
1-x

Problems:
1) Find the sum of the coefficients of the first (r + 1) terms in the

expansion of (1—x)~

Solution: The sum of the coefficients of the first (r + 1) terms in the
expansion of (1—x)™>
= the coefficient of X" in the expansion of a l—x))( ”
= the coefficient of x' in the expansion of (1-x)™*

4.5 5, 456 ;
3!

+ (r+D(r +'2)(r +3) <+
ri

= the coefficient of X" in 1 +4x +—>

_ (+DEr+2)r+3)
6
2)Ifnisapc ‘ve integer, prove that 14+3n + :13 4 n(nz;— 1)
3 4 n(n —1) 4.5 n(n—-1)(n— 2) (n +1)(n+2) =2n—3(n2 +7n+8)

1 2 2! 1 2 3! o2
Solution: We know that

E+D" = x" +nx™! + %x“‘z +

1-x)72 —1+3x+f; 24 453

------

+...

.. The given series is the coefficient of x" in (—+—1)—

(1-x)’

n
= the coefficient of x" in 2-01-x)}
(1-x)

= the coefficient of x"in 2" — 2! n(l —‘x) +n(%2 2" 21 -x)?
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4 termsinvolving (1 — x)? and powers of (1 — x), higher than the third
(1-x)’

2" n2"! Lo —12n3

= the coefficient of x" in > 5
(1-x%) (1-x%) (1-x)

+ terms

involving powers of (1 — x) less than n — 3.

_ on m+D)(n+2)
2

n.2"'(n+1)+n(n-12"">

=2"3m +1)(n+2)—4n(n+1)+n(n -1)}
=2"?*+7n+8)
Approximate Values.

Problems.

1

1) Find correct to six places of decimals the value of ————--
(9998)

) 1 1
-Solution: T 7
(9998) (10000 -2)

_ 1

1

1/4
2
101 1 ——
( 104)
-1/4
(i)
_ 10 |

10
15
1+—1— 2 +4 4 4 +....
__ 410* 2! 108

10
1
%J“%'F*%T(IF
=0.1 + 0.000005 + 0.0000000005
~=0.1000050005
= O.lOOOOSérrect'to six places of decimals

2) Find correct to six places of decimals the value of (1.01)'2 - (0.99)'"2.

Solution: (1.01)"2 = (1 +0.01)'?= (1 +x)'"> where x = 0.01
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1(_1j | 1(_1)(_3)
':1+%X+ 2 2,2 2y 2 23' 23
(0.99)2=(1-0.01)"?= (1 —x)'"

{9,
=1_%x+2 2/g2 2\ 2N 2003y

2! 3!

(102 = (0.99)2 =

ofp 33 EH,

2 3! 5!

=2 l‘x+—1—x3 +—7—x5 T
2 16 256

1 3 7 5
= X+=X +—X +....
8 128

1 3 7 s
= (0.0D)+=(0.01)" +——(0.0D° +....
(0.01) 8( ) 128( )

=0.01 + %(0.00000I) +terms not affecting the 6™ decial places
=0.01 +0.010000125
(1.0 - (0.99)!"2 = 0.010000 correct to six places of decimals.
3) When x is small, prove that .
au-2/3 Aun-3/4 ’
(1=3x) E (1= 4x) Tl s 3 X + 4x* approximately.
(1-3x)"""+(1-4x) 2
Solution:
(1-3x)77 +(1-4x)* _
(1-3x)7"3 + (1-4x)7"4

25 258 37 371
1+§3x+3 (3x)% + 4+ 3 3 3(3x) 1+24x+4 4(4x) +4.§ 4 (4x)* +

14 lﬁ‘_Z 15 159
1+%3x+3 3 (3x)2+3 3 3(3x) 1+l4x+4 4 (4x)2 + 4 ;‘ 4 (4x)% +

Since x> and higher powers of X may be neglected the expression,

(I—BX)_2/3+(1—4X)_3/4 2+5X+15 X

(=377 +(1-4x) ™" 2+2x+4%x
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2+5x+15—;-x2

2(1+x+»9~x2)
8

2+5x+151x2 9 NEE
= 2 1+x+—x2)
2 8

; -1
= (1+§x+2x2) 1+x(l’+—9—xj
2 4 4
5 9 o9 Y
(1+ x+———x } I-—x(l+——x)+x2 ,1+—x) —
2 4 4
=( +5x+i1—x2){1—x—2x2+xé}
2 4

(x3 and higher powers of x neglected)

(gt

.5 1 5, 5 ,
=1+ x+—x ~x-Zx*-Zx
2 4 2 4
=1+§x+4x2
2

4) Prove that \/ x2 +16 —\/;2 +9 = g—'nearly for sufficiently large
X

values of x.
Solution: vx? +16 —/x? +9 = (X2 +16)“2 —(x2 +9)“2

16 1/2 9 172
= x| 14+ — —X§ 1+ —
(e8] )
=X 1+l£—... —-X 1+—1-—9—-—-...
2 x2 2 x2

= x+§—x——?— ( since lis small)
X 2X X

-1 nearly
2x

5)If VN =a + x when x is very small, then prove that

JN=a. Z;Ng approximately.
' +3a’®

Solution: N = (a + x)?
3N+a’ _ . 3(a+x)? +a?
"N+3a?  (a+x)?+3a2

4a’ + 6ax + 3x2
4a? + 2ax + x?

I
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= a.————— approximately

2
=a.(r+§§)[L—3i)
2a 2a

( 3x X ) :
=a. | 1+=———— | approximately
: 2a 2a

( by omitting higher powers of x)
=a+Xx

=Jﬁ
1+x 2+x

6) Show that the error in taking > + 2 as an approximation to
+X

4
A/1+ X is approximately equal to ;—7 when x is small.

Solution: V1+x = (1+ X)1/2

2(2) . 502 )-3)
—l-x "2'—""'—2"X2+2 2 2 x3+.....
2 2! 3!

TP SNOE IV RSN R ENE

8 16 128

1+x 2+x 2+X 1+x

+ = +
2+Xx 4 4 2@+§]

Now

1, x 1+ -
= _+2 47X (1+§)
2 4 2 2
2 3 4
_ 1, x _1+x (X, X x7 X"
2 4 2 2 4 8 16
2 2 3 3 4 4 5
=l+§+l+§_§_x X X X X X X
2 4 2 2 4 4 8 8 16 16 32 32
2 3 4
=1+ X X X

-+
2 8 16 32
Neglecting x’ and higher powers, the difference between the two
expressions is -
sx* x* X X

128 32 128 27
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4
.. The error is approximately equal to 12{7- .

CYP Questions:
1) Ifnis a positive integer and
+ n
( X)3 = ay+a;X+a,X> +...4a X" +.....
d-x) |

2)
3)

4

6)

7

show that a, +a, +a, +...+a,_, =%n(n+2)(n+7)2“‘4.

If(1-x)° =1+ a;x +a,x2 +...+a,x" +..... find the value of

1+a,+a, +...+a,. "

Find the sum of the first n + 1 coefficients in the expansion of
2x -4

(1+x)(1-2x)

Find to three decimal places (998)'.

Find the value of (1.02)*2 — (0.98)*?.

(1-x)""?(16+8x)"? 1223 2
A+x)V2+(2+x) 40

in ascending powers of x.

When x is small, show that

approximately.

X

If x is large, prove that (x3 + 6)”3 ~ (x3 +3)U3 = -—12——;?5— nearly. -
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UNIT-S

Unit Structure:

Section 5.1: Exponential Theorem
Section 5.2: Logarithmic Series
Section 5.3: Modification of Logarithmic Series

Section 5.4: Euler’s Constant .

Introduction: In this unit we discuss the exponential series and its

application, logarithmic series and its modifications.Also we discuss the

about the Euler’s constant.

SECTION 5.1: EXPONENTIAL THEOREM

The Exponential Limit

1 n
Find lim (1 + —)
n—»co n
Solution:
Case(i): Let n be a positive integer.
By the Binomial theorem,

1Y)" 1 1 1 1
1-— | =1+nC, —+nC, — +nCs —+......+nC. —
( l’lj ln 2n2 3n3 nnn

___1+1+n(n—1) 1 +n(n—1)(n—2) 1 4
2! n? 3! n’
+n(n——1)(n—2) ..... (n—(n-1)) 1
m —

=1+1+l(1—l +—1— 1——-!- 1——2— S T
2! n 3! n n

...... +i[1—-1—J(1—3}..{1-“—“—1-)
n! n n n
<1+—+—1—-+ ....... +—1— ('.-l—n_l 1)
12! n! n
=I+1+-—1—+——1——+ ........ !
1.2 2.3 1.2.3 n
< 1+1+—+~1—+ ....... + !
22 21’1—]
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< 1+1+l+-1—+_..-...;.+
2 22

= 1+2(1——-}—)
21]

<3.

. n : B o
.. The limit of (1 + -I—J cannot be infinity.
n ,

o lim (1 +l)n.=' a finite number.
n—se nj-
This finite number is usually denoted by the letter e.
Case(ii)- Let n be a positive fraction.

~.n lies between two consecutive integéi‘s. '

Let those numbers be m and m + 1.

~m<n<m-+1.

1 ] ]

S - < —

m+1 n m
1+ ! <1+l<1+—1—
m+1 n m

Sincem<n<m+1

m n T m+l
(1+ I ) <(1+l) <\(1+—1—)
m+1 n ‘ m

Asn —> o, wehavem —>oandm+1—>o0.

m+l - m :
lim [l+—1—) = lim (1+~1—) [l+—1—]
moe " m moe o my . m) .

. . X 1 m - L 1
= lim | 1+— lim | 1+—
m—o m m—»o0 m

= ¢ . 1 (since m is a positive integer, by case(i))

’ 1 fm+1‘
m [1+ )
] . m+1/ .
lim
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m-+1
lim [1+———J
_ mow m +1

= . 1
lim [1 + ———) /
m—>o0 m+1 !

. lm [1+1J =e.
n—»oo n

Case(iii) Let n be a negative integer.

Il
— | @
—

o

Let n = —m where m is positive.

(-2 (2
(o) o5)

Asn —>o,wehavem—-1 — o

. " 1\ 1
Sliml1+— | = lim |1+ Iim |1+
n—»o0 n m—l—w m-—1 m—l-—ow m-—1

= e.] (by cases(i) and (ii))

=e.
] 1 :
We can easily seenthate = 1+ —+ — +....... +—4+.....00
I 2! n!

Now to show that e is an incommensurable number.

.. . . a
If it is not an incommensurable number, let it beg ,where a and b are

positive integers.

