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0. PRELIMINARIES
INTRODUCTION

In this chapter, we introduce the notions of sets, functions and
some properties of the real number system, which are needed for the
rest of the book. The following concepts are useful to understand the
concepts in the subsequent chapters.

0.1 SETS AND FUNCTIONS

The concepts of sets and functions are indispensable to
almost all branches of mathematics. The usual material of elementary
set theory is so current take it for granted.

We freely use the following notations of set theory.

(1) A isasubset of B writtenas A < B.

(ii) Union of two sets A and B written as AUB.

(iii) Intersection of two sets A and B written as ANB.

(iv) Complement of a subset A of X written as A °.

(v) Difference of two sets A and B written as A-B.

(vi) Cartesian product of two sets A and B written as AxB.
(vil) A function f from a set A to a set B written as f:A—B.
(viii) The empty set ¢ which contains no element.

Certain letters are reserved to denote particular sets which

occur often in‘our discussion, They are

N....... the set of all natural numbers.
Q ....... the set of all rational numbers.
Q*....... the set of all positive rational numbers.

R ....... the set of all real numbers.

C ....... thesetof all complex numbers,

R®.,..,... the set of all ordered n-tuples (X1,X2,c000x... ,Xn) of real
numbers.
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Cr....... the set of all ordered n-tuples (Z1,Z25-e2++--- ,Zn) of complex

numbers.

0.2 INTERVALS IN R

We use order structure in the real number system R to define
certain subsets of R called intervals.

Let a ,be Rand a<b.

(i) (a,b) = {x/xeR,a<x<b} is called the open interval with a and b

as end points.

(i) [a,b] = {x/ xeR,a<x<b} is called the closed interval with a and

as end points.

(iil) (a,b] = {x/xeR,a<x<b} is called the open-closed interval with a
and b as end points.

(iv) [a,b) = {x/xe R,a<x<b} is called the closed-open interval with a
and b as end points.

(v) [a,0) = {x/xeR and x>a}.
(vi) (a,0)= {x/xeR and x>a}.
(vii) (-o0,a] = {x/x€R and x<a}.
(viii) (-0,a) = {x/x€R and x<a}.

(ix) (~o0,00)= R.

Any subset of R which is one of the above forms is called an
interval. Any interval of the form (i), (ii), (iii) or (iv) is called a finite
interval or bounded interval and an interval of the form (v), (vi), (vii)
or (ix) is called an infinite interval or unbounded interval.

0.3 BOUNDED SETS

Definition 0.3.1 A subset 4 of R is said to be bounded above if there
exists an element a €R such that a<a, for all ae4. Then a is called an
upper bound of A.

A is said to be bounded below if there exists an element BeR such
that a>f for all a € 4. B is called a lower bound of A.



A is said to be bounded if it is both bounded above and bounded
below.

Note 0.3.2

1. Let 4 R. If aeR is an upper bound of 4 then any x>« is also
upper bound of 4. Thus a set, which is bounded above, has infinite
number of upper bounds. Similarly a set, which is bounded below, has
infinite number of lower bounds.

2. Let 4 R and xeR. Then x is not an upper bound of A4 iff there
exists at least one element ae4 such that x<a. Similarly x is not a
lower bound of 4 iff there exists at least one element aed such that
xX>a.

Examples 0.3.3

1. Let A={2,3,5}. Any element xR such that x<2 is a lower
bound of 4 and any element x€R such that x>5 is an upper bound of 4.

2. Let A=N. Any real number x is not an upper bound of N,
since there exists a natural number n such that n > x. Hence N is not
bounded above. However N is bounded below. Any real number x<1
is a lower bound of N.

3. Let A=Z. Then Z is neither bounded above nor bounded
below.

4, Let A={x/x<2} = (-0,2]. A is bounded above but not
bounded below. Any real number x>2 is an upper bound of 4.

5. LetAd=(1,0), 4 = {x/xeR and 0<x<1}. Here any number y>1
is an upper bound of 4. Hence [1.o0) is the set of all upper bounds of
A. We notice that the least upper bound of 4 is 1.

0.4 LEAST UPPER BOUND AND GREATEST LOWER
BOUND

Definition 0.4.1 Let 4 R and ueR. u is called the least upper bound
(l.u.b) or supremum (sup) of A it

(1) u 1s an upper bound of A4.

(i1) If v <u then v is not an upper bound of A.
3
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Let4 Rand!/eR. 1iscalled the greatesz; lower bound(glb) or
infimum (inf) of A if

(i) [is alower bound of 4.

(ii) If m >/ then m is not a lower bound of 4.

Examples 0.4.2

1. Let A= {1,3,5,6}. Then gib of A =1 and lub of A=6. In
this case both g/b and lub belong to 4. :

2. Let A=(0,1). Then glb of A =0 and lub of 4= 1. In this
case both g/b and /ub do not belong to 4.

3. Let A = [a,h). then gib of 4 =a and lub of 4 =b. In this
case glb € A and lub ¢ A.

4. Let A = N. Then N is not bounded above and hence N does
not have any /ub. However glb of N = 1.

Exercises 0.4.3

1. Find the /ub and glb of each of following sets, if they exist, State
whether /ub and gl/b belong to the given sets or not.

G) A={1,1/2,1/3, 1/4,........ ,1/m,......}
(i) 4 = {1/2,2/3, 3/4, 4/5,......... }
(iii) 4 = [-3,1)

GVIA={1} (VA=(0,100) (vi)d=[-0,1) @iD4={x|x
<2}

(vii)) A = (-1,3) U (5,6)  (ix) 4= { 1, *1/2, %1/3,......£1/n,......}
)A=11,2,3,-45,......... ) xi)4=0Q (xii) 4 =2N

0.5 BOUNDED FUNCTIONS
Definition 0.5.1

Let f: A — R be any function. Then the range of f is a subset of R, f'is
said to be a bounded function if its range is a bounded subset of R.
Hence f'is a bounded function iff there exists a real number m such that
| (x) | <mforall xeA.



Examples 0.5.2

1. f: [0,1] — R given by f{x) = x+ 2 is a bounded function where as 1"
R— R given by f{x) = x+2 is not a bounded function.

2.f:R— Rgiven by f{x) = 1 if x is rational
and f(x) = 0 ifx is irrational
Then f is a bounded function.
}

3. f: R— R defined by f{x) = sin x is abounded function since |sin x|
<1 for all x € R.

Space for hints
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UNIT-1
1.0 INTORDUCTION

A great deal of analysis is concerned with sequences and
series. Consider the following collection of real numbers given by 1,
1/2, 1/3, 1/4,........ , 1/m,...... In this collection the first element is 1,
the second element is %, the third element is 1/3 and so on. This is an
example of sequence of real numbers. We may think of a sequence as
any arrangement of elements where we can say which element is first,
which is second, which is third and so on. In other words the elements
of sequence are labelled with the elements of N preserving their order.
In general such a labeling can be done by means of a function f whose
domain is N. If the range of f'is a subset of an arbitrary set X, we geta
sequence of elements of X. Now we deal with sequences of real num-

bers.

1.1 SEQUENCES

Definition 1.1.1

Let f: N— R be a function and let A{n) = a,,. Then
a1,a22,23,....... ¥ T is called the sequence in R determined by the

runction fand is denoted by (a,). a,is called the n'™ term of the se-
quence. The range of the function f, which is a subset of R, is called
the range of the sequence.

Examples 1.1.2

1. The function f': N— R given by f(n) = n determines the
sequence 1,2,3,.....n,....

2. The function f: N— R given by f{n) = n° determines the

sequence 1,4,9,....., nz,....

3. The function f: N— R given by f{n) = (-1)" determines the
sequence -1,1.-1,1,..... Thus the terms of a sequence need not be dis-
tinct. The range of this sequence is {1,-1}. However we note that the
sequence ((-1)") and ((-1)™") are different. The first sequence starts
with -1 and the second sequence starts with 1.

4. The sequence ((-1)"") is given by 1,-1,1,-1..... The range
of this sequence is also {1,-1}. However we note that the sequence

((-1)™ and ((-1)™") are different. The first sequence starts with -1 and
the second sequence starts with 1.



5.  The constant function f: N— R given by f(n)=1determines
the sequence 1,1,1,..... Such a sequence is called a constant sequence.

6. The function f': N— R given by
Jf(m) = n/2 ifniseven and
f(n) = Y(1-n)ifnis odd

Determines the sequence 0,1,-1,2,-2,.....,n,-n..... The range of this se-

quence is Z.

7. The function f: N— R given by f(n) = n/n+1 determines
the sequence '2,2/3,3/4,......n/n+1,.. ..

8. The function /: N— R given by f(n) = I/n determines the
sequence 1,1/2,1/3,....,1/n,....

9. The function f': N— R given by f(n) = 2n+3 determines
the sequence 5,7,9,11,....

10. LetxeR. The function f: N— R given by f{rn) = x"/ de-

. . 2
termines the geometric sequence 1,x,x°,... ..,x“,. cen

I1. The sequence (-n) is given by -1,-2,-3,...,-n,.... The range
of this sequence is the set of all negative integers.

12. A sequence can also be described by specifying the first
few terms and stating a rule for determining a, in terms of the previous
terms of the sequence. For example, let a;j=1,a, =1 and a,=a,.;+a,..
Then as=ay+a; =2; a;=a3z+a>—3; and so on. We thus obtain the sequence
1,1,2,3,5,8,13,...... This sequence is called Fibonacci’s sequence.

13. Leta;=+/2 and an+1=+/(2 +a,) . This defines the sequence

1.2 CONVERGENT SEQUENCES

Consider the sequence 1,1/2,1/3,....,1/n,..... We observe that
as n increases 1/n approaches zero. In fact by making the value of n
sufficiently large, we can bring 1/n as close to 0 as we want. This is
roughly what we mean when we say that the sequence (1/n) converges
to 0 or O is the limit of this sequence. This idea is formulated mathe-
matically in the following definition.

/
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Definition 1.2.1
A sequence (a,) is said to converge to a number [ if given £>0 there

exists a positive integer m such that | an-1 |< € for all n=2m.

We say that / is the limit of the sequence and we write Iim =/

1-=»N

or (a,) —>L

Note 1.2.2 (a,) —! iff given £>0 there exists a natural number m
such that ae (I -&, [+¢) for all n>m (i.e), All but a finite number of
terms of the sequence lie within the interval (/ -&,/+¢).

Note 1.2.3 The above definition does not give any method of finding
the limit of a sequence. In many cases, by observing the sequence
carefully, we can guess whether the limit exists or not and also the val-
ue of the limit.

Examples 1.2.3

1. lim 1/n=0 or (1/n)—0.

1—>0

Proof. Let 0 be given.
Then |[1/n—0j=1/n<egifn> 1/e.

Hence if we choose m to be any natural number such that m >
1/€ then

|1/n — 0|< & for all n=>m.
Therefore lIim 1/m=0.
Note 1.2.4 If £ =1/100, then m can be chosen to be any natural num-

ber greater than 100. In this example the choice of m depends on the

given € and [1/€] + 1 is the smallest value of »2 that satisfies the re-
quirements of definition.

Note 1.2.5 The constant sequence 1,1,1,........ converges to 1.

Proof. Lete> 0 be given.

Let the given sequence be denoted by (a,).

Then a, = 1 for all n.




a,—1]= 1-1 =0<egrtorallne N.

| a, — 1 | < & for all n>m where m can be chosen to be any natural

number.