Then E=1+l+l+ ....... +i+ ! +....
b 12! b! (b+1)!
Multiply both sides by b!, we get
1 B! ! !
alb—1)!= b!+E+P-'+ ....... +-ti+ o +....
no2 b! (b+1)!
I p! ]
L ol 1 L

+ +— + +
2 b! b+1 (b+1)}b+2)

+ 1 +
b+1 (b+1)(b+2)

oooooooo

= integer +
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Consider the series

L + L + I +.......
b+l (b+1)(b+2) (b+1)(b+2)b+3)
< ! + I + I S RO
b+l (b+1)? (b+1)3
L
<_b+1 _ 1
1 b
1——
b+1

Also this series greater than 1 .
b+1

. . ) , . 1
~.a(b — 1)! = integer + a fraction, since the sum of series lies between 5

and .
b+1

.. an integer = integer + a fraction; which is absurd.

: a
. e cannot be expressed in the form e

.. € is incommensurable.
Note: The value of e iscalculated to more than 500 decimal places.
The value of ¢'is 2.7182818284......

The Exponential Theorem:

Theorem 5.1.1: For all values of X,

( Y 1 1 )x x x?2 x"
l+=—+—+.+—+..... =l+—+—+.cF—+.....
12t n! i 2! n!
2 n
Proof: Let f(x) = 1+§—+£—+....+£—+ .....
i 2 n!
T
In this series u,,, = X—' .
r!
r-1
Then u,= .
(r—n!
Therefore = X
u r

r
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. u . X
s lim —=L = lim = =0.
T—>co0 ur r—>o0 r

. The series f(x) is convergent for all values of x.

Thus the following series

2 r
f(m)=1+m+m—+....+m +eeeee
2! r!
2 r
f(n) = 1+P—+n—+....+2—+ .....
I 2! r!

(m+n)+(m+n)2 N +(m+n)r N

1! 2! r!

f(m-+n) = 1+

are convergent for all values of m and n.

.. Series for f(m) and f(n) can be multiplied.

| LA r!

2 r 2
f(m).f(n)={l+2+m—-+....+m +..... }.{1+—+—n§'—+....

[m nj (mz mn nzj [m3 m’n mn? m3j
=14+ —+— |+ + + +| —t———t———+— |+
1 2! . 2! 3! 2t 12 3!

The (r+1)th term in the above product is

n_lr mr—l n mr—2 n2 m2 nr—2 m rlr—l

soe

r

+ —+ + .t — +
rt =D (r=2)! 2! 20 r=2)! U (-1 ¢!

1
r
1 r r-1 —-2_2 r—1 r
—m +rCm n+rCom “n° +...+rCimn " +n

!

= ~1—(m +n)’
r!

2
(m+n)+(m+n) +.m+(m+n) 4
1! 2! r!

= f(m + n)

S Am).f(n) =1+

-----

Case(i) Let x be a positive integer.

Then by the above result, we have

f(m).f(n).f(p)...... x factors = f(m +n + p Fox terms).

Putm=n=p=1.
SADD). . x factors = f(1 + 1 + 1 + .... x terms)

98

......

r! _ r! _ r! _
= _—<{m' + mn+———  m™n%+...+ mn"! +n’
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(i.e.) {f(DH} = f(x).
Case(ii) Let x be a positive fraction P , where p and q are positive

integers.

Then {{g)}l ((2)o{ 2] actors

= f(p)
= {f(1)}".

- A= f(%)

AR = f(x).

Case(iii) Let x be a negative integer.

Let x = — s where s is a positive integer.
f(s).f(—s) = f(s —s) = f{0) = 1.
1
o f(-s)= —.
(—s) )
1 1

Thus T =19 55 ~ T

= {Y =
= f(x) = {f(1)}* for all values of x.

Butf(1)=1+—1—+—1—+ ....... +-—1—+.....
n 2 n!

x? " 1 1 1 )"
+—=t .+ —+..... = |14+ =+—=+..+—+...
12! n 2! n!

. 1 1 1
Sincee=1+—=+—+....... +—+ ..., we get
1N 2 n!,

X

X=(1+—+i+¢ —1—+ ..... ]
12! n!
x?2 x"

= l4+—=+—+. . +—+.....
2 n!
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2 T

. . X __ X X 2 X T -
Cor: a” = 1-{—Floge a-f-—‘;zT(loge a) +....+—;'—(]oge a)’ +.... whereais a
positive number.

Proof:
x _ logga®™ xloge a
a =e =€

Substituting in the Exponential theorem, we the expression for a™.

Problems:

1) Show that the coefficient of x" in the series

2
b+ax+(b+ax) .

1+ ATl
1! 2! n! n!

Solution:

2 n.
The series 1 + 2Fax  (b+a)”  ~ (brax) |

-----------

1! 2! n!
_ eb+ax
— eb e
2 n
ax ax ax
= eP 1 @)” . +( )
1! 2! n!
eba®

.. Coefficient of x" = '
n!

2) Show that the coefficient of X" in the series

1+2x  (2+2x)?
+ B TN

1+ B S in” .
1! 2! n! n!

Solution:

2 n
1+2x+(2+2x) N +(2+2x) +

...........

The series 1 +

1! 2! n!
— e1+2x
= el e?¥
N P S e S ¢ )%
T TR e
2"e
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2
3) Find the coe fficient of X" in the expansmn of 1+ 2xx 3x
e
. 1 ~3x2 "

Solution: +22x 3x.' = (1 +~2x—3x2)e“"

X2 xt

(1+2x 3x ) =X+ — e+ (D" —+.....
2! n!

- —])n n—1 . 1yn—2
.. The coefficient of X" = 1. D ( D 3( 1)
n! (n D! (n-2)

—('r? {1 -2n-3n(n-1)}

=D b no 3wy
n!

CYP Questions:

1) Find the coefficient of x" in the expansion of

(2+3x)"
n!

(D°

1+2x +3x2
eX

2) Expand

as a power series in x and write down

the coefficient of x".

SECTION 5.2: THE LOGARITHMIC SERIES

Theorem 5.2.1: If -1 <x < 1, then

Proof: (1 +x)’ = eYlog(1+x)
y? g3 3
=1+ ylog(l+x) + o {log(+x)? +-2_'{log(1 +X)P A+ e (1)

By the Binomial theorem,

if)x|<1,(1 +x) = 1 +yx + .‘/(yz'—) 2, Yy~ I;(y 2) 5,

Since this series is absolutely convergent, it can be re-arranged I

ascending powers of y.
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Then the coefficients of corresponding powers of y in (1) and (2)
are equal. |

If we equate the coefficients of y, we have

2 3 n
log(l1 +x)= x—%+x?—+ ..... +(—1)" —+....

Cor: We can obtain the series for {log(1+:><;)}2 by equating the

coefficients of y? in the series (1) and (2).

%{Iog(l + x)}2 = Coefficient of y* in

YO =D 2 Yy=Dy=2) 5 YO-DE =Dy -3) 4
1.2 1.2.3 1.2.3.4

= Coefficient of y* in

Y=lo, =D0=2) 5 (y=DE-D-3) .,
1.2 1.2.3 1.2.34

-----

2
X __(1+2)x3+(l.2+2.3+3.4)x4+

1 2
g | 1+ x =
2!{°g( ) 12 123 123.4

.....

SECTION 5.3: MODIFICATION OF THE
LOGARITHMIC SERIES

From the above theorem we have
2 3 n
log(l +x) = x—x?+33—+ ..... + (D" —+. e (1)

Replace x by — x in (1) we get

log(l-x)= —x—-"—-Z_ 4. -2 _
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co—log(l —x) = x+§2—+——+ ..... X --- -(2)

Adding (1) and (2), we get

3 XS

log(1 +x) — log(1 = x) = 2x +2i‘§-+2-§—+....

1+x x> x°
i.e.) lo =2 X+ —F—F .| - — (3
(i) log7— ( 35 ] - ®
1 .
Put x = 1 in (3), we get
1 1 1 1
log———z—n—+l =2 e 3+ — R
11 2n+1 3@2n+1)> 5@2n+1)
2n +1
2n+1+1
log=2n+tl - ol L L -+ ! =
2n+1-1 2n+1 32n+1)> 5@2n+1)
2n+1

2n+2 i 1 1
log = + T+ st
2n 2n+1 3@2n+1)" 5(2n+1)

n+1 1 1 1
log =2 + T+ T B 4)
n 2n+1 3@2n+1)° 52n+1) |

this expansion is valid if

2n+1

(i.e.) whenn>0orn <-1.

. . 1+x m m
In (3), if we write = — sothatx =
1-x n S m+n.

3 5
log 2 =2 m—n+l(m—n) +l[m—nj SRS — (5)
n m+n 3\m+n S\m+n

—n

m-+n

2
G.e) [m—“) ~1<0

m-+n

(i.e.) (m”_“ —i‘)(m““ +1)<0
m+n m-+n

<1

This expansion is valid when
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Multiplying through out by the factor (m+n)® which is positive

for real m and n, this condition reduces to mn > 0, (i.e.) m,n either both

positive or both negative.

If we write x = 2 in (5), we get
n

‘ 3 5
logx=2 X—_14-1 x-1 +i(x—_—lj RESE [E— (6)

Xx+1 3\x+1 S5\x+1

this expansion is valid for all positive values of x.
Ifweputx= in (3), so that I+ x =2 _we get
y—1 1-x  y-1
log Y =2| L + ! T+ I 5+ e [mmemeee @)
y-—1 2y-1 32y-1 52y -1
The condition |x| < 1 becomes <1
2y -1

(ie) Qy-1)°>1
(ie)y(y-1>0
.. The expansion (7) is valid wheny <0 ory > 1.
Problems:
1) Show that if x > 0,

x—1 1 x°-1 1 x3-1
+— 5+ = 5+
x+1 2x+D° 3xx+D

log x =

x—1 1 x?>-1 1 x3>-1
+— =+ = 7+
x+1 2(x+1)? 3(x+1)

Solution : RHS =

X 1 x? | 1 1 1 1 1
+— >+ 3 e — +— 5+ 3+
x+1 2(x+1)* 3(x+1) x+1 2(x+1) 3(x+1)‘

=—log(1————X J+log(l— 1 J
X+1 x+1

= log —+log 7
X

=log XL = log x = LHs.
x+1

104



The expansion is valid when

X +1

less than 1.

When 1
x+1

. When x > 0, the expansion is valid.

2) Show that log\/_li =1+ (%v %)l.;.

I 1)1

< land

x+1

<1, |x+1|>1,(.e) x| > 0.