Therefore lima» =1

1—>w

Note 1.2.6 In this example, the choice of m does not depend on the
given €.

n+1 -1

3. Iim

i1—> n

Proof. lLet e> 0 be given.

ntl o aslo =jm)
14 n

Now,

If we choose m to be any natural number greater than 1/¢

we have, ntl_ 1 |<e forall n>m.
n
. n+1
Therefore, lim = 1.
H—>00 n

4. lim 172" =o.

i1—>o0

Proof. Let € > 0 be given.
Then [1/2" -0 |=1/2" < 1/n (since 2" > n for all n € N).

| 1/2" — 0 | < ¢ for all n > m where m is any natural number
greater than 1/g

Therefore ]ym 172" =0.

n—an

5. The sequence ((-1)") is not convergent.
Proof. Suppose the sequence ((-1)") converges to 1.

Then, given &> 0, there exists a natural number m such that | (-
D"—1 <eforalln>m.

!(_l)m_(_l)m+l l___ (_1)m _l+1_(_1)m+l‘
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< l (ml)nl -1+ E (_l)mﬂ —1 I
<. gt+ = Dg.
But |[(-D" =DM =2

2 < 2¢ i.e.. 1 <& which is a contradiction since & > 0 is arbi-

frary.
The sequence ((-1)") is not convergent.

1.3 DIVERGENT SEQUENCES

{ Definition 1.3.1

A sequence (ay) is said to diverge to oo if given any real number k > 0,
- ore exists m € N such that a, > k for all n > m. In symbols we write
{e.) —owor ]jm an=".

11—

Note 1.3.2 (a,) —oo iff given any real number k . O there exists m € N
such that a, € (k,o0) for all n > m.

Examples 1.3.3
1. (n) —oo.
Proof. Letk > 0 be any given real number.
Choose m to be any natural number such that m > k.
Then n > k for all n > m.
(n) —co.
2. (n?) —oo.

Proof. Letk > 0 be any given real number.

Choose r to be any natural number such that m > Jk .
Then n >k forall n > m.
(n) —co.

3. (2") —oo.

Proof. Letk > 0 be.any given real number.

10



Then 2">k < nlog2 > logk.
< n> (log k)/log 2

Hence if we choose m to be any natural number such that m >
(log k)’ log 2, then 2" > k for all n > m.

(211)_>Oo.
Definition 1.3.4

A sequence (a,) is said to diverge to - if given any real number k <0
there exists m € N such that a, < k for all n > m. In symbols we write

lim @ = -oo or (ay) — -oo.

—»co”

Note 1.3.5 (a,) — -oo iff given any real number k < 0, there exists me
N such that a, € (-o0,k) for all n>m.

A sequence (a,) is said to be divergent if either (a,) —o or (a,)

—>-00,

1.4 CAUCHY SEQUENCES
Definition 1.4.1

A sequence (a,) is said to be a Cauchy sequence if given € > 0, there
exists

no€ N such that | a, —an,| < € for all nm > ny.

Note 1.4.2 In the above definition the condition | an —am| < & for all n,
m > ng can be written in the following equivalent form, namely,

| an+p —an| < € for all n > ng and for all positive integers p.

Examples 1.4.3

1. The sequence (1/n) is a Cauchy sequence.

Proof. Let (a,) = (1/n). Let € > 0 be given.

Now |as—am|= | 1/n—1/m|.

Therefore if we choose ng to be any positive integer greater than 1/ g,
we get | a, —an] <& forallnm >ng.

Therefore (1/n) is a Cauchy sequence.

11
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2. The sequence ( (-1)) s not a Cauchy sequence.
Proof. Let(a;) = (-D".
Thel'ef()l'e ' dy “‘an+1] = 2 .

Therefore If € < 2, we cannot find n0 such that | ay —an+1| <& forall

n.m = ng

Therefore ( (-1)") is not a Cauchy sequence.
3.(n) is not a Cauchy sequence.

Proof. Let (ay) = (n).

Therefore | a, —am| = 1 if n# m.

Therefore if we choose € < 1 , we cannot find ng such that| a, —am| <€
for all nm >ngy

Therefore (n) is not a Cauchy sequence.

1.5 INTRODUTION OF COUNTABLE AND UN-
COUNTABLE SETS

COUNTABLE SETS

If aset A is finite, then we can count the number of elements
in A.In other words , we can label the elements of a by using the natu-
ral numbers 1,2.3,...,n for some n and the number of elements ina is
n.In this case, there exists a bijection f from A onto the set
{1,2,3,....n}. Hence if A and B are two finite sets having the same
number of elements, then there exists a bijection from a to B.

Definition 1.5.1

Two sets A and B are said to be equivalent if there exists a bijection f
from A to B.

Note 1.5.2 From what we have seen above, two finite setsA and B
are equivalent iff they have the same number of elements. Hence a
finite set cannot be equivalent to a proper subset of itself. However an

infinite set can be equivalent to a proper subsets as seen in the follow-
ing examples.

Example 1.5.3

Let A=Nand B = {2.4,6,.....2n,..

1
S g



Then f: A— B defined by f(n) = 2n is a bijection. Hence A is equiva-
lent to B even though A has actually ‘more’ elements than B.

Example 1.5.4
N is equivalent to Z.
The function f:N— Z defined by
f(n) = n/2 if n is even and f(n) = ( 1-n)/2 if n is odd.
Then f is a bijection. Hence N is equivalent to Z.
Definition 1.5.5

A set A is said to be countably infinite if A is equivalent to the set of
natural numbers N.

A is said to be countable if it is finite or countably infinite.

Note 1.5.6 Let A be a countably infinite set. Then there is a bijection f
from N to A. Letf(l) =a, f(2) =az,........f(n) =an,......

Then A = {a;,az,....,Qn,....}.

Thus all the elements of A can be labelled by using the elements of N
Example: {2,4,6,....,2n,...} is a countable set.

Example 1.5.7 Z is countable

Example 1.5.8 Let A= {1/2,2/3,3/4,.......... }.

The function /i N— A defined by f{») = n/(n+1) is bijection.
Hence A is countable.

Theorem 1.5.9 A subset of a countable set is countable.
Proof. Let A be a countable set and let B A.

If A or B is finite, then obviously B is countable.

Hence let A and B be both infinite.

Since A is countably infinite, we can write A = {aj.a»r... .a,.

Let a, be the first element in A such that ¢, € B.

Let a, be the first element in A which follows «, suchthat ¢ « 13

13
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Proceeding like this we get B ={aq, .4, .....--- }. Thus all the ele-
ments of B can be labelled by using the elements of N. Hence B is

countable.
Theorem 1.5.10 Q" is countable.

Proof- Take all positive rational numbers whose numerator and deno-

minator add up to 2.
We have only one number namely 1/1.

Next take all positive rational numbers whose numerator and denomi-

nator add up to 3.
We have 1/2 and 2/1.

Next take all positive rational numbers whose numerator and denomi-
nator add up to 4.

We have 1/3.2/2 and 3/1.

Proceedings like this, we-can list all the positive rational numbers to-

gether

from the beginning omitting those which are already listed.

Thus we obtain the set {1,1/2,2,3,1/3,1/4,2/3,3/2.4,............. }. This
set ¢

ontains every positive rational number each occurring exactly once.
Thus Q" is countable.

Theorém 1.5.11 Q is countable.

Proof. We know that Q" is countable.

Let Q" = {r1,r2,.....0,.... ).

Therefore Q = { 0,r).,1a,.....In,..... }.

| Let £ N —Q be defined by f{1) = 0.f{2n) = r, and f{2n+1) = -t

Clearly fis a bijection and hence Q is countable.
Theorem 1.5.12
Nx N is countable.

Proof.

14



N x N={(a,b)/abeN}

Take all ordered pairs (a,b) such thata +b =2,
There is only one such pair namely (1,1).

Next take all ordered pairs (a,b) such that a +b = 3.
We have (1,2 ) and (2,1).

Next take all ordered pairs (a,b) such that a + b = 4.
We have (3, 1), (2,2) and (1,3).

Proceedings like this and listing all the ordered pairs together from the
beginning,

we get the set { (1,1), (1,2), (2,1), (3.1), (2,.2), (1.3),....... ',

This set contains every ordered pair belonging to N x N exactly once.
Thus N x N is countable.

Note 1.5.13

The above process of arranging the elements of Nx N as a sequence
can be represented by means of diagram as follows. This process is
known as Cantor’s diagonalisation process.

(1,1) 2,1) —» (3,1) A1) — e,

(1,2) (2,2) ‘/(3,2) (4,2)

(1,3) (2,3) (3,3) (4,3) oo
(1,4) /('2,4) (3,4) (BB e

Theorem 1.5.14

If A and B are countable sets then A x B is also countable.

15

€4

nzce for nints

b minc s uom




Space for hints

Proof.

We assume that A and B are countably infinite.
Let A= {aj,az, .....an,.-... 1. B= { by, ba,........ 1 o TN }
Now define f: Nx N —A x Bby f(i,j) = (a, b))

We claim that f is a bijection.Suppose x = (p,q) € N x N and y = (u,v)
€ Nx N.

Now f(x) = f(y) =>(ap,bq) =(au,bv)
=>ap = a,, bq= by.
=>p=uandq=v
=>(p.q) = (U.v)
=>x=y
Therefore fis 1 -1.
Now suppose (am,an) € A...3
Then (m, n) e N x N and f(m,n) =(am,an).
Therefore fis onto. Hence f is a bijection
Hence A x B is equivalent to N x N which is countable.
Theorem 1.5.15
Let A be a countably infinite set and f be a mapping of A onto a set B.
Then B is countable.

Proof.

Let A be a countably infinite set and f: A— B be an onto map.

Let b €B. Since f is onto, there exists at least one pre — image for b.
Choose one element ae A such that f(a) = B.

Now, define g: B — A by g(b) = a.

Clearly g is 1-1.

Therefore B is equivalent to a subset of the countable set A.

Therefore B is countable. (by Theorem 1.5.9)
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Theorem 1.5.16

Countable union of countable sets is countable.

Proof. LetS = { Aj,As,...... An,....}be a countable family of countable
sets.

Case 1

Let each A; be countably infinite.

Let A;={ aj;;.aiz,...... Alns----}
Az ={ aAz1,a4224...... arns. .. }
An= { Anl,aAn2se ... Anns }

--------------------------------

----------------------------------

Now we define a map f: NxN —U A, by (i) = ay.
Clearly f is onto.

Also by Theorem 1.5.12, N x N is countably infinite.
Hence by Theorem 1.5.16, U A, is countably infinite.
Case 2

Let each A; is countable.

For each i1, choose a set B; such that B; is a countably infinite set and
Ai =B,

Then UAic UB;

Now, U B, is countable (by case 1))

Therefore U A, is countable.( By Theorem 1.5.9)
PROBLEMS

Problem 1.5.17

Any countably infinite set is equivalent to a proper subset of itself.

17
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Let A be countably infinite set.

Clearly B is a proper subset of A.

Define a map f: A — B by {(a,) = an+1.

Clearly f is a bijection. Hence A is equivalent to B.

Problem 1.5.18

Any infinite set contains a countably infinite subset.
Solution.

Let A be an infinite set.

Choose any element a; € A .

Now , since A is infinite set, we can choose another elements
areA — { a}.

Now, suppose we have chosen a;.a;,...... a, from A.

Since A is infinite , A - { a,as,...... a,} is also infinite.
Therefore we can choose a4+ from A - { a;,aa,...... an}.
Now, B ={ aj,a,,...... Qn, B+l oevene- }is countably infinite subset of A.
Problem 1.5.19

Any inifinte set is equivalent to a proper subset of itself.
Solution.

Let A be an infinite set.

By above problem, A contains a countably infinite subset B = {

Clearly A=(A-B) U B.
Now consider the following subset C of A given by

C:(A—B)U { al.a2,...... Aneveeen.. =A-{a1}.

18



Clearly C is proper subset of A.

Consider the function f: A — C defined by f(x) = x if xeA —B and
f(an) = an+1.

Obviously fis a bijection. Hence A is equivalent to C.
Exercises 1.5.20

1. Let A= {1,2,3,....n,.....} and B={ 1,49, ..._,./nl,.....} . Show that
A and B are equivalent.

2. Show that N and A = {101,102,103,....... } are equivalent.

3. Show that f: [0,1] — [a,b] defined by f(x) = a+ (b-a) x is a bijection.
Hence deduce that any two closed intervals, [a,b] and [c.d] are equiva-
lent.

4. Show that for any two sets A and B, the set Ax B is equivalent to
the set B x A.

5. Prove that the set of all even integers is countably inifite.

UNCOUNTABLE SETS
Definition 1.5.21
A set which is not countable is called uncountable.

All the infinite sets we have considered in the previous section are
countable.

We shall now give an example of an uncountable set.
Theorem 1.5.22

(0,1] 1s uncountable.

Proof.

Every real number in (0,1] can be written uniquely as a non — terminat-
ing decimal O.a a,,...... ap.... Where 0 < a; <9 for each 1 subject to the
following restriction that any terminating decimal. aja,... ..... a, 000...

is written as .ajaas....(a,-1)999....
For example. .54 = .53999.....

1 =.999...

19

Space for hints




Space for hints

Suppose (0,1] is countable.

Then the elements of (0,1] can be listed as {Xi1X2... ... Xn seeene)
where xX; = .aj;a;2....... ain....

X2 —. a&1a22,.e.... A2 .-

Xn=™ . aQnl Ap2sevvvn- dnn }

--------------------------------

---------------------------------

Now , for each positive integer n choose an integer b, such that 0 <b,
<9 and b,, #0 and b,, # aun.

Lety=.b; bz bs....

Clearly y € (0,1] .

Also y is different form each x; for each I which is contradicition.
Hence (0,1] is countable.

Corollary 1.5.23

Any subset A of R which contains (0,1] is uncountable.
Proof.

Suppose A is countable.

Therefore by Theorem 1.5.9, any subset of A is countable.
Hence we get (0,1] is countable which is contradicition.
Therefore A is uncountable.

Corollary 1.5.24

R is uncountable.

Proof.

The results follows directly by taking A =R.

Corollary 1.5.25

20



The set S of irrational numbers is uncountable.
Proof.

Suppose S is countable.

We know that Q is countable.

Therefore SU Q =R is countable which is a contradiction,

by Theorem 1.5.16.

Therefore S is uncountable.
Exercises1.5.26

1. Prove that C is uncountable.

2. Prove that the set of all irrational numbers lying in the interval (o,1]
is uncountable.

3. Prove that any interval in R which contains more than one point is
uncountable.

INEQUALITIES OF HOLDER AND MINKOWSKI

Theorem 1.5.27(Holder’s Inequality ) If p > 1 and q is such that 1/p
+1/q =1 ,then

1
n .

|
Zl:|a,b, < [Z| a, |f’}”[}f‘| b, |":|1Where a1,82,......8, and
= i=1 =1
bi.bo,...... b, are real numbers.

Proof.

First we shall prove the inequality

x'? y"4< x/p + y/ q where x>0 and y > 0.

This inequality is trivial if x =0 or y =0.

Now , let x,y > 0.

Consider f(t) =t* - At + A — 1 where A= 1/ pand t > 0.

Then f(t) = A" - A =" - 1).

21
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Therefore f(1)=f(1)=0.

Also f¢ (t)> 0 for 0<t<1land £(t) <0 fort> 1.
Therefore f(t) <0 for all t > 0 and in particular f(x/y) < 0.
Therefore (x/y)* - A (x/y) +A—1<0.

Therefore (x/v)'P - 1/p (x/y)+ 1/p—1= 0.

Multiplying by y ,we get x'P y "/P _x/ p — (1- 1/p)y < 0.
Therefore x'P y """ _x/p —y/q <0. (Since 1 — 1/p =1/q).
Therefore x'? y'1 < x/p + y/q.

Now to prove Holder’s inequality, we apply the above inequality to the
numbers

q
X, =Jaj—;y, =——,—!-lL foreachj=1,2,....n.

2lal” XL

1=1 i=l

IP

P q
.| .| % Y forallj=1.2,....n

We get ] -
= L P p q

D la |17 22571

j=] I=I

IA

Adding these n inequalities we get
a
2.l Pl o E L 2

R 1, T .
a1 D) P
i=l 1=}

=1/p +1/ q (since Zx‘l = Zy, =1)
J=1 7=l

Using this in (1) we get ,
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1

g }"'

Slalbls|3 ||Hz 2

1 !
Therefore Zn:[a,blls[zn: |a,|"}p[z |b,|"]q
=1 1=1 1=1

Note 1.5.28

If we put p= q = 2 in Holder’s inequality we get the following inequali-
ty which is known as Cauchy — Schwarz inequality.

ta | —

Theorem: 1.5.29 (Minkowski’s inequality)
1 1 '
n r x n ; 7 ;
Ifp>1.[> |a, +5,] 1" S[Z Ia,lp] +[Z |b,|p] where , a; as...
=1 =1 1=}
.....apand by,bs... ..... b, are real numbers.

Proof.

This inequlity is trivial when p =1. Let p>1.

1

Clearly, [>|a, +5,] 17 < [i('a, |+15,)71” = @)
’=| I=1
Now,Z[la. I+'|b,|]” =Z[|a, )+lb,|]”"(l a l+1]b,))
1=} i=1

=>la, e [+15D™ +> 15, 1da, 1 +15, D"

S[lea, I"];[i la, [+ 15D+ 15,1717 (a, |+]b, D]

Where 1/p +1/q = 1 ( using Holder’s inequality)
Now, since 1/p +1/q =1 we have p + q = pq
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Hence (p-1) q = p.
Therefore dividing by

(> (a, | +15,D" 1

,we get

|
1 i

(> (a, |+|b,|)"]'7s@|a, SERIVINE ryr

1 2] _]_ n _l_
D (a, | +15,D"1” <[ la |1 [, 15,171 .
=1 =1 =1 —

From (1) and (2) we get the required inequality.

1.6 METRIC SPACES

The concept of convergence of sequences of real numbers de-
pends on the absolute value of the difference between any two real
numbers. We observe that this absolute value is nothing but the dis-
tance between the two numbers when they are considered as points on
the real line.In this section, we define the concept of metric spaces and

provide many examples.

Definition 1.6.1

Let M be a non- empty set. Let d: M x M — R be a function.
d is called a metric on M if
Ddx.y)=0, Vx,yeM
Mdxy)=0 <=<x=y, Vx,yeM
(i1) d(x,y) = d(y.x), V x,y € M (Symmetry)
(1v) d(x,z) < d(x.,y) + d(y,2), VX, y,ze M (Triangle inequality).
d is also called a distance function. The set M together with a

metric d is called a Metric Space. We denote a Metric Space by (M,d).

. Example 1.6.2

In R, we define d(x.y) = |x-y|. Then d is a Metric on R.
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This is called the usual Metric on R.
Proof.- (i) d(x,y)=|x-y|= 0, Vx,y€eR.
(D) dxy)=0 < x-y[=0
SxX=Y
Thus d(x,y) =0 <> x=y, VX, y € R,
(i) d(x,y) =[x -y |
=ly — x|
= d(y,Xx)
Thus d(x,y) = d(y.x) , Vx,y € R.
(iv)let x,y,zeR
d (x,z) = [x-z|
= [x-y+y-Z|
< x-y| +1y-2|

=dx,y) +d(y,2)

Therefore , d(x,z) < d(x,y) + d(y,z) V x,y,Z € R.

Therefore d is a Metric on R.
Hence (R,d) is a Metric Space.
Note 1.6.3

Whenever we consider R as a Metric Space,

the underlying metric is taken to be the usual metric unless otherwise

stated.

Example 1.6.4

In €, we define d(z,w) =| z-w |. Then d is a metric on C.

This is called the usual metric on C.

Proof. Letz=x+iy and w = u+iv be two complex numbers.

1) d(z,w) = | Z-w |.

= | (x+iy) - (utiv) |

25
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=| (x-w) + iy = V) |

= Jx—wl+y-v)
> 0.
Therefore, d(z,w) =0, V z,w eC.
(i) dzw)=0< |z-w|=0
& Z=W
d(z,w) = 0= z=w,VzweC.
(iii) d (z,w) = | z-w |.
=|w—z|
= d(w,z).
Therefore, d (z,w) = d(w,2), V z,w €C.
(iv) Let x,y,z €C.
Let x = x;+iX2, v = y1tiy2,z = z1+izp
dx,z)=|x—2z|
= | (x1+ix2) - (z1+12z2)
= | (xi+ix2) —( y1Hiy2) + (yi+iy2) + (zi1Hiz2)l
< | (xi+ix2) ~( y1+iy2)| + [(yit+iy2) - (zitiz2))
=|lx—-y |+ly—2z]
= d(x,y) + d(y,2)
Therefore, d(x,z) < d(x,y) + d(v,z), V x.,y,z €C.

(C,d) is a meetric space.

Example 1.6.5 On any non-empty set M ,we define d as follows.
dix,y)= Oifx=yand d(x,y) =1 ifx# y.
Then d is a metric on M. This is called the discrete metric on M.

Proof. Let M be any non — empty set.

We define d as follows
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dx,y)= 0ifx=yand d(x,y) = 1 if x# y.
(1) d(x,y) is either O or 1, from the definition
Therefore, d(x,y) > 0,V x,y € M.
(i) d(x,y) = 0 < x =y, from the definition.
(iii) From the definition of d, d(x,y) = d(y,x), V X,y € M.
(iv) case (1): x = z.
Then d(x,z) = 0.
Also, d(x,y) + d(y,z) =0
Therefore, d(x,y) + d(y,z) = d(x,z)
Thus d(x,z) <d(x,y) + d(y.z) , V x,y € M.
Case (i1): x# z.
Then d(x,z) = 1
Supposey=xand y =z
Then x = z, a contradiction.
Therefore x# yory # z.
Hence d(x,z) <d(x,y) + d(y,z) , V x,y € M.
Therefore, d is a Metric on M.

Minkowski’s Inequality 1.6.6

fp=1,[ > latblPI" <[> [af1P+[ > (b1,
=1 i=1 1=1

where a;,as,....... ,an and by,ba,....... ,bn, are real numbers.

Example 1.6.7

M

In R" define d(x,y) = [ Z (xi—y))* 1", where x = (x1,Xa,....... Xn

1=1

andy = (y1,¥2,-...... 2 ¥Yn)-
Then d is a metric on R". This is called the usual metric on R".

Proof.
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(i) d(x.y) =1 Z (xi—yi)? 1% = 0, since (xi—yi)* = 0.

r=1

N

() dxy) =0 [ >, Gi—y*1"” =0.

=1

Hence d(x,y) =0 x=y, V x,ye R"
(i) deey) =1 D>, Gi—y)* 1"
=1

n

=[ > =-x)"1"

1=1

=d(y.x)
Thus d(x,y) = d(y,x) ,V x,ye R"
(iv) Let a; = x;—y; and b; = y; —z; and p=2 in Minkowski’s inequality

Then we get

1 7

[ > xi—z) 17 <[> xi—y)*1"+ [ i (vi—z)?* 12

r=1 =1

= d(x,z) <d(x,y) + d(y,2)
since X, y, z are arbitrary,

d(x,z) <d(x,y) + d(y,2) V x,ye R"
Therefore d is a Metric on R™
Note 1.6.8
R" with usual Metric is called the n-dimensional Euclidean Space.
Example 1.6.9
Let x,ye R?. Then x = (x1,x2) and y= (y1,y2), where X1,y,X2,y2 € R.