Solution: RHS =1 + (—+—]—-+(_+_)~L+ _1__,_
2 3)4 \4 5)4% \6

I

| -
—

»

()

+

|

>

&

+

l

»

o))

+
i

+

1—-x
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1
2

__l_{x+_1_x3+lx5+lx7+ ...... }
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=log+/12 =LHS.’
3) If a,b,c denote three consecutive integers, show that

I N N
2ac+1 3 (2ac+1)

1 1
logeb=510g6a+510gec+

: +l.——i——3—+
2ac+1 3 (2ac+1)

Solution: RHS = %loge a 4»%]0ge c+

=ilo a+llo c+x'+lx3+ Wherex= ]
Se 8+ 508 3’ 2ac +1
2110 a+llo C+l10 1+x
g BeR TR RO BT
1 1 1 I+2 ! 1
= —log_a+—log.c+ — log—=8C+1
3 88T 08O T 1
2ac+1
2ac+1+1
_ 1 1 2ac +1
2logea+210g3c+ > logM
2ac+1
=llo a+llo et~ lo 2ac+2
g CBedTRl08CF 5 los T
=—]—lo ac+llo ac 1
2 OB 2 08 ac
1 ac+1
= — ] .ac
ac
= — log(ac+1) ~=—=-mcmmemmeeee - (1)

If a,b,c denote three consecutive integers,thenb=a+landb=c—1
S.,a=b-landc=b+1
nac=(b-Db+1)=b>-1

(i.e)ac+1=>b>%

1 o
. From (1), 5 log(ac +1) = % logb® =log b = LHS |
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CYP Questions:

a
1) Show that lo = + =]
) fa-x a’+x? 3

+X 2ax 1 ( 2ax

a?+x?

2 3
2) Show that a—b+%(a—b) +l(a—b) +....=log.,a—log.b.

a a 3 a

1 1 1 1
HNIfn=———. _—
) e 2 e 33

SECTION 5.4: EULER’S CONSTANT

SPACE FOR HINT

...... o, show thate™' —e — 1 =0.

1 1

Ifu,=1+ 5+ —+....+l—logn , then as n — oo, u, — vy, where

n
vy is a fixed number lying between 0 and 1.

u, =1+ l+ l+....+l—log n.
2 n

1 1

U =1+ 54— —-+....+——1———log (n—-1)

3 n—1

" Up—Up = —l——logn+log(n——1)
n

=l+logn_1

n n

=l+1og(l——1-J

n n
1 r 11 11
n n 2n®> 3nd

~. up is a decreasing sequence.
For all values of x other than zero, ¢* > 1 +x
Taking log on both sides, we get

x > log(1 + x), where x > —1

1 > log[l + l)
n n
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1 1 11
Also— log|l—— |= —+ —.—+
SO og( n) 53

So— log(l——l—) > 1
n n
log(l +—1-J< LR log(l—-ij
n n n

(i.e.) log(n+1)< 1 < log( 1 )
n n n-—1

Substituting n— 1, n—2, ...., 2 in succession for n, we have

oo T ]< i <10g(n_1j
\n—1 n-1 n-—-2

Also log% <1=1.

.. log n+l + log n +log n-l +....+log—?1
n n-—1 n—2 1

<1+l+l+....+l<log L +log(n—1J+----+logz
n-—1 n—2 1

2 3 n

(i.e)logln+1)<1+ l+ l+....+l< I +logn
2 3 " n

slogln+1)—logn<1+ l~i- l-l-....+—1——logn< 1
2 3 n

(i.e)log(n+1)—logn<u,<1.

But log(n + 1) —logn > 0.

Hence O < u, <1 and also we have proved that u, < u,_; .

Thus u, is a decreasing function which is always greater than 0.
Consequently u, — a finite limit lying between 0 and 1. This

finite limit is usually denoted by the letter y. This number v is known as

Euler’s constant.
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Problems:

1) Sum the series 1—%+l—~1—+ ..... to oco.

3 4
Solution: Let Sy, be the sum of the series upto 2n terms and Sz,+1 upto

2n + 1 terms.

n—re

1 1 1 |
Solim [ 1+—4+—+..... +——log2n |= .
[ 273 n B “) Y

.'.1+——+~1—+ ..... +—21—=y+log2n+e,wheres—>0a52n—>oo.
n

Similarly 1+—;—+-1—+ ..... +—1— =v +logn +g;, where g > 0as n — co.
n

Son=(y+log2n+¢g)—(y+logn+eg)

=log 2n— logn + & — g

= log—2£+ €— g
n

=log2 +€— g1.

. lim Sy, = log 2.

n—>0
Also Sspe1 — Son —> 0. Hence Sy —> log 2.

Thus log 2 = 1—~1—+l-—l+...+(—l)“’l—1—+.... to oo.
2 3 4 | n

Note: We have proved that
log(1 +x) = x————+—%—+ ..... +(=D" X +... where x| < 1.
n
When we put x = 1, in the above logarithmic series , we get
1 1

1. 1
log2=1lo—t———% 4 (-D"T—+..

.. The logarithmic series is valid when x = 1.
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When x = —1 the series becomes

i

.. The logarithmic series is valid when x =—1.

n

This we get the logarithmic series

log(l + x) =

range -1 <x < 1.

2) Sum the series Y,

o0

1

.....

n=1(2n —1)2n(2n +1)

+...———...., which is divergent.

.... is valid in the

Solution: Let S be the sum of the given series and u, be the n" term.

Then u, =

1
2n-D2n(2n +1)
l 1 B 1 l 1
22n-1 2n 22n+1
J U S N U |
21 2 2 3
poll L 11
2 3 4 2 5
Uz = _}__l__ _l.—f—_l_.l
2S5 6 2 7
1 1 1 1 1
Up = — — —
22n—-1 2n 22n+1

Adding the last fraction of a term with the first fraction of the

next term. We get

Il

1

7

1 1t 1.1 1 1
2 2 3 4 5 6 7 77
o rr 11
2 2 3 4 5 6

1
——— +log 2.
> 08
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3) Show that 5.+ 7 + 2 +....00 =3 log2—1.
1.23 345 5.6.7

Solution: Let S be the sum of the given series and u, be the n" term.

2n+3

Then u, = .
(2n-1)2n(2n +1)

By partial fraction, we get

up=2— 3 L 1
2n—1 2n 2n +1
R bS] =2.-1--—3.l +1.—1-
1 2 3
U =21—31 -i—ll
3 4 5
u3=2.l—3.l+1.l
5 6 7
u, = 2 L —3.1— 1. L
2n—1 2n 2n +1
S=2—1l+(Ll+zl)—&1+(Ll+zl)—&l4a;.
‘ 2 3 3 4 5 5 6

231431l 51,51 51,
2 T3 TR s T

=2+3el+l—l+l-““)

2 3 4 5
=2+3(1—l l_l+1-“m—n
2 3 4 5

=2+3log2-1)
=—1+3log2.

4) If k is a positive integer and {x| < 1, then
© x" X x? x> x*
> = + + + +
n=in+k 1+k 2+k 3+k 4+k
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k+1 k+2 k+3

1 X2 Xk Xk+1 xk+2 Xk+3 XZ ) Xk
— X+ —+...+ + —+ + +.0|—| X+—+...+—
xK 2 k k+1 k+2 k+3 2 "k

2 k _k+l k+2 k+3 2 k
- L XA+ X X + 2 +...00 |— x+x—+...+§——
x¥ 2 k k+1 k+2 k+3 2 k

( 2 k
_ 1 X X
= — - log(l—x)—| x+—+...+— }

1 Xk+1 Xk+2 xk+3
= + + +..... 00

1 x 2 x|
= ——qlog(l—x)+| x+—+...+—
Xk { Og( X) x 2 k /}
x" 1
Similarl = ——ilog(l1—-x)+
ynzm-i—l x{Og( x) X}
© x" 1 x?
= ——<log(1-x)+x+—
S e
* x" 1 x? x°
= ——dlogl—x)+x+—+—
nz=;1n+3 X{og( X)+x 2 3}
5) Sum the series Z—+n—+—1x“
n=l n(n+2)
Solution: Let S be the sum of the given series.
By partial fraction, we have /
3 2
E_—‘.ﬁ_i_l_z(n_])—{—l'-]_.—{—é. 1 .
n(n+2) 2 n 2 n+2
Then S = Zn—+.P___il_ n {(n _.1) _1_ -1_ g._ 1 xn
n=I n(n+2) n=l 2n 2n+2

] 2x™ 3= x"

Z(n—])x + — Z—--J— =¥

n=1 N 2n=1n+2

i(n —Dx"=x%?+2x3 +3x* +.....
n=1

= x?(1+2x+3%x2 +.....)
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(1-x)?
Z—)i—-———log(l—x)
n=f N
o xP 1 2
and > = ——qlog(1-x)+x +—
n=tn + 2
2 2
X 1 3 X
= — —log(l —x) ———=<log(l—x)+x+—
o7~ 2lee - ZXQ{ g(1-x) 2}

0 _1\n+ln
6) Sum the series (-D" ' x
n=m(n + I)(n + 2)

Solution: Let S be the sum of the series.

By partial fraction ! 41 1 + l !

n(n+1)(n+2) 2'n n+1 2 n+2

o _nyn+t,n
Then S = 3 (=D " x
n=1n(n +1)(n +2)

=l2n n+l 2 n+2

_1aED™XT  aEh™x 12 ()X
2 n=l n n=l n-+1 2n=l n+2
© n+! _n 2 3
We have Z( ) X X X X = log(1 + x)
n= n 1 2
D™ _x x* X7
nsl n+1 2 3 4 77
1x* x* x*
= — —— ...
X! 2 3 4
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X

1 x?
= —E—{Iog(l +Xx)—Xx +7}

1 1 | 1 | x?
~S= —log(l +x%) —-—{—10g(1+x)+x} + —5qlog(l+X) —x +—
2 X 2x . 2

1 2 1 3 1
—~log(1+x)(1 + Z+—=)—|=+—|.
2 og(l +x)( X x.z) (4 2x)

Calculation of logarithms by means of the logarithmic series

We know that
2 3 n
X :
log(1 +x) = x—a 4 X +(-D)" — +.... where [x] < 1.
2 3 n
Since this series is slowly convergent, the direct calculation of
logarithms by means of this series is tedious.

The calculation is usually carried out in practice as follows

We have proved that

3 5
log l+—X:2 X+ X when —1<x <1,
“1 3 5

Lety= 1+Xsothatx= y=1

1-x y+1
3 5
- logey = 2 y=t 1py=1} 1fy-1 +.... | where y lies between 0
y+1 3ly+1 S\ y+1

and -+co,
Put y = P in this series, where p and q are positive integers.

q

1 i ’
. logep —logeq = 2 p_q+_(p___(]_) +~(MJ +....
P+q. 3\p+q) 5\p+q

Problems:

1) Evaluate log 2 to 5 placés of decimals.

Solution: Put p=2, q =1 in the series
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3 s
logep — logeq = p—q+l(p—qj +l[2—j] +....| , We get
pP+q 3\p+q 5\p+q

2-1 1/2-1} 1/2-1)
log.2 — log.1 = 2 + — o — | +....
S g, 2 +1 3[2+1) 5(2+1) )

and log.l'= 0.