We define d(x,y) =|x1—y1|+ x> —y2|. Thend is a metric on R>.
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Proof.
O dExy)=|xi—y1 |+ Ix2—y2|20.
() dxy)=0 < |xi—n|+ix2—y2|=0.
| x1—y1|=0and |x2—y2|=0.
S xp=y and X2 =Yy2
< (x1,%x2)=(Y1,¥2)
&S X=Yy
Therefore d(x,y) =0 < x=y V X,y€ R2.
(i) dxy) =|xi—y1 | +|x2 - y2 |
=|lyi—x1|+|y2—x2]
= d(y.x)
d(x,y) = d(y,x), V x,ye R?
(iv) Let X,¥, Z € R?
dx,2) ={x1—z1 | + | X2 — 22 |
= X1 —y1+ y1-Z1 | T | X2 — y2t y2- Z2 |
={Ixi—yi[Hyi-zi }H{| x2 = y2 [+ |y2- 22}
={lxi—yi [t |x2—y2 | }H{ly1-zi|* |y2- 22|}
=d(x,y) + d(y.2)
Since x,y, z € R? are arbitrary,
d(x,2) < dx,y) +d(y,z) ,V X)y,ze€ R?
Hence d is a Metric on R

Example 1.6.10

Consider R" . Let p> 1. We define d(x,y) =[ > (xi—y)*]1'"?

=1

where X = (X1,X2,....Xn) . ¥ = (Y1LY2seevcennn. y¥n) - Then d is a Metric on
R".
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Proof.

@O dey) =1 > i—y)* 177 =0, since | x,—¥i |20
R 1

=

"n

() dxy)=0 <[ > &xi~-y)’}" =0.

1=1

< Xi=yi, ViE1,2,.0.... ,n
< (X1,X25- - Xn) = (V155250 0cennens Vi)
S X=Y

Therefore d(x,y) =0 < x=y, V x,ye R".

a1 F ¢

= [> GimxP1

= ¥’

= d(y.x)

Thus d(x.,y) = d(y.x), ¥ x,ye R".
(iv) Let a; = xi~yi and b; =yi-z; in Minkowski’s inequality,
We get -

n n

D T

=T 1=1
n

SIS ey P 1P S iz ]

P Py
Thus d(x,z) < d(x,y) + d(v,z).

Since x,y,z are arbitrary, d(x,z) < d(x,y) + d(y,z), V x,y,z € R".

Therefore d is a Metric on R".

Example 1.6.10

In R" we define d(x,y) = max { | x; - yi|, i=1,2,.. ..,n}

2
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where X = (X1,X2,-...Xn) . ¥ = (¥1,¥25vveenn.. Vu) - Then d is a Metric on

R".

Proof.

<= Xxi-yi=0foralli=1,2,.....,n.
<> xi=y; foralli=1,2,......n.
<= (Xl,Xz,....Xn) = (y],}’2, ......... yn)

Sx=y
(i) d(xy) =max {|x;-y;|}
= max {|yi-xj}}
= d(y,x)
(iv) Now, let x,y,z € R". Since each x;,y;,zi € R
We have| x;—z; | =|xi—yi+ yi-zi|

=| Xi—yi| +| yi-z; | foralli=1.2,......n.
Therefore max| x;— z| < max| x;— i | + max|y;— z

Therefore d(x,z) < d(x,y) + d(y,z).
Hence d is metric on R".
Example 1.6.11

Letp > 1. Let /, denote the set of all sequences (X;) such that
ST - S p 11/p
D |x,| 1s convergent. Define d(x,y) = [ Z Xn—yn)" ]
1 n=1

where x = (x,) and y = (y,,) . Then d is a Metric on L.

"Proof. Letabe L,
First we prove d(a,b) is a real number.

By Minkowski’s inequality we have ,

[ ebPIP <[ 3 P13 P )

Since a,b € , the right hand side of (1) has a finite limit as n-— oo,
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Therefore (Z |ai+bi|P]” P) is convergent series.

=1

Space for ‘hints

Similarly we can prove that ( Z la,-byP1? ) is also

1=1
a convergent series and hence d(a,b) is a real number.

Now, taking limit as n—oo in (1) we get
[ b1 <0 S 1P ALY BP1P @)
=1 1=l r=1

Obviously d(x,y) >0,
dx,y)=0iff x=y
and d(x,y)=d(y,x)
Now, let x,y,z €/,

Taking, a; = x; — y; and b, — yi — zi in (2) we get
[ ezlfIP <0 kewP1® 13 vzl
=1 =1 =1

Therefore d(x,z) < d(x,y) + d(y,z).
Hence d is a metric on /,,
Note 1.6.12

In particular, 1, is a metric space with the metric defined by

dx =13 Ga—y?1".

n=I

Example 1.6.13

Let M be the set of all bounded real valued functions defined on a non-
empty set E.

Define d(f,g) = sup { | f(x) — g(x) | / x € E }.Then d is a metric on M.
Proof.

(1) d(f,g) =sup {|f(x)—gx)|}=0.

32



(i) d(f,g) =0 <> sup {|f(x)—-g(x)|}=0.
<[ f(x)—g(x)|=0 forall x e E.
< f(x) = g(x) for all x € E.

= f=g,.

(iii) Also, d(f,g) =sup { [f(x)—g(x) |}
=sup { | gx)—f(x) |}
= d(g.1).
(iv) Now, let f,g,h € M.
We have| {(x) —h(x) | = | f(x) —gx) | +] g(x) —hx) |

Therefore sup { |[f{(xX)—h(X) |} <sup {|f(x) —gx) |} +sup {|
g(x) —h(x) |}

Therefore d(f,h) <d(f,g) + d(g,h)
Hence d is a metric on M.

Example 1.6.14

Let M be the set of all sequences in R. Let x,y € M and

N | X, =V |
let x = (xn) and y = (ya). Define d(x,y) = d n
(Xn) and y = (yn) (%,¥) ;2”(l+1x,,-yn 5

Then d is a metric on M.
Proof. Letx.,y € M. First we prove that

(i) d(x,y) is a real number > 0.

We have — [ %) =Y | < 1/2" for all n.
2"A+|x, =y, D

Also Z 1/2" is a convergent series.

n=1

[Comparison Test: 1.Let Z cn be a convergent series of positive

terms.
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Let Z a, be another series of positive terms. If there exists me N

such that

a, < ¢, for all n > m, then Z a, is also convergent.’
2. Let Z d. be a divergent series of positive terms.

Let Z a, be another series of positive terms. If there exists me N

such that

an=> d, for all n > m, then Z a, is also divergent.]

Therefore Z‘O: ~ (%, = |
= 270+ x, =¥, D isa convergent series. (by compar-

ison test)
Therefore d(x,y) is a real number and d(x,y) > 0.

X, =y, l
2"+ x, =y, D

(i) d(x,y)=0 < 0

< | Xn - yn|=0 for all n.

< Xp=y, foralln.

= x=y.

e 3 l xn -~ yn l
(iii) Also, d(x,y) = Zl 2"(+|x, -y, D

_ i | Yy =%, |

n=1 2”(1+|y” — X, D

= d(y,x).
(iv) Now, let X,y,z € M. Then

lxn_ynl :(1+’xn—yn D—I
(1+,xn_yn I) 1+|xn—ynl

=1- : <1- !

I+|x, —z, | +|x, -y, |+|y, —z,

= ,x”_y’7,+lyn_zi1’
1+lxl1—yl1|+lyn—znl




_ | x, =y, | N |V, — 2, |
+|x, -y, | +ly,—2z,1 +|x, -y, |+|ly,—2,
< Ixﬂ-—yﬂ| + |yl1_zl1|

1
2’1

Multiplying both sides of this inequality by and taking the sum

from n =1 to oo we get

i | X, — 2, |
2”(1+|x -z, I)

n=1
o

<Z Z . lxn—znl

n=l 2" (1+,x _yn =1 2 (l+|yn_zn D

Therefore d(x,z) < d(x,y) + d(y,z).This is true for all x,y,zeM.
Therefore d is a metric on M.

Example 1.6.15

Let / " denote the set of all bounded sequences of real numbers. Let x =
(xn) and y= (yn) € [ define d on [ as d(x,y ) =1lub| x_ -y, | . Then d is
a metric on l

Proof.

)d(x,y) =lub|x, -y, >0

(i) dxy) =0 < lubx, -y, | =0

S | Xn-yn|=0for ISn <

X

S Xp=yn for1Sn <
"R (xa )= (yn)
Px=y
(iii) Now , d(x.¥) = lub| x, -y, |
=lubjy, - x, |
= d(y,x).
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0

(iv)Letz=(zy) € [

Nowlxn—zn]=|xn-Yn+ Yn-an
Slxn"Yn!_HYn"Zn
<lub | Xp-¥a|+lub | yn - Zn

= d(x,y) + d(y>2)-
Therefore Lub | x, - z, | < 4C%¥) + d(y,2).

Therefore d(x,z) < d(x,y) + d(y,z) for all x,y.z € / "L

Therefore d is a metric on ] }

 PROBLEMS

Problem 1.6.16

Let d; and d> be two metrics on a set M. Define
d(X9Y)=d1 (XaY)+d2(X9Y) .

Prove that d is a metric on M.
Solution.

Let d; and d; be two metrics on a set M.
Define d(x,y)=di(x,y)+d2(x,y).

(1) Since d; and d; are metrics on M, d;(x,y)=0 and d,(x,y)>0 for all
X, yeM.

This implies that d(x,y)=>0.

Since x and y are arbitrary, d(x,y)>0 for all x, ye M.
(11) d(x,y) = 0 < di(x,y)+d2(x,y)=0.

< di(x,y)=0 and d,(x,y)=0.

<x =y, since d; and d, are metrics on M.

This is true for all x and y, since x and y are arbitrary.

Hence d(x,y) =0 < x =y for all x,y eM.
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(iil) dxy) = di(xy)+da(x,y).
= di(y,x)+d2(y,x),since d; and d, are metrics on M.
=d(y,x).

This is true for all x and y, since x and y are arbitrary.

Hence d(x,y) = d(y.x) for all x,yeM.

(iv) Let x,y,z € M.

Since d; is a metric on M,d; (x,z) < di(x,y) + di(y,z) for all x,y,zeM.

Since d, is a metric on M, dz(x,2)<d»(X,y)+d2(y,z) for all X,y,zeM.

di(x,2)+ da(x,2) )<di(x,y)+di(y,2)+ d2(x%,y)+da2(y,2)

This implies that d(x,z)<d(x,y)+d(y.z).

This is true for all x,y,zeM ,since X,y,z are arbitrary.

Hence d(x,z)<d(x,y)+d(y,z) for all x,y,zeM.

Thus d is a metric on M.

Problem 1.6.17

Determine whether d(x,y) defined on R by d(x.y) = (x-y)” is a metric or
not.

Solution.
Let x,y eR.
() d(x,y) = (x-y)* >0, Vx,y eR.
(i) dxy) =0 (x-y)*=0
S x=y.

(i) d(x.y) = (x — y)*

=(y - %)’

= d(y,x).

Therefore, d(x,y) = d(y,x), V XY €R.
(iv) Letx=-5,y=-4andz=4
d(x,z) = d(-5.,4)
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=(-5-4)
= 81.
d(x,y) = d(-5,-4)
=(-5+4°
= 1.
d(y,z) = d(-4,4)
=(-4 — 4)?
= 64.
Therefore triangle inequality does not hold.
Therefore d is not a metric on R.
Problem 1.6.18
If d is a metric on M, is d? a metric on M ?
Solution.
Consider d(x,y) defined on R by d(x,y) =|x — vy |.
d is a metric on R, by example 1.6.2.
y) =|x—y
=(x-y)
d? is not a metric ,by problem 1.6.17.
Problem 1.6.19

If d is a metric on M, prove that+/d is a metric on M.