%= 0.333,333,3

,1_ =0.037,037 l —13—= 0.012,345,7
33 33

1 1 1
—= 0.004,115,2 - T3 0.000,832,0
3 53

1 I 1
— = 0.000,457,2 P 0.000,055,3
37 73

1 1 1
Y = 0.000,050,8 P = 0-000900596
3 93

1 I 1
- = 0.000,005,6 FPlCTE 0.000,000,5
3 113

. Sum of the first 5 terms is 2(0.346,573,4) approximately.
(i.e.) 0.693,146,8
. log 2 =0.69315 to 5 places of decimals.

We can calculate the error involved in taking only the first six

terms.

The difference between log 2 and the sum of the first six terms

13732 1573
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e e
o0 | \©

1
305
1
3T

|-

5| =

(0.0000056)

= 0.0000011
Hence if we take log 2 = 0.69315, there is no error until the 6™
place of decimals.
Note: By means of this series by putting p = 3, q = 2, log 3 can be
calculated.
By putting p =5, q =4, log 5 can be calculated.
CYP Questions:

1) Show that L + I + I +
12 34 5.6

2) Show that —1—+L+—1—+....=2—log2.
1.3 25 3.7

..=log2.

1 1

3) Show that L + +....=log4—1.

1.2 23 34
4) Show that _ + r 1 +....=210g2——§.

1.2.3 234 345 4.5.6 4
5) Sum to infinity the series whose n™ term is 5

n+

.= n?+1

6) Sum the series ¥ ———x"
1 n(n+2)

o 3
7) Sum the series Zg—ﬂ—x" .
1 n{n+3)

2

8) Sum the series i 1 x"
t (n+D(n+2)
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UNIT-6

Unit Structure:

Section 6.1: Application of Exponential and Logarithmic series

to Limits and approximations.

Introduction: We have already discuss about the exponential series

and logarithmic series. In this unit we discuss the applications of
exponential series and logarithmic series to find the limit and

approximation values.

SECTION - 6.1 - APPLICATION OF EXPONENTIAL
AND LOGARITHMIC SERIES TO LIMITS AND
| APPROXIMATIONS.

The applications are shown in the following examples.

. e’ —e™
1) Evaluate lim ——
x—0 log(l + x)

et —-e™*
Solution: lim ————M—
x—0 log(1+ x)

<2 3 . x2 3
I+x+—+—+. |-l —-X+———+....
2t 3 2! 3!

- 7}‘11}(1) ) X2 X3
X——+——
2 3
3 5
— l { . .
xir(l) X2 X3
X——t——
2 3
2 4
2+2x' 2x'
- fim 3l sl
x—0 l X X2
2 3
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3 5 n“+7n
2) Evaluate: lim (1 + 4 _3)

n—»o0 n2 n

3 5 n“+7n
Solution: Let A = lim (1 +—+ ——3—)
n n

n—oo

Taking log on both sides, we have

log A= lim (n2 +7n)log(l+—35_—+ > )

n—<o n n 3

[i+i)_1(i+ij2+1[i+i)3_
n? n3 2\n? n? 3{n? n’
2 3
3 5 1 5 1 5
= lim (n® +7n + — 34| +—| 3+ -
n——)oo( )[nz n3j 2n4[ n] 3n6( n) }

2 ; 2
- tim {3+z+2+§.;.. | (3+3) - L (5+3) }
n—co n n n 2n n 2n n

= lir.n (n2 +7n)

7
|

Except the first, all the other terms will contain lor higher

n

powers of 1 .

n
slog A = 3.
LA=¢.

3) Prove that, if n is large

(n——l—jlogn+l=2+ 8 +.... and

Solution: Let A = [n +:J 3 .
n.._

Then log A = (n— 1 JlogrH~1
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4) Show that if ¥ = 1 + xe”™ , where x° and higher powers of x can be

1 x
neglected, y = —+—.
21 4!
Solution: Given thate* =1 + xe’™* .
] X X2 n
We know thate®* = 1+ =+ ——+ ...+ +..... .
i 2 n!
< X X2 n
c —-1= —+—- + +.....
2 n!

By hypothesis €* =1 + xe™* = ¢* — 1 = x&’™*

< 2 n-1
, X X X
xey"=x{1+——+——+.. + + ... }

20 3 77
Loxe’t = 1+%+§3—j+....+xl:1 +...e
Taking log on both sides, we get
X x? x"!
yx=log[l+a+§+,...+ n!~+ ..... J
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3
2 n-1
LY (SR S Foger | Foenne
3{2r 3 n!

2

=X, X 4 termsinx® and higher powers of x.
2 24
Ly=1.X
AT T
5) If log, ! ~——7 be expanded in a series of ascending powers of

l-x—x“+x

X, show that the coefficient of x" will belor éaccording as n is odd or
. n_ n

€ven.

Solution: 1—x —x? +x> = (1 - x)(1 = x?)

.. log, 12 3 =—log(1—x)—log(1—x2)
l-x—x"+x .
2 3 n
= X+—+—+ .+ —+..
n
5 4 46 2n
+X +—+—+... +..

3 n
If n is odd, the term containing x" will occur only in the

expansion of — log(1 — x).

) 1 )
..Coefficient of x" = — when n is odd.
n

If n is even, the term containing x" will occur in both the series.

If n = 2r, the coefficient of x* in the first series is 1 and the

2r
: 2r - . . 2
coefficient of x in the second series is 2—«;
r !
..Coefficient of x" = —+ 2 _ i
r 2r 2r

) 3 )
.. Coefficient of x" = =~ when n is even.
n

6) Sum the series log; e —log, e+ log,; e —logg, € +.....0
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Solution: We know that log, a.log, x = 1.

- log,a=

log, x
*log;e= 1
.. 3 loge 3 .
I SR 1
10g9 c= l - > - ’
0g.9 log.,3° 2log.3
log,, e= L L - and so on.

log,27 log.3® 3log,3
- log; e—logge+log,, e—logg, e+....

L1 .1
log,3 2log.3 3log.,3

L R SR
log, 3 2 3

log, 2

log. 3

7) Show by equating the coefficient of x" in the expansions of

loge(1 — x) and loge(1 — 2x + )52), that
2n _n.2n—2 + n(n — 3) 2!1—4 . n(n —4)(11 _5) 2[1—6

+..... =2
1.2 - 1.23
x? x3 x"
Solution: Since 2log(l - x)=-2 | X +—+—+.....+ +. !,
2 3, n
the coefficient of X" in 2log(1 — x) = _2
n
loge(1 —2x + x%) = loge(1 — (2x — x2))
=_(2x — xz)—% 2x — x2)2—% (2x — x%)° .....——1—(2x —x)".....
n

= —x(2—x)—% x2(2——x)2—%— x3(2-—x)3...—% x"(2-x)"— }I%:{ x"™—x)"" ...

The terms containing x" will not occur in terms after the term
1 n n
——x (2—Xx) .
n

n
.. the coefficient of X" in 1 x"2—x)"=— 2
n n
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’ 1 n—
the coefficient of x" in ————1—1 x"(2-x) = " 2"2(n-DC;
— n ——
— 21‘!—2
‘ 1 _
the coefficient of x" in — X" 2(2—x)" 2= ——— . 2" (n - 2)C,
n—2 n—2
1 ea@=2)(n-3)
n-2 2!
_ (n _ 3) .211—4
2!
- __2__ —_ _n+ 211—2 . (n _3) '211—4_*_ (n —4)(n —5) '2n—-6 ......
n n 2! 3!
n2=2m par2 MO ges N@=DOZ) e
1.2 1.2.3
8) Show that ifa+b+c=0
) a’ +b’+c” _a’+b’+c’ a’+b’+c?
7 5 ' 2
(i) a’+b’+c’ _ a’+b3+c® a?+b?+c?
5 3 ' 2
2.2 3.3
Solution: We know that log(1 + ax) = ax — a 2x +2 ; — reee

b2X2 b3x3

log(1 + bx) = bx — + —ne
g( ) > 3

2.2 3.3

cx coxX” -
log(1l +c¢cx)= cx — + — s
g( ) 3 3

- log(1 + ax) + log(1 + bx) + log(1 +c¢x)

X2 2 X3
=x(a+b+c) ——2—'(3 +b2 +C2)+-3—(a3 +b3 +C3)—

n
Coefficient of x" in the RHS = =1 (@" +b" +c").
n

log(1 + ax) + log(1 + bx) + log(1 + cx)
= log{(1 + ax)(1 +bx)(1 +cx)}
= log{l + (a + b+ c)x + (ab + bc + ca)x* + abcx?}

= log{1 + (ab + bc + ca)x® + abex’} (*ra+ b +c = 0)

= (ab + bc + ca)x* + abex® — % {(ab +bc+ca)x? +abex? }2
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+ %{(ab%—bc+ca)x2 +abcx?> }3

= (ab + bc + ca)x® + abex® — % x4 {(ab +bc +ca)+ abcx}2

+ %xﬁ {(ab+bc +ca) +abex} ...

Equating the coefficient of x> on both sides; we get

5 s, .5
a +b5 te = —abc(ab + bc + ca) -—--m-mommeene- (1)
Equating the coefficient of x* and x*on both sides, we get
2 2, .2 )
_a +b2 re =ab + bc + ca --—---oememme e (2)
3 3., .3
a +b3 +C bC ~mmmmmmmmem 3)

From (1), (2) and (3), we get
a’>+b’+c’> _a’+bP+c® a?+b?4c?
5 3 ) 2

Again equating the coefficient of x’ on both sides, we get

a’ +b” +¢’
7

= (ab + bc + ca)®.abc

= — abc(ab + bc + ca). — (ab + bc + ca)

a’+b’+¢’ al+b?+c?

5 ' 2
9) Obtain the expansion of log(l + —]—) in ascending powers of
n
and show that log(l +l lies between an 2n +1 when
2n +1 n 2n +1 2n(n+1)

n is positive.

Solution: log(l +lj = logn +1
n n

2n+2
2n
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1
— log n+1 _ 2 + + 3 +....
) 1 2n+1 3@2n+1° 5@2n+1)

 2n+1
log[1+l) > 2 .
n 2n +1

1
Again log(1+l) - _2 1+ ] 5T ri
' n 2n+1 32n+1) 52n+1)

: 1
< 2 (1+ L 5 + 7 +....
2n+1{  2(2n+1) 42n+1)
2 1 '
< .
2n+1 4 1
- 2
2(2n+1)
P 2(2n + 1)?

2n+1 {2@2n+1D?* -1}
4(2n+1)
8n? +8n+1
_4@n+D) _  2n+]
8n’+8n 2n(n+1)

2 1 2n+1
", <log|l+— | < —0.
2n +1 n 2n(n+1)

CYP Questions:

e* —log(e +ex)
S .

1) Evaluate lim
‘ x—0 4 X

X 1 —(+2
2) Evaluate lim < +log.( +};) (d+2x) .
x—0 5x

3) Evaluate lim log(1+ x) — .
x—0 (] + x)" -A+x)™

2
4) Evaluate lim (1 + 3 + —1—] .

n—»co n2 n3
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: 1 1Y
5) Showthat lm|l1+—+— | =e.

n—>o0 n I‘l2

’ i/x
6) Prove that lim[—li}i) =e?.
x—0 1 —x

7) If o and B be the roots of the equation x> + px + q = 0, prove that

Y 3, 3
log(1 — px +qx2) = (a+B)x —9——;—6— X%+ 9———;—6—)(3 — e

1+x+x°2

5 in powers of x if [x} < 1.

8) Expand log
l-x+x

9) Show thatifa+b+c¢c=0 )

a’ +b’ +c’ _at+b*+ct ad+bpial?

7 4 ' 3

10) Show that log, (1 + n) <-}+%+....+l <1+log (1+n).
n

125

SPACE FOR HINT

ot FPT 5



SPACE FOR HINT

UNIT-7

Unit Structure:

Section 7.1 : Summation of Series using Binomial, Logarithmic

and Exponential Series.

Introduction: In this unit we find the summation of finie and infinte

series by using various methods namely by partia; fraction, Binomial,

logarithmic and Exponential Series.

Section 7.1 : Summation of Series using Binomial,

Logarithmic and Exponential Series.

Problems:
3 5 2n+1
1) Sum the series — .
o 1727 3247 n?(n+1)7?
Solution: Let u, = 22n+1 = 12 1 _
n“(n+1)° n°~ (n+)
Uy = 1 1
- Un-1 ™ —
(n—-1)> n?
Upo = 1 1
n—2 (n_2)2 (1’1 1)2
1 1
Uy — —27-—3?
11
mTETe
u; +ux+...... +un—_12__. 1 >
1“ (n+1)
_n’+2n
(n+H? "’

2) Sum to n terms the series -é—l+ 4 . 1 + > 1 +
1.2 2 232% 3423

‘ . n
Solution:'Let u, = _r_1_+_2___(~1_
n(n+1)\ 2
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leg N*t2 _A B

nin+1) n n+1’

Then A=2and B=-1.

-------------------------------

-------------------------------

i n+l
1 1(1 1 (1
o= fux ..., +Uy) = — — | — —
y (o ) 2{2} n+1{2j
I R S
4 (n+1)2™

Turtutlll oy, = l————]—-—
2 (n+D2"

8 (5 9 5y 10
—|+—] =1 +
1.2.3\7 2.3.4\ 7 3.4.5
Solution: Let u, = n+7 (SJ .

n(n+1)(n+2)\ 7

n+7 A B
nn+D(+2) nn+1) (+Dn+2)

3) Sum to n terms the series

Let
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ThenA=—7—andB==——5—.

2 2
w7 5 (2)
" 2lnm+) M+D@+2) N7

>

11 r 7 (2)
27| n(n+1) @+DM0+2) \ 7

JGF G

14| n(n+1) (n+1)n+2)

GG

n(n+1) (n+1)(n+2)

GG
Hence 14u _; = 7 N

’~ (n—Dn n(n+1)

o GG

"2 (n-2)(n—1) (n-Dn

14u, =

...............................

-------------------------------

23 3.4
5) &)
12 23

G

12 (m+D@m+2)

5)
. + fuy= N7
So14(uy +ux+.... . Upn)

S Sh=utuyt...., +u, = —1—[—’5;)
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To find the sum of this series up to infinity, we find the limit as n tends

to infnity.
n+l
(i.e.) limS, = lim L(éj—— ! ] El
n—>® noo 28\ 7)) 14m+1)(n+2)\ 7
S, = > -0= > .
196 196

Application of the Binomial Theorem to the summation of series:

We know that when |x| < 1, for all values of n

(1+x)" =1+nx+ Eg%'——l)xz + n(n—13)’(n—2)x3+w

A=-x)"=1-nx+ n(n -1) x? _n@m=Dn-2) X> +....

2! 3!
A+x)"=1-—nx+ sz _n(n+Dn+2) X? +....

2! 3!
(1-x)"=1+nx+ —~————n(n2T 1)x2 + n(n +]§fn *2) x>

Ifn= B, then (1+x)?9=1+ Pyy p(p—q)xz + PP~ 9)(P—29) x> +...
q

q q.2q | q-29.3q

_ yPP-D(P=29)....(p -r-lg)
q.2q9.3q...1rq

(1_X)P/q =1— BX-I— p(p—q) x2 p(p—a)(p—2q) NER
q q.2q q.-2q.3q

= S p(P—(p—2q).....(p—r—1Iq) "
q.29.3q....x1q

PP ipR+2)... . Biro)

(1+X)—p/q= Z(_l)f q q q ' q Xr
r.

— 51y PEFDO+29)...(prr—lg)

q.29.3q....rq
(—E](-«E ~DP-2y. Pt
(]_x)—p/q___ Z(_l)r q q q q x'

r!

_ s PR+ A(P+29).(p+r-1q) .
q.2q.3q....rq
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Problems:

1) Sum the series to infinity

1+ }_{_ 3.5+ 3.5.7 _—

4 48 4.8.12

Solution: The factors in the numerators form an Arithmetic Progression

with common difference 2.

Therefore we divide each of these by 2.

Each of the factors in the denominators has 4 for a factor, removing 4
from each will leave a factorial.

3+ 3.5 N 3.5.7 v

S+ =
4 48 48.12

335 5,337

=1+—2—.—2—+-——22 Z)+222{—2—]+
1 4 12 \4 1.23 \ 4
3 35 357
51 2501V 53551V

=1+—2—.—+——-22,(—)+222.(— +
12 2! \2 3! 2

Putn = —3—andx= l.Then
2 2

1+i+ 3.5+3.5.7 b =14+

4 4.8 4.8.12

357

.. 1 3

272 2{_) o
3 12

n(n+1) <2 4 n(n+1)(n+2) N
2! 3!

35

— . 12

+ 22 2.—-) +
2! 2

N.I —

=Nolw

=1+nx+

=({0-x)"

1 372
= (1——~
( 5)

=242

- 2) Sum the series to infinity

1.4 147 , 14710
5.10 5.10.15 5.10.15.20 7

14 147 14710
5.10 5.10.15 5.10.1520 7

The factors in the numerators form an Arithmetic Progression with

Solution: Let S =

common difference 3.
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Therefore we divide each of these by 3.

Each of the factors in the denominators has 5 for a factor, removing 5

from each will leave a factorial.

14 147 1471

%0 3V 3330 3Y 3 aaa ol 3V
.'.S=———33.(——)+———~—333.—— +333 3 [ 24 .

121 5 123 5 1234 5

Putn = landx= —E.Then
3 5

n(n+1) <24 n(n+1)(n+2) I
2! 3!

Q =

n(n+1) <2 4 n(n+1)(n+2) 3
21 3!

=1+nx+

+ooe(140X)

= (1-x)""— (1+nx)

3) Sum the series to infinity

1—§+]5'2]+]5'21'27+.....
16 16.24 16.24.32

15, 15.21  15.21.27
+ + + ...

Solution: Let S = —
16 1624 16.24.32

The factors in the numerators form an Arithmetic Progression with

common difference 6.

The factors in the denominators form an Arithmetic Progression with

common difference 8.
15 1521 152127
.'.S=——6—§+———66§ +6 6 6(0),
2 8 2.3 \ 8 2.3.4 8

The factors of the denominators do not begin with 1. Hence we
introduce 1 to the denominator of each coefficient. The number of
factors in the numerator is to be the same as that of the factors in the

denominator. So we have to introduce an additional factor in the

... 9
numerator also, which is .
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91521, 9152127
P 3 Wt S ) S
6 1.2 \ 8 1.2.3 8 1.2.3.4 8

Since the index of x in every term must be the same as the

number of factors in the numerator or denominator of the coefficient, we

015 91521 9152127
96._66(6).66 6 6) 6'6'6'6(6J
I = M VYV | —= + = - 1| — + —_ +....
have =257 12 (8) 123 (8 1234 |8
Putn=2andx=§.Then
6 8
915 91521 9152127
9,-66(6),66 6(§)+6 6 6 6(§)+
8 1.2 \ 8 1.2.3 8 1.2.3.4 8
2S=Mx2+n(n+lxn+2)x3+....
8 2! 3!
=1+nx+ n(n2:r D2y n(n+1;’(n+2) x? +....~(1+nx)
= (1-x)""—(1+nx)
N o 6 (2)—3/2 7
1=} 1282} XL
8 6 8 8 8
3/2 ; .
~ (1 _17 (4)3/2_1_Z=8__1_/_
4 8 8 8
_ 47
8
2 2s=4
8 8
Ls=27
9

CYP Questions:

13 135
24 2432 243240

2
2) Prove that (l+x)n=2"{1—-n1_x+n(n+1)(l—x] ..... }

1) Find the sum to infinity of the series

1+x 1.2 1+x

2.5 2.5.8

3) Fihd the sum to infinity of the series 2 + + +....
6.12 6.12.18
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4) Find the sum to infinity of the series
5 1 58 1 5.8.11 1
. + —+ . +....
3.6 4 3.69 4° 3.6.9.12°4*

1 13.5...2n-1)

6n~l :

5) Find2+ 3.
n=l3 n!

Application of the Exponential Theorem to the summation of series:

SPACE FOR HINT

We have proved that for all real values of x,
2 n
=l X X (D
2 n!

Replace x by —x in the relation, we get

2 n
X = _E L_ — nx ________
e 1 1!+ % et (1) n!+ ...... 2)
1 11 1
Whenx=1,e = l+—+—+ . +—+... =mmmmmmmmmeen 3)
2 n!
Whenx=—1,¢' =1-+:+1_ yoprLly o 4)
en x , TR T R
Adding (1) and (2), we get
X —-X 2 4
CALT I SO S
2 20 4 .

Subtracting (2) from (1), we get

X -X 3 5 E
€ XX X - -~ -(6)
2 no3r s
When x = 1, the series (5) and (6) become
—1 |
€¥e :l+l+—1—+ ..... - Smmmmmemmmmmeemee (7)
2 21 4 - ‘ '
1 .-
e —e I 1 1
= b e e (8)

2 13 s
We shall use this series to find the sums of certain series.
Problems:
1) Sum the series

1+3 1+3+3% 1+3+3%243°
+ + + +
2! 3! 4

1

Solution: Let u, be the n'" term of the given series and S be the sum to

infinity of the series.
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_1+3+32+3% +....+3""

. Up

£

I

N | —
TN
=

|
=l
N—

2 2
2)Showthat(l+%+%+ ..... J =1+(-1—+l+i+ ..... J

) ) e+e
Solution: Since
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e—e”

ot

LHS=1+(

=1+ -l—(ez +e?
4

—4ee” +2ee™)
=1+ —l-(ez +e™? +2ee_1)~—1—4ee_l
4 4

I 142
=1+ —(e+e -1
2 )

1)\?
=[e+e J = RHS.
2

- 3
3) Sum the series Y (n+1) x"
n=0 n!
: oo D’
Solution: LetS= ¥ (n+1) x"
n=0 n!