Solution.
letx,y,ze M
Let d be a metric on M.

(i) Since d is a metric d(x,y) > 0.

Therefore /d(x,y) =0.

(i1) Since d is a metric on M,

d (x,y) =d(y,x), Vx,yeM.
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therefore /d(x,y) =.Jd{(y,x) , Vx,y eM.

(iil) /d(x,y) =0 <=>d(x,y) =0

& x=y (- - dis ametric on M).

Jd(x,1) =0 x=y, Vx,y eM.
(iv) Since d is a metric , d(x,2) < d(x,y) + d(y,2).
Vd(x.y) < Jd(x,») +d(p.z)
< Jdp) + A7) (w~ash <~Ja+b)
Hence /d(x,z) <.d(x,y) +Jd(»,2)

Hence \/E 1S a metric on M.
Problem 1.6.20

d(x,y)

Space for hints

Let (M,d)be a metric space. Define d;(x,y) =

i)rove that d; is a metric on M.

Solution.

Let (M.d) be a metric space.

Define d,(x,y) = d(x,¥)
1+ d(x,y)

(i) Since d is a metric, d(x,y) > 0 for all x,y € M

dx.¥) <,
1+d(x,y) -

Therefore di(x.y) ) > O.for all x,y eM

dx,y) _
1+d(x,y)
< d(x,)y)=0
=x=y (.= disametriconM.)

(i) d, (x,y) =0 =
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d(x,y) _ _d(y,x)
1+ d(x,y) 1+d(y,x)
< d, (y,x)

Hence dl(x,y)zd,(y,x),Vx,yeM

(iii yd, (x,y)=

(iv) let x,y,zeM

1+d(x,z) 1

1+d(x,z) 1+d(x,z)
1

_1+d(x,z)

<1l- !
1+d(x,y)+d(y.z)

_1+d(x,y)+d(y,z) -1

 1+dx ) +d(y, 2)

_ dx,p)+d(»,2)

1+d(y)+d(y,z)

_ d(x, y) N d(y,z)
1+d(x,y)+d(y,z) 1+d(x,y)+d(y,z)
dx,y) . _d.z)

C1+d(x,y) 1+d(y,z)

=d,(x,y)+d,(y,z)

sod(x,z)<d (x,y)+d, (y,z) Vx,y,ze M.

Therefore d; is a metric on M.

Problem 1.6.21

&

d is a metric

Let (M,d) be a metric space. Define d;(x,y) = min{ 1,d(x,y)}.

Prove that d; is a metric on M.

AN
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Solution.

(i) di(x,y) = min{1,d(x,y)}>0.
Sd(x,y)=z0,Vx,ye M

(i) di(x,y) =0 < min{1,d(x,y)}=0.
& d(x,y) =0.
<X =y (since d is a metric on M).
Therefore d;(x,y) =0 <& x=y V x,y eM.
(iif) di(x,y) = min{1,d(x,y)}
= min{1,d(y,x)} (since d is a metric on M).
= di(y.x)
di(x,y) = di(y,Xx) , V X,y eM.
(iv) Now, let X,y ,z € M.
Then di(x,z) = min{l,d(x,2z)}<l1.

If di(x,y) =1 or di(y,z) =1, then obviously di(x,z) <d;(x,y) + di(v,2)

Let di(x,y) <1 and d(y,z) <1. Then
dixy) +diy:2) =min{LdGey)}+ min{ld(y2)}
=d(x,y) +d(y,2)
2 d(x,2)
> min{1,d(x,z)}
=di(x,2)
di(x,2) <di(x,y) +di(y,z), VX, y,z eM.
Therefore d; is a metric on M.
Problem 1.6.22
Let M be a non empty set. Let d:M x M —R be a function such that
(D dxy)=0iff x=y

(2) d(x,y) <d(x,z) + d(y,z) for all x,y,z eM

Space for hints
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Solution.

Let M be a non empty set. Let d:M x M —R be a function such that
(1 dx,y)=0iff x=y

(2) dix,y) <d(x,z)+ d(y,z) for all x,y.z eM

(1) Puty =x1in (2)

We have d(x,x) < d(x,z) + d(X,2)

Tris implies that 0 £ 2d(x,z) (by (1))

Therefore d(x,2z) > 0. V X, z eM.

mmmiases

{1y Putz=x1n (2)
We have d(x,y) < d(x,x) + d(y,x) = 0 + d(y,X) (by (1))
d(x.y) <d(y.x), Vx,yeM.
since this is true for all x, y € M ,we have
d(y.x). =dx.y).
Hence d(x,y) = d(y,X).
(ii:y Now (2) can be written as
dix,y) < d(x,2) +d(z,y) (since d(x,y) = d(y.x).
waich is the triangle inequality.
Therefore d is a metric on M.

Problem 1.6.23

T {M, ,d1), M; ,d2),........ (M, ,d,) are metric spaces,
then M; x My x........ x M,, is a metric space with metric d defined
by
d(x,y) = Z d, (x, ,y,) where X = (X1,X2,...-Xn) .Y = (¥1, Y2500 eenns Yn)
=1
{ Salution.

d(X’Y) = i d! (x/ >V, )



(i) dxy)= Z":d, (x,,v,)=0,Vx,ye M

1=1

Gi) dey)=0 & 3 d,(x,.y,) =0

< d(x,y,) =0 foralli=1.2,...... 1.

& x, =y, foralli=1,2,...... .

& (X] o X244 0 .Xn) = (y1 3 ¥Y2sccacenaan yn)

P x=y, VX, yeM.

Gii) deey) = 34, (x,.,)

= :E:Cil(Ja’;xt)
+=1

= d(y,x)
Therefore d(x,y) =d(y.Xx) , VX, y eM.

(iv) Let Vx,y, z eM.

Then d(x,z) = i d/(x,,z)
1=1

= i[di(xr’y:)_*' di(y,,zi)]

:E:Citcx}’JVi) + :E:Cil()ﬁ’izl)
1=1 =1

=d(x,y) + d(y ,2)
Therefore d(x,z) = d(x,y) + d(y ,2), V X, y, z eM.
Hence d is a metric on M.
Problem 1.6.24
LetM = {a, b, c }.We define d on M as follows :
d(a,b) = d(b,a) = 3 : d(b,c) = d(c,b) =4

d(c,a) = d(a,c) = S and d(a.a) = d(b,b) =d(c,c)=a.
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Prove that d is a metric on M.
Solution.
() d(a,b)=3=0;d(b,c)=4;d(c,a)=5=0
(i) d(a,b) = .0, a=b
(iii) d(a.b) = d(b,a) = 3; d(b,c) = d(c,b) = 4
d(c,a) = d(a,c) = 5 (given)
{iv) d(a,b) =3
d(b,c) =4
Therefore d(a,b) + d(b,c) =7
=5 <7
Therefore d (a,c) < d(a,b) + d(b,c)

Therefore d 1s a metric on M.

Problem 1.6.25
if d is a metric on M, prove that (i) 2d is a metric on M.
{ii) nd is a metric on M where n eN.
Solution.
(i) Let (M,d) be a metric space.
Since d is metric on M, we have d(x,y)> 0, V x, y eM.
d(x,¥y) >0, Vx,y eM.
Therefore 2d(x,y) >0, VX, y eM.
(i) d(x,y) = 0 <& x =y (since d is a metric on M)
Therefore 2d(x,y) =0, ® x=y
(ii1) since d is metric on M,
d(x,y) =d(y.,x), Vx,yeM.
Therefore 2d(x,y) = 2d(y,x), V X,y eM.

(iv) since d is metric on M,

144



d(x,z) < d(x,y) + d(y,2), Vx,y,zeM.

Therefore 2d(x,z) < 2d(x,y) + 2d(y.z)., VY Xx,y.z eM.
Therefore 2d is a metric on M.

(ii) (i)since d is metricon M,

Ax.y) >0, VX, y eM.

T'herefore n d(x,y) >0, V X,y eM.

1) d(x,¥) = 0 x =y (since d is a metric on M)
I'herefore nd(x,y) =0 & x=y, VX, y eM.

1) d(x,y) = d(y.x) (since d is a metric on M)
Therefore nd(x,y) = nd(y,x), V X, y €M,
iv) d(x,z) < d(x,y) +d(y.2) , ¥V X, Yy, z eM. (since d is a metric on M)
Therefore nd(x,z) < nd(x.y) + nd(y,2), VX, y, z eM.

Therefore nd is a metric on M.
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The real number system has two types of properties, The first
type are algebraic properties, dealing with addition , multiplication and
so on. The other type ,called topological properties,have to do with the
notion of distance between numbers and with the concept of lim-
it. There are special types of sets that play a distinguished role in analy-
sis. These are the open sets and closed sets that are in the discussion of

continuity.
2.1 OPEN SETS AND CLOSED SETS

Definition 2.1.1

Let (M,d) be a metric space. Let A be a subset of M. A is called a
bounded set in M

if there exists a positive real number k such that d(x,y) <k, V X,y €A.
Example 2.1.2 o
Any finite subset of a metric space (M,d) is bounded.
Proof.
Casel.A=¢,
In this case A is obviously bounded.
Case 2. A¥ ¢
Since A is finite ,{ d(x.y): x',y €A} is a finite set of real numbers.
Let k = max { d(x,y): X,y €A}
Then d(x,y) <k, VX,y€A.
Therefore A is bounded.
Example 2.1.3
In R with usual mefric, [2,5] and [0,1] are bounded sets.
Proof. d(x,y) <3, VX,y€[2,5].
dx,y) <1, Vx,vye€0,1]

Therefore [2,5] and [0,1] are bounded sets.
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Example 2.1.4

[n R with usual metric, (0,00) is unbounded.

Example 2.1.5

[n R with discrete metric, (0,o0) is a bounded subset of R.

Proof. In a discrete metric space M, either d(x,y) =0 (or) 1, VX, y
eM.

Therefore d(x,y) <1, V X,y € (0,0)

Therefore (0,o0) is a bounded subset of R.

Note 2.1.6

Any subset of a discrete metric space M is abounded subset of M.
Definition 2.1.7

Let (M,d) be a metric space. Let A be a subset of M. Then the diame-
ter d(A) of is defined by

d (A)=1lub { d(x.y) /%, y €R}.
Nate 2.1.8

A non — empty set A in a metric space M is a bounded set iff d(A ) is
finite. '

Note 2.1.9

Let A,B € M. Then Ag B=>d(A)<d(B).

Example 2.1.10

The diameter of any non empty subset in a discrete metric space is 1.
Example 2.1.11

In R with usual metric, the diameter of any interval is equal to the
length of the interval.

Exercises 2.1.12

Now we find the diameter of the following subsets of R with usual me-
tric.

G) If A ={1,3,5,7.9},then d(A) = 8.

G)IFA={0,1,2,3,......... 100 },then d(A) = 100.
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(iii) If A = [-3,5],then d(A) = 8.
(iv) If A= [-1/2,1/2] then d(A) = 1.
(v) d(N) = oo

(vi) d(Q)= oo
(vi) Let A = [1,2] U [5,6].Then d(A) = 5.

OPEN BALL (OPEN SPHERE ) IN A METRIC SPACE

Definition 2.1.13 Let (M,d) be a Metric space. LetaeMand letrbea
positive

real number.The open ball (or) the open sphere with centre ‘a’ and
radius ‘r’ is denoted by By(a,r) = { x eM ; d(a,x) <r}.