Let(n+ 1) =A+Bn+Cn(n— 1)+ Dn(n— 1)(n - 2)
Putn=0,wegetl =A
Putn=1,weget8=A+B+0+0
=1+B
B=7
Put n =2, we get 77
27=A+2B +2C
27=1+14+2C
2C=12=C=6
Compare the coefficient of n3 , we get
1=D
L (+1Y=1+7n+6n(n—1)+n(n- 1)n-2)

L g= § l+7n+6n(n—1)'+n(n—])(n—2)Xn
n=0 n:

n n n Ik

=y2 473 +6 +
Zw L m-n o °x TR (n—3)!
o0 n 2 n ’
We know that }:x—= I+t 2 X =
n=0 n! 2! n!
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o0 n 2 X3 Xn+l
= —_— =t ...+ Foeeens
n=o (n —1)! I 2! n!
2 n
X _ X
=X f l+—=+—+.+—+..... = X.€
2! n!
- Xn X3 X4 Xn+2 ’
- - A — X
Similarely Y = X%+ttt +oe. = X0
“n=0 (n —2)! 1! 2! n!
n 4 5 n+3
X X T~ X X X . 3
3 =x3 T+ +.....=x.e"
n=0 (n — 3)! 1! 2! n!

LS=(1+7x+6x+x)e"

2 2 2 2 2 2 2 2 2
f +...+
4) Sum the series I—+1 +2 +1 +2°+3 +._.+1 +2 n +
1! 2! 3! n!

Solution: Let u, be the n™ term of the given series and S be the sum to

infinity of the series.

1°+2%+..+n®> _nm+D@2n+1 1

Then u, =
n! 6 n!

Letn(n+1)2n+1)=A +Bn+Cn(n—-1) +Dn(n— 1)(n—-2)
Then A=0,B=6,C=9,D=-2.

L g= i 6n+9n(n-NH+2(n-NH(n-2) 1
n=0 6 n!
26nl 29mn-D1  =20-Dn-2)1
=y ——+y X 7 4 —
nz=:0 6 n! n%o 6 n! nz:o 6 n!
@ 1 3= 1 | 1
=3 +=3 )
n=0(n—-1)! 2np0(Mm-2) 333(n-3)!
=e+ -3—e+'le=1—76—.
2 3 6
5) Sum the series é-i— -Z+2+
o3 s

Solution: Let u, be the n™ term of the given series and S be the sum to
infinity of the series.

2n+3

2n-1)!

Put2n+3=A(2n-1)+B

Then A=1and B=4

Then u, =
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_ 2n—1+4
2n-1D!
_ 2n—1 + 4
Cn-1)! (@2n-!
_ 1 4 4
2n-2)! (2n-1)!
4

S = 1+ —
1t

“.Up

_ 1, 4
(2n-2)! (2n-1)!

Up

oooooooooooooooo

S=(1+——+—— ..... ]+4[l+—1— l ..... )
21 4! It o3 s
-1 1 -1

=87C 148 "F =l(e+l)+4l(e—l)
2 2 2 e 2 €
5 3

—__e__—
2 2e

6) Show that if a" be the coefficient of X" in the expansion e , then

r r T
prove that a" = —l—{l— + 2 + 3 + . } . Hence show that

rt 12t 3
3 3 3
() 1—‘+—2~—+—3i~+ ..... = 5e
o2t 3
4 4 4
(i1) 1——+—2——+§—+ ..... = 15e.
noo2t 3

X
Solution: €® =1+ e* +
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.....

= X c <
1+e*+ 2 + 3 "
2 r
=1+(1+5+5—+ +— ...
2! r!
2.2
+‘-1—[1+2x+2 X ..
2! 2!
2.2
+—1—[1+3x+3 X
3!
. T T T
.. The coefficient of x* = —1—{1—+—2—-+§—+ ..... }
el 2 3t
2 .3 2 .3
X 1+x+-’£—+—x—-..... x+§—-4~’-‘—- .....
Again ee = e 21 3 =e, e 2t 3

{ [x X ) l(x % J l(x x
=€ {l+| —+—+. = ==+ | =] =F—+
2 2nn 2! 3w 2

.. The coefficient of x> = e(—1—+ —]—2i +—1—)
3 21 2t 3

_ e _ Se
=5(+3+D=".

e s 1P 2% 3
From (1), the coefficient of x° = —{ —+ =—— + ——
320 3
AfE2 s 1 s
Ul 2t 3T 3
13 23 33
St — ... = Se
o2 3
Similarly, by equating the coefficient of x* we get
4 4 4
1 z—+—3—-+ ..... = ]5e

—+
o2t 3



CYP Questions:

1) Show that (log2) — %(]ogZ)z +§1;(log2)3 ..... to w:%

2 n
. &n
2) Sum the series +3 Ry
n-in+2 n!

1.1 1 .1
| 2— 3= 4= 5= lte
3) Prove that the infinite series - 2__3, 4_ 5~".+,, = )
1! 2! 3! 41 e
o0 n3 ;
4) Prove that Y =15e
1 (n—1!
5) Show that 0201—21—4—1— =E+g.
o 2n+1)! 2 e
2 4 6 4 _
6) Show that 2—+ 2 +2 4. ..=% "1
1! 3! 5! e?
7) Prove that if n is a positive integer
n nn-1) , nh—-Dn-2) ;3 _
TENT T T gz T
o {1 B n;l oy (0 +112)(2r\2+ 2) 2 (n+ 1)1(;1;23)2(11 +3) 3, }
8) Show that n” —n(n— 1)" + nn=b ,_2yn . —n
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UNIT-8

Unit Structure:

Section 8.1: Partially ordered set.

Section 8.2:Definition of Lattice —Examples

Introduction: In this unit we develop the notations of partially

ordered sets and lattices and distinguish various types of lattices.

SECTION - 8.1- PARTIALLY ORDERED SETS

Definition. A relation defined on a set S which is reflexive, anti
symmetric and transitive is called a partial ordering on S. A set S with a
partial ordering p defined on it is called a partiaily ordered set or a poset
and is denoted by (S, p).
Note. Throughout this unit we shall use the symbol < to denote a partial
ordering. ‘
Examples
I. N, Z, R are posets ‘with the usual relation <.
2. In N we define a relation < as follows A < B < a divides b.
Then (N,<) is a poset.
3. In #As) we define A <B < A < B. Then (£ (s),<) is a poset.
4. Let P denote the set of all subgroups of a group G. In P we
define H <K < H < K. Then (P, <) is a poset.
Similarly the set of all sub rings of a ring, the set of all
subspaces of vector space etc, are posets with respect to the
above relation.
Definition: Let (S, <) be a poset. Let a,beS. a and b are said to be
comparable if either a <b or b<a.
Remark: In a poset, there may be pairs of elements which are not
comparable. In (#AN),<), {1,2} and {1,3} are not comparable. However
in (R, <), any two elements are comparable.
Definition: A partial ordering in which any two elements are comparable

is called a linear ordering or a total ordering. A set S with a linear
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ordering defined in it is called a linearly ordered set or a totally ordered

set or a chain.

Definition: Let (P, <) be a poset. Let a,beP. If a < b and a # b, we say
that a <b . Also we say that b covers a if a <b and there is no element

cePsuchthata<c<b.
For example, in ZAN) any singleton set covers ¢. In N with usual <,
3 covers 2.

Representation of finite posets by diagrams

A finite poset P can be conveniently represented by a diagram as
follows. The elements of P are represented by small circles. If a,beP and
b covers a, then the circle for b is placed above the circle for a and the
two circles are joined by a line segment . The resulting figure is a
diagram for the poset.
EXAMPLES
1. Consider the poset {1,2,3,4} with the usual <. Here 1< 2<3<4
and 2 covers 1, 3 covers 2 and 4 covers 3. Hence we obtain

the diagram of figure 1 for the poset.

{1,2,3}
£1,2} {1,3} {2,33
)
z
{1} | 2} {32

2
i

{®@}

Fig 1 Fig 2

2. Consider the poset F{1,2,3}) with the relation .
{1},{2},and {3} afe covers for ¢. {1,2} is a cover for {1} and
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{2} and so on. {1,2,3} is a cover for {1,2},{1,3} and {2,3}.
Hence we obtain the diagram of figure 2 for the poset.

3. Consider the set of all subgroups of the group V4 ={e,a,b,c}
given by {e}, {e,a}, {e,b}, {e,c} and V4. We know that this is
poset (refer example 4/)(. The diagram of this poset is given in

fig.3. The poset représented by this diagram is denoted by the

symbol Ms.
fe,ab,c}

{e}
Fig 3
4. The poset consisting of all non-empty subsets of {1,2} is

given by the diagram of Figure 4.

1,2}

1} {2}

Fig 4
Definition: Let (P, <) be a poset. An element acP is called the least
element or Zero elément of P if a < x for all xeP.
An element a is called the greatest element or unit element of P if x < a
forallx eP.
Note. 1. A poset need not have a greatest element or a least element.

For example the poset given in figure 4, does not have a

least element.

The poset (N, <) does not have a greatest element.

142



2. The least element and the greatest element of a poset, if
they exist, are unique.
For, suppose a and b are two least elements of a poset P.
Since a is a least element, a <b. Similarly b < a. Hence by

the definition of poset, a =b. The proof is similar for the

greatest element. _
3. The least element of a poset is denoted by 0 and the

greatest element is denoted by 1.

Definition: Let (P, <) be a poset. Let A be a non-empty subset of P. An
element ueP is called an upper bound of A ifa <u for all acA
An element ueP is called the least upper bound (l.u.b) of A if
(i) u is an upper bound of A.
(i1) if v is any other upper bound of A, then u <v.
An element /P is called a lower bound of A if/<aforallacA.
An element /eP is called the greatest lower bound (g.1.b) of A if
(1) [ is lower bound of A
(ii) if m is any other lower bound of A then m < /.
Note 1) The lu.band g.l.b of a set A, if they exist, are unique. For, let
u1,i12, be two least upper bounds of A. Then ul is a L.u.b and w2 is an
upper bound for A. Hence ui < u2. Similarly u2 < ui. Hence u1 = ua.
The proof is similar for g.1.b. '
Note 2) In a poset the L.u.b. and g.1.b. of a subset need not exist.
For example- consider the poéet consisting of the set {{a}, {b}, {a,b},
{a,b,c},{a,b,d}} under set inclusion. The diagram for this poset is given
in fig.5. In this poset the elements {a} and {b} do not have g.L.b. and
their Lu.b is {a,b}. Also the element {a,b,c} and {a,b,d} do not have
l.u.b. and their g.L.b. is given by {a,b}.
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fab,c) fa,b,d}
O
fab)
{a} {o}

Fig 5
Note 3) Consider the poset (#XS), <). Let A,BeJXS) Then lLu.b. of
{A,B}= AUB and g.l.b. of {A,B}=ANB.
Clearly AU B is an upper bound of {A,B}. If C is any other upper bound
of {A,B}, then Ac C and B¢ C and hence AUB < C. |
Hence A UB is the L.u.b. of {A,B}.
Similarly A B is the g.L.b. of {A,B}.