Note 2.1.14

(i) B4(a,r) is a subset of M,

(i1)Bg(a.r) can be written as B (a,r) when the metric d under considera-
tion is clear.

(iii) B (a,r) is always non empty, since it contains at least its centre a.

(iv)B(a,r) is a bounded set,

Example 2.1.15

Consider R with usual metric. Let a eR ,

Then B (a,r) = { x eR : d(a,x) <r}.
={xeR:la- x| <r}.
={xe€eR:-r<a- x <r}.
={xeR: -a-r <- x <r-al.
={x€eR: -(a+r)<-x < -(a-nl.
={xeR: (a+r) > x >(a-r)}.
={xeR: (a-1r) < x <(a+tr)}.

= (a-r, a+tr).
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Fxample 2.1.16

In R? with usual metric, B(a.r) is the interior of the circle with centre
‘a’ and radius ‘r’,

EXﬂmpl@ 201!17
Let (M.d) be a diserete metric space. Then B(a.r) = M if r>1 and
B(a.r)={a} ifr=<1,

Praaf. Let a eM and let r be any positive real number.

Cas@ 19 f>1
B@a,r)={ x eM : d(a.,x) <1}
=M,

Therefore for every x €M, d(a.x) <r.
Hence B(a.r) =M.
Case?, r=
If x# a,then d(a,x) = 1 for every x eM.
= d(a,x)=12r.
=>Barn={xeM:d(ax) <r<1 .

= {a},since x¢ B(a.r).
Examples 2.1,18
1. In R with usual metric, B(a.r) = (a-r,a+r).
2. In R with usual metric, B(-1,1) = (-2,0).
3. In R with usual metric,B(1,1) = (0,2).

4. In [0,1] with usual metric, B(1/2,1) = [0,1].(Prove this using Exam-
ple 2.1.15%)

OPEN SETS IN A METRIC SPACE
Definition 2.1,12 Let (M.d) be a metrig space. Let A be a subset of M.

Then A is called an open sef in M if for every xeA, there exists a posi-
tive

real number r such that B(x.r) c A.
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Example 2.1.20
Prove that in R with usual metric, (0,1) is an open set.
Proof. Letx €(0,1).
Define r = min{x-0, 1-x}.
Then r is a positive real number.
We know that ,in R with usual metric, B(a,r) = (a-r, a+r).
This shows that B(x,r) = (X-r,X+1) < (o,1).
This is true for all x € (0,1).Therefore (0,1) is an open subset
of R with usual metric.
Example 2.1.21
In R with usual metric, [0,1) is not an open set,since no open ball with
centre O is contained in [0,1).
Example 2.1.21
Let A =[0,1) & M = [0,2). Prove that A is open in M.
Proof. Letx € [0,1).
Casel x=0.
Then B(0.1/2) = {y €[0,2)/d(0,y) <'2 },
={y e[02)/|yl<'2}
={y €[0,2)/-12<y<'2}
={y €[0,2)/ye(-1/2,'2) }
=102 < 10o,1).

Case2 x70.

Let r = min {x, 1- x}
Clearly r>0.

B(x.r) = (x-r,x+1) < [ 0,1).

Since x is arbitrary, for every x € A, there exist a positive real number
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r such that B(x,r) & A=10,1).
Therefore, A is open,
Example 2.1.22
Any open interval (a,b) is an open set in R with usual metric.
Proaf.
Let (a,b) be an open interval in R,

Let x € (a,b).

Define r = min { x-a,b-x}

Clearly r> 0.
Then B(x,r) & (a,b)
Therefore, (a,b) is an open set.
Note 2.1.23 In R with usual metric (-, a) and (a,) are open sets.
Example 2.1.24

In R with usual metric, the set {0} is not an open set, since an open
ball with centre 0 is not contained in {0}.

Example 2.1.25

In R with usypal metric, any finite non-empty subset A of R is not an
open set.

Prpof.

Let A be a subset of R, where R is a metric space with usual metric.
Alsa, A is finite. Lety € A and letr > 0.

Then B(y.r) is an open interval in R, which is an infinite set.
Therefore, B(y.r) is not a subset of A.

Therefore, A is not an open set.

Example 2.1.26

Q is not open in R with yspal metric.
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Proaof.

Consider R with usual metric.
Letx € Q.
For any r > 0, B(x,r) = (X-r,X+1).
This open interval contains both rational and irrational numbers
Thererfore B(x.,r) is not a subset of Q,
Hence Q is not open.
Example 2.1.27
Z is not open in R,
Proaof.
Letx € Z.
For any r > 0, B(x,r) = (x-r,x+1).
This set contain rational and irrational numbers.
This is not a subset of Z.
Therefore Z is not open,
Example 2.1.28
The set of all irrational numbers is not open in R with usual metric.
Example 2.1.29

In a discrete metric space M, every subset A is open,
Proof.
If A = ¢, then trivially A is open,
Let A ¥ ¢.
Let x € A.
Then B(x,r) & A only whenr < 1.
Therefore, for every x € A we ¢an find r < | such that B(x.r) & A.

Therefore, A is open.
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CLOSED SETS IN A METRIC SPACE

Definition 2.1.30 Let (M,d) be a metric space. Let A < M. Then A
is said to be closed in M if the complement of A is open in M.

Example 2.1.31
In R with usual metric ,any closed interval [a,b] is a closed set.

Proof.

[a,b]° =R — [a,b] = (0,2) Y (b,e0).
Also (-c0,a) and (b,o) are open in R.
Therefore [a,b]°is open in R.
Therefore [a,b] is closed in R.
Example 2.1.32
In R with usual metric [a,b) is neither closed nor open.
Proof.

[a,b) is not open in R since any open ball with centre ‘a’ is not a proper
subset of [a,b).

Now, [a,b)°= R— [a,b) = (-oo,a)U [b,0).This set is not open since any
open ball with centre ‘b’ is not a proper subset of [b, o). Therefore
[a,b) is not closed in R. ~

Hence [a,b) is neither open nor closed in R.

Definition 2.1.33 Let (M,d) be a metric space and let A be a subset of
M. Let xe A. x is called an interior point of A if there exists a positive
real number r such that B(x,r) < A.The set of all interior points of A is
denoted by Int A. A point xe M is called a limit point or a cluster
point or an accumulation point of A if every open ball with centre x
contains at least one point of A different from x. The set of all limit
point of A is denoted by D(A).

Example 2.1.34

In R with usual metric, Int( (2,3)) = (2,3) and Int([2,3]) = (2,3).

53

Space for hints




Space for hints Examniple 2.1.38

In R with usual metric (a,b] is neither closed nor open.
Proaof.
(a,b] is not open in R since b is not an interior point of (a,b].

Now, (a,b]°= R — (a,b] = (-»,4] U (b,0) and this set is not open since
a is not an interior point.

Therefore, (a,b] is not closed in R.

Hence (a,b] is neither closed nor open in R.

Theorem 2.1.36 An arbitrary union of open sets is open.
Example 2.1.37

Z is closed in R.

Proof.

z°= U (n+).

The open interval (n,n+1) is open and union of open sets is open.
Z° is open.

Hence Z is closed.

Example 2.1 38

Q is not closed in R.

Proof.

Q° = the set of irrationals which is not open in R.

Therefore, Q is not closed in R.

Example 2.1.39

The set of irrational numbers is not closed in R.
Proof.
The complement of irrationals i.e., the set of rationals is not open in R.

Therefore, the set of irrational numbers is not closed in R.
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Example 2.1.40
In R with usual metric ,every singleton set is closed.
Proaof.

LetaeR.
Then {a}° = R- {a} = (-0,a) Y (a,0).

Since (-0,a) and (a,) are both open sets, by Theorem 2.1.36, (-o0,a) U
(a,) is open.

Therefore {a}°is open in R.
Hence {a} is closed in R.
Example 2.1.41

Every subset of a discrete metric space is closed.
Proof-
Let (M,d) be a discrete metric space.
Let A & M.
Since every subset of a discrete metric space is open, A° is open.
Therefore A is closed.
Note 2.1.42

Every subset of a discrete metric space is both open and closed.
Definition 2.1.43 Let (M,d) be a metric space. Let a € M.

Let r be any positive real number.

Then the closed ball or the closed sphere with centre a and radius r,
denoted by Bg[a,r].is defined by

Bg[asr]={ x e M/ d(a,x)<r}

When the metric under consideration is clear, we write B[a,r] instead
of By[a,r].

Example 2.1.44

In R with usual metric, Bla,r] = [a-r,a+1].
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In R? with usual metrie let a = (aj,az) € R

Then Bfa,r] = { (x,y) € R?/ d(ai,a2) )= 1},

I

{ (xy) e R/ () H(y-a2) *£ 7},
Hence Bla,r] is the set of all points which lie within and on the

circumference of the circle with centre a and radius ».

3D B(a,r)

The bonndary of the tanll Bia #) is the sphiere. The clostd batl includes
ita boundary.

2D B(a,r)

1D B(a,r)
(s —ar
C e -

. . ) 'I;lg l::;;.m-lnt) ol :z. 20 ball or “disc™ is » circle. The

CLOSED
OPEN i
NEITHER

Some suts are clossl or open bt nwest are aeither
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A set, its interior, its closure, and an isolated point p.

2.2 COMPLETENESS IN METRIC SPACES
Definition 2.2.1

Let (M,d) be a metric space.Let (Xn) = X1,X2,X3,...,Xn,... b€ a sequence
of points in M. Let xe M. We say that (x,) converges to x if given >0 ,
there exists a positive integer ny such that d(xn,Xx) < € for all n> ngy. Also
x is called the limit point of the sequence (X,).

Note 2.2.2

If (xn) converges to x, we write 1M Xn= X (or) (X,) — X.

H=>xn




; Srace for hints Note 2.2.3

(xn) — X iff for each open ball B(x.g) with centre x, there exists a p
tive integer np such that x;, € B(x,g), for all n= ne,

Note 2.2.4

(xn) — X iff the sequence of real numbers (d(Xn,x)) — O.

Th :orem 2.2.5 For a convergent sequence (Xn), the limit is unique.
Proof.

Let = > 0 be given.

Svroose there exist two positive integers ny and n; such that
E d(xn,x) < &/2, for all n> n; and
d(xp,y) < &/2, for all n= ny

Le“ m be a positive integer such that m = n;,n.
Then d(x,y) < d(X,Xm) + d(Xm,¥)-

< g/2+ €/2

= €.
Therefore, d(x,y) <e.
Sizce g > 0 is arbitrary, d(x,y) = 0.
Therefore x =y.
Hence for a convergent sequence (Xn), the limit is unique.
Note 2.2.6
If (xn) — X, then x is called the limit of the sequence (Xx).

Theorem 2.2.7 Let M be a metric space and A & M. Then

(i) xe A iff there exists a sequence (X,) in A such that (x,) — x.

(i) x is a limit point of A iff there exists a sequence (X,) of distinct

points in A such that (Xn) — X.

| Froof.

I.et M be a metric space and A & M.
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Letxe_‘z.

We know that, for any subset A of a metric space M, 4 = A U D(A).

Therefore, x e AUD(A).

Then x € A or x € D(A).

Suppose x € A.

Then there is a constant sequence x,X,....,X,.... Converging to x.
Suppose x € D(A).

We know the following result.

“Let (M,d) be a metric space. Let A S M. Then x is a limit point of A
iff each open ball with centre x contains an infinite number of points of
A.’S

By the above result, there exists an open ball B(x 1/n) containing infi-
nite number of points of A.

Therefore, we can choose x, € B(x,1/n) N A such that x,, # .x},Xa,....Xp.
1 for each n.

Therefore, (x,) is a sequence of distinct points in A.

Also, d(x, , X) <1/ n for all n.

= limd(x,.x)<]lim 1/n

A= A—>w

= limd(x,.x) <0 — (1)

n—ow

d(x,,x)=0 Vn.

Therefore 11m 9(x,,x) 20— (2)

H—>0

Therefore 11m d(x,,x)=0

n—>omn

Therefore (x,,) = x.
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Therefore, (xn) and (y,) are Cauchy sequences in R,

Space for hints

Since R is complete, there exist X,y € R such that (xn) — x and (yn) —
Y.

Letz=x+1iy.

Claim : (z,) —z

We have |z, — z| =, |(Xn i yn ) = X+ iy))|

= |(Xn- %) + i(yn - ¥

< |Gtam X+ |( Yn = Y| mememmmmmmeees > (1)

Now let € > 0 be given,

Since (xn) — X and (y,) — y there exists positive integers n; and n

1 1
such that [x, - x| < 5% ° all n2n; and |yn-y|< 5% forall
n=>ns.
Let n3 =max { nyna}

1 1

From (1) we get |z, —2z| < §8+55 =& for all n>n;.

Therefore (z,) —z.
Therefore C is complete.
Example 2.2.15

Any discrete metric space is complete,
Proof.

Let (M,d) be a discrete metric space,
Let (x,) be a Cauchy sequence in M. Then there exists a positive

interger n, such that d(xp,xm) < ¥2 for all n, m >ng

Since d is the discrete metric, distance between any two points is either
Oorl.
Therefore d(X,,Xm) = 0 for all n, m >ng,

T he_refore Xn = Xno = X (say) for all n; >Ny

Therefore d(x,,x) =%, for all n >ng.
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Therefore (x,) — X.

Hence M is complete.

Example 2.2.16

R" with usual metric is complete.
Proof .

Let (xp) be a Cauchy seqﬁence in R".

Let € > 0 be given.

Then there exists a positive integer np such that d(xp,Xq) <& for all p.q.
>1o.

1

Therefore [; (x,, —%,)°1* <& forall p.q =no.

Therefore Z (x,, =%,)" <& forall p.q =>no

Therefore foreachk=1,2...... n we have

| X, = %4, )< € for all p,q >no

Therefore (¥, )isa Cauchy sequence in R foreachk =1,2...... n.

Since R is complete, there exists yix € R such that (x,,) — Yk -

Lety = (1, ¥2.... yn). Weclaim that (x,) — ¥y
Since (*5,) — yk there exists a positive integer my such that

g
| x,, -y < Tg—forallpka

Let mp = max{mym;......... my}
n 1
Then d(x,,»)=[Y (x, —¥)*P
k=)

£

In

<|n( )2]5 Jor all p = m,
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=¢ for all p Zmy

Thus d(x,,y) < € for all p Zmo.

Therefore (xp) —y Hence R" is complete.

Example 2.2.17
1, is complete.
Proof. Let (x,) be a Cauchy sequence in 1>.

Let xp = ( Xp1...... Xpn,...... )
Let € >0 be given.

Then there exists a positive integer ng such that d(xp,xq) < € 10T all p.q
=ng.
[} _'.
(fe) [ZI (x,, —%,)°1* <& forall p.q=no
mn 2
Sx, —x,) <€ forallp.qzng — (1)

n=1i

Foreachn =1,2.3,.... We haxe¢

| x,, —%,)I<& forall p,q=no

o~

Therefore (*,,)is a Cauchy sequence in R foreachk = 1.2...... I

Since R is a complete, there exists y, € R such that CI) — yn.— (2)
Let y=(y1,y2....¥n...... ). We claim that (x,) — y

For any fixed positive integer m, we have

2 G, =%, ) <€ forallpg=no  ( using (1))

n=1

Fixing q and allowing p —c in this finite sum we get
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Z{ O, —x,, )’ <&’ for allg>ny (using (2)

Since this is true for every positive integer m,

Zl:(yn — X, )’ <&’ for allq>ne —(3)

m

m 1 1
Doy, 1’1 = Dy, —x, +x, I’1?
n=1

n=1

-] _]_ e .l__
S[Z‘.yn —-xq" |2 +[Z|xq,, |2]2 .
n=l n=t (by Minkowski’s inequality)

BN | =

Sg+[Z|xq" 1] Vg = n,
n=}

(by using (3))

Since xq € I we have

[k, I°1

n=1

N | -

converges.

(S

converges.

[ilan 7]

Thererfore y €l,.
Also (3) gives

dly—x,) < Vgzn,

Therefore (xp) —y.

Therfore 1, is complete.

Note 2.2.18

A subspace of a complete metric space need not be complete.
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For example R with usual metric is complete. But the subspace (0,1] is

not complete.

Theorem 2.2.19

A subset A of a complete metric space M is complete iff A is closed.

Proof. Suppose A is complete .

To prove that A is closed, we shall prove that A contains all its limit

points.
Let x be a limit point of A.

Then by theorem 2.2.7

c
“ Let M be a metric space and A  M.Then x is a limit point of A iff

there

exists a sequence (x;,) of distinct points in A such that (Xn) —X.”

Since A is complete ,x € A .

Therefore A contains all its limit points.

Hence A is closed.

Conversely, Let A be a closed subset of M.

Let (x,) be a Cauchy sequence in A.

Then (X,) is a Cauchy sequence ini M also and since M is complete

there

exists X € M such that (x,) —x. Thus (x,) is a sequence in A
converging to X.

- xe A -(By theorem 2.2.7).

Hence xe A.
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Thus every Cauchy sequence (xn) in A converges to a point in A. space for hints

Therefore A is complete,
Note 2,2.20
[0,1] with usual metric is completef,» Since it is a closed subset of the
complete metric space R.
Note 2.2.21

Consider Q. Since O = R, o) is not a closed subset of R.
Hence Q is not complete.

Solved problems

Problem 2.2.22

AxB = Ax B
Let A, B be subsets of R. Prove that

Solution.

Let (x.¥)€ AxB

Therefore there exists a sequence (Xn,yn) € A™ B such that
(Xn>Yn)—(x,y)(by theorem 2.2.7)

“let M be a metric space and AS M. Then xeA iff there exists a se-
quence (Xp) in A such that (x,)—x”.

Therefore (xp)—x and (yn)—vy.

Also (x;,) is a sequence in A and (y,) is a sequence in B.

By theorem “Let M be a metric space and A & M. Then

(1) xe€ A iff there exists a sequence (X,) in A such that (x,) — x.

(i) x is a limit point of A iff there exists a sequence (x,) of distinct
points in A such that (xp) — X.”

erandyeE’

xy)e 4 xB.

Hence AXxB < A xB ... ... (1)
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Now , let erandye—E.

We know the following:

Let M be a metric space and A & M. Then

(i) xe€ A iff there exists a sequence (Xyn) in A such that (xn) — x.

(i) x is a limit point of A iff there exists a sequence (Xn) of distinct
points in A such that (Xn) — X.

By this theorem, there exists a sequence (X,) in A such that (X;) — X
and a sequence (y,) in B such that (yn)—Yy.

Therefore ((Xa,yn)) is a sequence in A* B which converges to (x,y).

Again by theorem,(x,y)e 4% B.

Therefore A xB < AxB ... ... . 2)

Wi
Il
AN
X
>

From (1) and (2), 4 X
Problem 2.2.23

If A and B are closed subsets of R, prove that A% B is a closed subset
of RX R.

Solution. A isclosedifandonlyif A= 4 .. ..(*%)

/

Since A and B are closed subsets of R, A= ‘A andB= B .

By the previous problem, A x B = Ax B

Hence Ax B= AxB,
By (*), AXB is closed.

Thus AXB is a closed subset of RX R.
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2.3 CANTOR’S INTERSECTION THEOREM

Theorem 2.3.1(Cantor’s intersection theorem)

Statement: Let M be a metric space. M is complete < for every se-
quence (F,) of non empty closed subsets of M such that F1=2 F2=2

Fi2....... DOF,=2 .....and (d(Fa)) — O, ﬂ]F Z .

Proof.
Let M be a metric space.
Suppose M is a complete metric space.

Let (F,) be a sequence of non-empty closed subsets of M such that

. FI2F,2F2....... DF, 2 .....
............... (D)
and (d(Fn)) — 0
............... )

Claim: Q} Fn * .
For each positive integer n, choose a point x, € Fy,.
By (1) , Xn,Xn+1,Xn+2s - .. all lie in Fy.;.
Therefore Xm € F, for all m > n.
................ 3)

Since (d(Fn)) — 0, given & > 0, there exists a positive integer ng such
that d (d(F,),0) < g, for all

n > ng, where d is a metric on M.
= d(F,) <eg, forall n> np,
In particular,

d(Fno) <E i ieeierrireanen. (4)

Therefore, d (x,y) <eforall x,y € Fy,.

From (3) and (4), Xm € Fnp, for all m > ng
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Hence m,n > ng = Xm, Xn € Fny.
= d (Xmxa) <€ by (4).

Therefore by definition, (x,) is Cauchy sequence in M.

Since M is complete, there exists a point x in M such that (xn) — X.

Now we claim that X € q F..
n=

We know the following result.

“Let M be a metric space and AS M. Then x € A iff there exists a

sequence (Xn) in A such that (%n) — X.”
........................... *)
For any positive integer N, Xn,Xn+1,Xn+2ss«+-- is a sequence in F, and this

sequence converges to X.

By (*),xeF, .

Since F, is closed, ¥, =F,.

Therefore x € F, for each n.

oo
= X € ﬂl F..
n=

Hence 01 Fn. #¢.

Let (F,) be a sequence of non-empty closed subsets of M such that

Fi=2 F,2 F32....... =2F,2 .....and (d(Fn))'—’O.

Conversely, assume that O] Fn #¢.

Claim: M is complete.
Let (xn) be a Cauchy sequence in M.
Let Fi = { x1,X2,.-..0,Xn,.....}

Fo = { x2,X3,-....,Xny.....}

------------------------------
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We know the following result.

“Let M be a metric space. Then ASB = A< B

By the above result (5) can be written as follows

—_—

2 F, Oo......... D F o.......

Therefore (Fn) is a sequence of non empty closed subsets of M.

Also, (F n) isa décreasing sequence of closed sets.

Since (xn) is a Cauchy sequence, given € > 0, there exists a positive
integer ng such that

d (Xm,Xn) < g, for all m,n > ny,

Therefore for any.integer n > no, the distance between any two points of
F,1s less than &.

That js d (x,y) <€ for all x,y € Fy.

= lub {2 (X, y) : x,yeFn}<e.

= d(Fn) <e...... ....(6)

Hence d(Fn) < € for all n>ny,

We know that d(A) = d( A ) for any subset A of a metric space.
By this result, d(F,) =d (F;)

From (6), d(i*:n_)< gforalln>n, .......... (D).

|d(ﬁ;)-0|<8foralln2no_

d(F)—) 0.

n
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By the assumption, 'DI Fn .

Since F7 is the smallest closed set containing Fn and since Xu€ Fn , Xn€

Fn.
Therefore d (Xn, X) < d(-ﬁ,,-)

= d (Xn, X) <&, for all n > n, from (7).

= (x,) —>x. Hence every Cauchy sequence in M is a Convergent sae-
quence.

Therefore by the definition, M is complete.

Remark 2.3.2

In the above theorem , ﬂl F, contains exactly one point.
n=

For,

Suppose that ﬂl F, contain two distinct points say x and y.
n=

Then d(F,) = d (xq, X) for all n.
Therefore (d(F,) ) does not tend to zero.

This is a contradiction.