CYP Questions:

1) Obtain the diagram for the following posets.
@ F{1)
(b) {10,9,8,6,5} with usual <.
(© {1,2,3,4,5,6,10,15,30}; a<b <> a dividesb
(d) The set of all subgroups of Ze.
() The setof all subgroups of S3.

2) Find the least element and the greatest element, if they exist,
for the following posets. |

(@  (A), where A is any non-empty set.
(b)  The set of all finite subsets of any infinite set
© M=) |
d (Z=)
(¢)  The set of all non-empty subsets of a non-empty set A
§3) {2,5,8,20,40}, a<b <> a divides b
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SECTION - 8.2- LATTICES

Definition: A lattice is a poset in which any two elements have a g.1.b.
and a l.u.b. ‘
We denote the Lu.bofaand bbyav b (a cup b or join of a
and b) and g.1.b. by a A b (a cap b or meet of a and b).
Examples
1) The poset N with the usual < is a lattice.
If a,beN, then a v b =max {a,b} and a A b=min{a,b}
2) The poset (FXS), <) is a lattice. Let A,BeAS).
Then AvB =AlJB and A A B=A[)B.
3) The poset (N, <) where a <b iff “a divides b” is a lattice.
Hereav b=l.cam.ifaand b.aAb=g.c.d. ofaandb.
4) The posets given in diagrams 1, 2 and 3 are lattices and the
posets given in diagrams 4, 5 are not lattices.
5) Let G be a group. Let L be the set of all subgroups of G. In L we
define A <B iff A ¢ B. Then L is a lattice.
Proof. Clearly (L, <) is a poset. Let A,BeL. Then AN BelL.
We claim that AAB = A B. ﬁ
Clearly A(1B i»s a subgroup of A and B and hence A{1 B < A,B.
Now, let CeL be such that C < A, B. Then C is a subgroup of
A and B and hence C < A(1B i.e., C < Aﬁ B and hence A B
is the g.1.b. of A and B.
Now, to find AvB ,let H be the intersection of all subgroups
of G containing AUB. Then H is the smallest subgroup of G
containing A and B and hence AvB =H. Hence L is a lattice.
6) Let G be a group. Let L be the set of all normal subgroups of G.
In L we define A <B iff A — B. Then L is a lattice.
Proof: Clearly (L, <) is a poset. Now, if A and B are normal

subgroups of G, A{1B and AB are also normal subgroups of G. It
can be easily verified that AAB=A[1B and AvB =AB. Hence L
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is a lattice.

Theorem 8.2.1: Let L be a lattice. }Jet a,beL. Then the following

statements are equivalent.

1. a<b
2. avb=b
3. anb=a

Proof. We shall prove that (1) and (2) are equivalent. Leta<b. Then b
is an upper bound of {a,b} Also if c is any other upper bound of {a,b}
thenb <c.

.. b is the Lu.b. of {a,b} (ie.) b = avb.

Conversely, let avb=b. We know that a < avb and hence a.<b.
Thus (1) and (2) are equivalent

Similarly we can prove that (2) and (3) are equivalent.

Theorem 8.2.2: Let L be a lattice. Let a,b,c,deL. Thena<bandc<d

— (i) ave<bvd and
(ii) anc <bad.
Proof. Leta<bandc<d.
We know that b < bwvd.
By transitivity of <, we geta<bvd  ....... (1)
Alsoc<d=>c¢<bvd ... 2)
By (1) and (2), b v d is an upper bound of {a,c}
But a v c isthe Lu.b. of {a,c}
- ave < bvd.

Similarly we can prove that anc < bad.

Aliter.

a<b=>avb=b
c<d—=>cvd=d
(ave)vibvd)=(@vb)v(cvd
=bvd

~Henceavc<bvd.

The proof of (ii) is similar.

Cor.a<banda<c
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=>(1)a<bvc
(ii) a < bac
We now list the basic algebraic properties satisfied by the binary
operations v and A in a lattice. This leads us to an equivalent definition

of a lattice.
Theorem 8.2.3. Let L be a lattice. Let a,b,ceL . Then we have.

Li:ava=a;

L,: a A a=a (idempotenet)
L2:avb=bva;

L'é :a A b =b A a (commutative law)
L3:(avb)vec=av(bvc)

L, : (anb) Ac = an(bac) (associative law)
L4 : an (avb)=a

L'4 . a v (anb)=a (absorption)

Proof :

(L1): ava=1lub. of {a,a}=a.
(L,):aAa=glb. of {a,a}=a.

(L2): av b=1u.bof {a,b}
= Lu.b of {b,a} = bva.

(L,):anb = g.Lb. of {a,b}
= g.l.b. of {b,a} = bna.
(L3): Clearly (avb)vc > a,b,c.
-.{a v b) v c is an upper bound of {a,b,c}
Moreover, if u is any element of L such that u> a,b,c and

henceu>av b)vc.

. {avb)vcisthe Lu.bof {a,b,c}.
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Similarly a v (b v ¢) is the LuNof {a,b,c].
Since the Lu.b. of any subset of L is unique, we have
(avb)vc=av(bvec).
(L3 ): Proof is similar to that of L3
(L4):avb>a

".an (a v b) = a (by Theorem 9.1)
(Ly):anb<a

.av(aAb)=a(by Theorem 9.1)

Theorem 8.2.4. Let L be any non-empty set with two binary operations

v and A defined on it and satisfying Li,L2,L3,L4, L,, L,, L, and L,.
Then L is a lattice relative to a suitable definition of <and v and A are

the L.u.b and g.1.b in this lattice.

Proof. First we shall prove that for any two elements a,beL, the

conditions av b = b and anb = a are equivalent

Suppose avb=b

Then anb = an(a v b)

=a (by L4)
Similarly we can prove that
arb=a=>avb=b.
Now we define arelation<inL bya<b < a§/b =b.

- We claim that < is a partial ordering relation in L.

By Li,a v a=a.
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.. a<aand hence <is reflexive.
Now, leta<band b<a.
| s.,avb=bandbva=a.
. By L2, a =b and hence < is anti symmetric
~ Now,leta<bandb<c.
s.avb=bandbvc=c
sLave=avi(bvce)
=(a v b) vc (byLas)
=bwvc
=C
. a <c and hence < is transitive.
< is a partial ordering relation.
- (L, <) is a poset.

We shall now prove that a v b is the l.u.b. of a and b and anb is the

glb.ofaand b
an(avb)=a (by L4
.a<avb
/
Also b A (a v b)=b (by L4)
s.b<avb

.. av b is an upper bound of a and b.

Now, let ¢ be any other upper bound of {a,b}.
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Thena <candb<c.
avc=candbvc=c.
s (avb)vec=av(bvc) (byLs)
=ave
=c.
~avb=<c
. avbisthe Lub.ofaandb.

Similarly we can prove that anb is the g.l.b of a and b. Hence the

theorem

Definition: Let L be the lattice. A non-empty subset S of L is called a

sub-lattice of L ifa,beS =>avbeS anda A beS.

Examples

1. (N,) is a lattice. Any non-empty subset of N is a sub-lattice
of N.

2. (JAS), o) is a lattice. The set of all finite subsets of S is a
sub-lattice of JAS).

3. Let L bé a lattice. Leta L.
Let L={x/xel,x < a}'Then L, is a sub-lattice of L.
Proof. Letx,y €L,. Thenx<aandy <a.
SoXvy<aand xAy<a.
SXvy andx Ay €Ll..

. L, is a sub-lattice of L.
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4. Let L be a lattice. Let a,beL and a <b. Then {a,b} is a sub-

lattice of L.
CYP Questions:

1) Determine which of the posets given in exercise in 8.1 are lattices and

justify your answers.
2) Show that the set of all subspaces of a vector space V forms a lattice
w.r.t the ordering defined by A < B iff A is a subspace of B.
[Hint AvB =A+B and AAB = A(1B]
3) Prove that any chain is a lattice.

4) Which of the following diagrams are lattices?

I J 4.
) ¢ c 2
/T N d d
S . ’
‘ ({\ T ’ ?:) ’ b a ' b a b 2
\f,)" 0 o 0 )

Ms N
Fig 6

5) Find all the sub-lattices of the lattices Ms and Ns in Fig.6.
6) Let L be a lattice. Let a,be L and a <b. Then prove that

{x/x eL and a <x <b} is a sub lattice of L.

7) Show that the set of all normal subgroups of a group G is a
sub-lattice of the set of all subgroups of G.

8) Prove that the intersection of any two sub-lattices is a sub-lattice.

9) Prove that a lattice is a chain iff all its subsets are sub-lattices.
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UNIT-9

Unit Structure:

Section 9.1; Distributive Lattice.

Section 9.2: Modular Lattice — Examples? Simpie properties.

Introduction: In this unit we develop the various types of lattices like

distributive lattice, medular lattices and its propérties.

SECTION -9.1 - DISTRIBUTIVE LATTICES.

In this section we examine the validity of the following distributive
laws in a lattice.

Ls : av(bac) = (av b) A(avc) and
Ls:an(bve)=(aAb) v (anc) .
First we shall prove that in any lattice Ls is equivalent to L..

Theorem 9.1.1: In any lattice

Ls : av(b/\c) = (av b) A(avc) and
L. : an(bvc) = (a A b) v (anc) are equivalent.
Proof. We shall first prove that Ls = L.

Let av(bAac)
= (av b) A(avc)

. (@A b)v(anc)

=[@aAb)va)]Al@@nab)vc)] (by Ls)
=[av (@aab)] Alcv (a A b)] (byLs
=anfcv(anb)] (by L)
= an[(cva)la(cvb)] (by Ls)

= [a A (cva)] A (cvb) (by L)
= aA(cvb) (by L4)

= an(bvc) (by L2)
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oo Ls= L.
Similarly we can prove that L = Ls

Hence the theorem.
Definition: A lattice L is called a distributive lattice if

av(bac) = (av b) A(ave) for all a,b,c L.

Note. In view of theorem 9.5, in any distributive lattice L'5 is also

valid. Also-any lattice L satisfying Ly for all ab,c L is also a
distributive lattice.
Examples

1. (9XS), ©) is a distributive lattice.
Proof. Let A,B,Ce AS)

Then Av(BAC)=AUBNC)

=(AUB)NAUCQC)
= (AvB)A(AVO)
(FAS), ©) is a distributive lattice.

2. Any chain is a distributive lattice.

Proof. Let L be any chain. Let a,b,c L. Since any two elements in L

are comparable we assume without loss of generality thata <b <c.

av(bac)=avb=>b
and (a v b) A(avc) =bac=Db
av(bac) = (av b) A(avc)

Hence L is a distributive lattice.
3.Ms is not a distributive lattice.(Figure 6)

Proof. av(bac)=av 0=aand

(avb)a(ave)=1A1=1
Thus av(bAac) # (av b) A(avc).
Hence Ms is not a distributive lattice.

4. Ns is not a distributive lattice(refer figure 9.6)

Proof. bv(anc)=b v 0=>b and

(bv a) A(bvec) =1 Ac=c.

bv(anc) # (bv a) A(bvc).
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Hence Ns is not a distributive lattice.

5. The set of all subspaces of a vector space V forms a lattice.
If A and B are two subspaces of V, then
AvB=A+Band A A B=A[)B.

This lattice need not be distributive

For example, take V=V2(R)

Let A= {(x,0)/x €R},
B={0,x)/xeR} and
C={(xx)/xeR}

Clearly A,B and C are subspaces of V.

Now Av(BAC)=A+(BMN C)=A+{0}=A and

(A vBIA(AVC)=(A+B) (A+C)
=V2(R) 1 V2(R)
= V2(R)

Hence Av (BAC)#A(AVB) A(AVC).

Problems

Problem 1._ In any lattice L

an(bvcec)=(anb)v(anc)and
aviibac)y(avb)a(avc)forab,c e L.
Solution. We know that a> anb and a > anc
ava > (anb) v (anc)  (Theorem 9.2)
a> (anb) v (anc) | ....(D)
Also we know that bv ¢ > anb and bvc > anc .
(bvc) v (bac) = (anb) v (anc)
(bvc) > anb v (anc) ...(2)
a A (bvc) > (anb) v (anc) (by (1) and (2))
Similarly av (bac) < (avb) A (avc).

Problem 2. In any distributive lattice L, xvva = yva and xna = yaa

=X =Y.
Solution.
X = XV (X~a) (by L°4)
= XV (yna) (hypothesis)
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= (xvy) A (xva) (L is distributive)
=(yvx) A (yva) (hypothesis)

=yv (Xna) (L is distributive)
=yv (yra) (hypothesis)
-y (by L°4)

Problem 3. Show that in any distributive lattice
(avb) n (bve) A (cva)
=(anb) v (bAac) v (caa)
Solution. (avb) A (bve) A (cva)
= [(anb) v (anc) v (bab) v (bac)] A (cva)
(by LS5 and L’5)

= [(anb) v (anc) vbv (bac)] A (cva)

= [(anb) v (anc) vb] A (cva) (by L>4)

= [bv (anb) v (anc)] A (cva) (by L2)

= [bv (anc)] A (cva) (by L’4)

= [ba(eva)] v [(anc) A (cva)] (by L’5)
= [(bac)v(baa)] v (ancac)v (ancaa)l (by L’5)

= (bac)v(baa)v(anc)v(anc)

= (bac)v(baa)v(anc)

= (anb)v(brc)v(cna)

CYP Questions:
1. Show that a lattice L is distributive iff

a A (bac) < (anb) v (anc) for all a,b,c € L.
2. Show that a lattice L is distributive iff av(bac) > (avb) A (ave)

for all a,b,c € L.

(Hint:Use solved problem 1)

SECTION -9.2 - MODULAR LATTICES.

We now introduce another important family of lattices which are not
distributive but which satisfy a weaker form of the distributive law.

Definition. A lattice L is said to be a modular lattice if
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av (bac) = (avb)ac where a,b,c € L anda <c.

Theorem 9.2.1: Any distributive lattice L is a modular lattice.

Proof. Letab.c e Landa<c.
Since a<c. avc=c (D)
Now, av (bac) = (avb)a(ave) (L is distributive)
=(@avb)re  (by(1) |
. L is modular.
The most important class of modular lattices is given in the folldwing
theorem.

Theorem 9.2.2: The lattice of normal subgroups of any group is a

modular lattice. .
Proof. Let G be the given group. Let A,B,C be normal sub-groups of
G such that A < C.
We have to prove that
A v (BAC) = (AvB)AC ...«(1)
We know that AvB=AB and AAB = AN B (refer example 6 0f 9.2)
. (1) reduces to A(BNC) =(AB)NC.

Now

A v (BAC) < (AVBIA(AVC) (by solved problem 1 0f 9.3)

= (AvB) nC (- AcCO)

A(BNC) c (AB)NC ceee(2)

Now, let x € (AB)NC. Then x € AB and xeC.
Now,x € AB=>x=abwherea e Aandb e B.

SinceAcC,aceA=>aecC. Alsox € C.

b=a'xeC. Alsob € B.

be BNC

x = ab wherea e A and b e BNC

x € A(BNC)

(AB)NC < A(BNC) RWE)
A(BNC)=(AB)NC (by 2 and 3).

Examples

1. We have seen that the lattice of all normal subgroups of V4 is
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represented by the diagram Ms (example 3 of 9.1).
Hence M5 is a modular lattice. However M is not a
distributive lattice.(refer example 3 of 8.1).

Ns is not a modular lattice (refer Fig.6)

Proof. Consider a,b,c € Ns

Clearly b<c.v (B

Now, bv (anc) =bv 0 =b and
(bva)ya(bvc)=I1lnac=c

av (bac)# (avb) Ac.

N5 is not modular.
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UNIT-10

Unit Structure:

Section 10.1: Boolean Algebras — Examples

Introduction: In this unit we discuss about the complemented lattice,

complemented distributive lattice, that is, Boolean algebra and its

properties.

SECTION 10.1: BOOLEAN ALGEBRAS — EXAMPLES

Definition.

Let L be a lattice with 0 and 1.Leta € L. Anelementa’e L

is said to be a complement of a if ava’=1 and ana’=0.

L is said to be a complemented Lattice if every element acL has a

complement.

Examples:
1.

(FAS),<) is a complemented lattice. Here the least element

0 is @ and the greatest element A is S. The complement of
subset A of S is the usual set theoretic complement A' of
the set A since AUA'=S and ANA'=® .

In any lattice 0'=1 and 1'=0.

In M of Fig 6, avb=1 and anb=0. There fore b is a
complement of a. ¢ is also a complement of a. Thus the
complement of an element need not be unique.

Consider the lattice given in Figure 9.1. Here the element 3
does not have a complement. .

Let L denote the set of all subspaces of a finite dimensional
inner product space V. L is a lattice with the usual ordering
and if A and B are subspaces of V, then AvB = A + B and
ArB=ANB

Also for any subspace A of V, the orthogonal complement A-L is
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such that
AvAL = A+AL =V and
ArAL=ANAL = {0}.
Hence L is a complemented lattice.

Theorem 10.1.1: In a distributive lattice the complement of any

element a, if it exists, is unique.
Proof. Let x and y be complements ofael..
avx =avy =1 and
anx = any = 0.
x =y (refer solved problem 2 of 9.3).

Definition. A complemented distributive lattice is called a Boolean
Algebra.

Examples
1. (9AS),c) is a Boolean algebra.
2. Ms is a complemented lattice. However Ms is not
distributive and hence it is not a Boolean algebra.
Remark. Using Theorem 9.8 we see that in a Boolean algebra every
element is uniquely complemented. |
Solved Problems
Problem 1. Let B be a Boolean algebra. Then
(1) (avb) =a'Ab'and {(alb) =a'Ab’
(De Morgan's laws)
(2) (@) =a
Solution (1) It is enough if we prove that
(avb) v (a'Ab") =1 and
(avb) A(@'Ab") = 0.
Now, (avb) v (a'Ab")
= [(avb)va'] A [(avb)vbT] (by L5)
= [(ava') vb] A [aVv (bVvD")] (by L2& L3)
= (1vb) A (avl)
= 1Al
= 1.
Similarly (avb) A (a'Ab") =0.
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(2) To prove that (2")' = a, it is enough if we show that a'va =1 and
a'Aa= 0 which are true.
Problem 2. In a Boolean algebra if avx = bvx
andavx'=bvx',thena=Db.
Solution. avx = bwvx and avx' = bvx'
(avx) A (avx') = (bvx) A (bvx")
av(xax') = bv(xax') (by L5)
av0 =bv0
a=b
problem 3. Show that in a Boolean algebra
[av(a'Ab)] A [bv (bAc)] =b.
Solution. [av (a'Ab)] A [bv (bac)]
. =[(ava) A (avb)] ~b (by L5 and L’4)
= [1A (avb)] Ab
, ={(avb) nb
=b (by L4)
Problem 4. Show that in a Boolean algebra B, the complement of any
element is not itself.
Solution. Suppose a € B. If possible let a'= a.
Then a = ava=ava'=|
Also a = ara=ana' =0
.0 =1 which is a contradiction.
cafa
Problem 5. Prove that a Boolean algebra can not have exactly fhree
elements. |
Solution. Let B be a Boolean algebra with three distinct elements 0,1
and a.
By the above problem, a'# a.
Suppose a' = I, then (a')’ = 1
. a= 0 which is a contradiction.
s a'#1. Similarly a' #0.
a € B does not have a complement which is a contradiction.

Hence there is no Boolean Algebra with three elements.
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CYP Questions:

1) Find which of the following lattices are complemented.
(i) The poset N with the usual < is a lattice.
Ifa,beN, then a v b =max {a,b} and a A b=min{a,b}

(ii) The poset (FAS), ©) is a lattice. Let A,Be HAS).
Then AvB =AUB and A A B=A[1B.

(iii) The poset (N, <) where a <b iff “a divides b” is a lattice.
Hereav b=l.cm.ifaand b.aA b=g.c.d. ofaandb.

(iv) The diagrams 1,2 ,3 4,5 .

(v) Let G be a group. Let L be the set of all subgroups of G. In L we

define A <B iff A = B. Then L is a lattice.

(vi) Let G be a group. Let L be the set of all normal subgroups of G.

In L. we define A <B iff A — B. Then L is a lattice.
2) Simplify the following expressions:-
(a) (avb)aa'Ab’
(b) (anbac v a'vb've'
(©) (anb)vlcea(a'vb)]
(d) [(@Ab)'vcla(avb')
(€) (xAY) v (xAY) v (X'VYIV(X'AY')
3) Prove that in any Boolean algebra
av(a'nb) = avb for every pair 6f elements a and b
4. Prove that it anx = bAax and anx' = bAx, then a=b.
5. Prove that in any Boolean algebra, each of the identifies
arx=aand avx = x forall x implies‘é = 0. |
6. Prove that in a Boolean algebra, the following are equivalent.

(@) anb=a

(b) avb=b
(c) anb'=0
(d) bva'=1
() a<b

7. Find the complements of the following expressions.

(a) xvyvz
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(b) xvy'VEIALXV(YVZ)]
() X'vy)yaxvy") )
8) prove that (xvy) A (x'vz) = (X'AY)V(XAZ)
9) Show that (xAY)VI(xvY)AYT =1
Answers. 1 @ 0 ()1l () (anb)ve
(d)a'nb (e)1 6(a)x'Ay'Az (b) x'Az
(c) x'vy.
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