Thus ﬂl F. contains exactly one point.
n=

Remark 2.3.3

In the above theorem , D} F, may be empty if each F, is not closed.

For example, consider F, = (0,1/n) in R.

Clearly F1 2 Fo.2 F3=2....... 2>2F, 2 ..... and (d(Fn)) = (1/n) — O as
n—»co.
But [1F.=¢.

72



Remark 2.3.4

In the above theorem, Ol F, may be empty if the hypothesis (d(Fn)) —

0 is omitted.
For example,consider F,, = [n,) in R.
Clearly (F,) sequence of non empty closed subsets such that

Fi2FH2Fo....... 2F,=2 ...

Also Q Fn= .

Here d(F,) = oo for all n and therefore the hypothesis (d(Fn)) — O is not
true.

2.4 BAIRE’S CATEGORY THEOREM

Definition 2.4.1 Let (M,d) be a metric space. Let A be a subset of M.
Then A is called

a nowhere dense setin M if Int 4 = o.
Definition 2.4.2 Let (M,d) be a metric space. Let A be a subset of M.
A is said to be of first category in M if A can be expressed as a

countable union of nowhere dense sets. A set which is not of first cate-
gory

is said to be of second category.

Remark 2.4.3 If A is of first category, then A = U En,where E, is

n=1

nowhere dense in M.
Example 2.4.4

Consider R with usual metric. Let A = {1,1/2,.1/3,. .. 1/n,. .},
We know that A= AU D(A).

Clearly A U D(A) = {0,1,1/2,1/3,...,1/n,...}

Therefore 4 = {0,1,1/2,1/3,...,1/n,...}.

Clearly Int A= ¢.
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Therefore in R with usual metric ,A = £1,1/2,1/3,...1/n,...} 1s nowhere
dense.

Example 2.4.5

In any discrete metric space,any non-empty subset A is not nowhere
dense.

Prooj. Let M be a discrete metric space.
Let A be a non-empty subset of M.

Since M is discrete, A is both open and closed.
Since A 1s closed, A = A .

= It A=Int 4.

We know that, in a discrete metric space, Int A = A.

But A is non-empty.

= IntA=Int 4 # .

= A is not nowhere dense.

Example 2.4.5

In R with usual metric, any finite subset A is nowhere dense.
Proof. Let A be any finite subset of R.

In R with usual metric, every singleton set is closed...... (1)

In any metric space, the union of finite number of closed sets is
closed...(2)

A= U=

xeAd
It is given that A is finite.

From (1) and (2), A is closed.

Therefore A= 4. = IntA=1Int 4......(3)
Let xe A and letr> 0.

Then B(x,r) = (x-r,x+r) , an infinite set.

Therefore B(x,r) is not a subset of A.



Hence x is not an interior of A.

= IntA=Int 4 = .

Hence A is nowhere dense in R.

Example 2.4.6

In R with usual metric, every singleton set {x} is nowhere dense.
Proof.

Consider R with usual metric.

Let A = {x}.

A° = (-0,x) U (x,00)

(-00,x) and (x,o0) are open sets. An arbitrary union opn sets is open.
= A is open.
= A is closed.

= A=4.

= IntA=Int 4 = ¢, since Int A = ¢.
= A is nowhere dense.

Note 2.4.7

If A and B are sets of first category in a metric space M, then AU Bis
also of first category.

Theorem 2.4.8 ( Baire’s Category Theorem)

Statement: Any complete metric space is of second category.
Proof. Let M be a complete metric space.

Claim: M is not of first category.

Let ( Ap) be a sequence of nowhere dense sets in M.

It 1s enough if we prove that U An#M.

n=|

Suppose that A}, Az, As,...are nowhere dense subsets of M.
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We know the following result (*) :

“ Let M be a metric space and A <M. Then the following are equiva-
lent.

(1) A is nowhere dense in M.

(ii) 4 does not contain any nonempty open set.

(ii1) Each nonempty open set has a nonempty open subset disjoint from

A

(iv) Each nonempty open set has a nonempty open subset disjoint
from A.

(v) Each nonempty open set contains open sphere disjoint from A.
M is open and A is nowhere dense.

By (*) , there exists open ball B; of radius less than 1 such that B; is
disjoint from A;.

Let F; denote the concentric closed ball whose radius is "2
times that of B;.

Int F, is open. A, is nowhere dense.

Again by (*) , Int F; contains an open ball B> of radius less than 2
such that B; is disjoint from A,.

Let F> denote the concentric closed ball whose radius is Y2 times that of
B-.

Int F; is open and Aj is nowhere dense.

By (*), Int F» contains an open ball B; of radius less than /4 such that
B3 is disjoint from Agj.

Let F3 denote the concentric closed ball whose radius is Y2 times that of
Bs.

Proceeding like this , we get sequence of nonempty closed balls Fn
suchthat F1= Fo2 Fz2....... OF.,2 ..... and d(F) < 12" .

Hence (d(Fp)) — 0, as n—oo.

It is given that M is complete.
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By Cantor’s intersection theorem, there exists a point x in M such thz:

o0
xe F,.
n=l

Each F,, is disjoint from A,

Hence x ¢ A,, for all n.

= x & OAn

n=1

=|J4n+M.

n=1
Hence M is of second category.
Corollary 2.4.9
The set R is of second category.

Proof. Since R is complete, R is od second category.(Baire’s category
theorem).

PROBLEMS
Problem 2.4.10

Show that a metric space which is of second category need not be
complete.

Solution.

Consider M = R-Q.

We know that Q is of first category.

Claim: (1) M is of second category.
(2) M is not complete.

We know that a subset A of a complete metric space is complete < A
is closed.

Here M is not closed.
Therefore by the above result, M is not complete.

Now suppose that M is of first category.
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Then MUQ =R-Q) UQ
= R, which is of first category.
This is a contradiction to the fact that R is of second category.
Therefore M is of second category.
Problem 2.4.11
Prove that any nonempty open interval in R is of second category,
Solution.
Let (a,b) be a nonefnpty open interval in R.
Claim: (a,b) is of second category.
Suppose that (a,b) is of first category.
[a,b] = (a,b) U {a}U (b},
{a} and {b} are of first vategory.

We know that A U B is of first category if A and B are of first catego-
ry.

Therefore [a,b] is of first category.

We know that a subset A of a complete metric space is complete iff A
is closed.

By this result, [a,b] is complete.

By Baire’s category theorem,[a,b] is of second category.
This is a contradiction.

Hence (a,b) is of second category.

Problem 2.4.12

Prove that a closed set A in a metric space M is nowhere dense iff A° is
everywhere dense.

Solution. Let M be a metric space.

Let A be a closed subset of M,

ThenA=A.‘ ...... (1).
Claim: A° is everywhere dense.
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Assume that A is nowhere dense in M.

= Int4d =¢

= Int A = &, from (1).

It is enough if we prove that 4° = M.

Clearly, 4 =<« M. ... (2)
Letx € M.

Let G be any open set such that x € G.

SinceInt A=¢, G < A.

= G A# .

We know that, x € A iff G A ¢ for everv open set containing Xx.

By the above result, x € 4°

Therefore M < A4 ... 3)

Hence M = 4° | from (2) and (3).
Therefore A° is everywhere dense in M.

Conversely, let A° be everywhere dense in M.

By definition, M = A4°

Claim: Int A = .

Let G be any non-empty open set in M since 4° = M, we have G A°

23
= G < A.

= The only open set which is contained in A is the empty set.

= Int A = ¢.

= Int 4 = §.

= A i1s nowhere dense in M.
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UNIT-3
3.1 CONTINUITY

One of the main aims in considering the metric spaces is
the study of continuous

functions. Early mathematicians considered defining a real-valued
continuous function with an interval domain as one that maps every
subinterval in its domain onto an interval or a point.In this unit,We
provide the definition of continuous functions and give several charac-
terizations of continuous functions.

Definition 3.1.1 Let (M,,d;) and (M>.d>) be two metric spaces.

Let f:M;—M, be a function. The function f is said to have limit as
x—a if

given € > 0, there exists ¢ 0 such that 0 < dy(x,a) < 9 =d,

((f(x).f(a)) <e.

We write [1m f(x) = f(a) = 1 (say).

X—>00

Definition 3.1.2.

Let (M;,d;) and (M>,d>) be two metric spaces. Let ae M;.

A function f: M| — M, is said to be continuous at ‘a’ if given 0 ,
there exists 8> 0 such that d; (x,a) <é => d, (f(x),f(a))<e.

f is said to be continuous if it is continuous at every point of M;.

Remarks 3.1.3

1. fis continuous at a iff [im f(x) = f(a).

X >0

2. The condition d; (x,a) <6 => d, (f(x).f(a))<e can be rewritten as

() x € B, (a,6) = f(x) € B, (f(a),€) (or)

(i) (B, (a,8) < B, (f(a),&)

Example 1.3.4 Let (M,d,) and (M;,d;) be two metric spaces.
Then any constant function f: M;— M3 is continuous.

Proof. Let (M;,d;) and (M>,d,) be two metric spaces.
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Let f:M;—M; be a function defined by f(x) = a where ‘a’ is a fixed
element.

Let xe M. Let € > 0 be given.
Since xe M; and M, is open, there exists B(x,8) for any 8 > 0 in M.
Since f is constant,
f(B(x,d))={a} < B (a,g)
Therefore f is continuous at x.
Since x is arbitrary, f is continuous.
Example 1.3.5
Let (M;,d,) be a discrete metric space. Let (M2,d;) be any metric space.
Then any function f: M; —M; is continuous.
Proof.
Let (M;,d;) be a discrete metric space. Let (M3,d;) be any metric space.
Claim: fis continuous.
Let x € M| and € > O be given .
Since M is discrete , for any 8 <1 ,B (x,8) = {x}.
Therefore f( B, (x,8)) = {f(x)} & B., (fx) ,e)
Therefore f is continuous at x.
Since x is arbitrary, f is continuous.
Theorem 3.1.6*
Let (M,,d;) and (M>,d>) be two metric spaces. Let aeM; .
A function f: M| —M; is continuous at ‘a’ iff (xn) — a => (f (x,)) —
f( a).
Proof.
Let (M},dy) and (M2,d2) be two metric spaces.
Let aeM;.

Suppose f: M) —M,; is continuous at ‘a’.
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Let (xn) be a sequence in M, such that (xn) — a.

Space for hints

Claim: (f (xn)) —f( a).
Let € > 0 be given.

Since fis continuous, there exists & > 0 such that

d; (x,a) < & => dz (f(x),f(a)) <e.—(1)

Since (xn) —a , there exists a positive integer no such that
d; (xn,a) <& for alln>ny

From (1), d> (f(x).f(a)) <&, for all n > ng.

Therefore by definition, (f (x,)) —1( a).

Conversely, suppose (xn) — a => (f (xn)) —1f( 3):
Suppose f is not continuous at a.

Then there exists € > 0 ,such that for al 1 8 > 0 |,
f(B(a,8)  B(f(@),5)

In particular,
F(Ba2) & B(F(@),2)

Choose X, such that

x, € Ba,2) and f(x,)2 B(@),5)

Therefore di1 (Xn,a) <1/n => d; (f(x),f(a)) > .

Therefore (xn) — a and (f (xn)) does not converge to f(a)

This is contradiction to the assumption.

Therefore f is continuous at ‘a’.

Corollary 3.1.7

A function f: M} —M,; is continuous iff (x,) —x => (f (x4)) ;—>f( X).
Now we provide some characterizatioﬁs for continuous

functions using open sets. Theorem 3.1.8 and Theorem 3.1.11 are very
important.
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Theorem 3.1.8*
Let M;,d)) and (M3,d>) be any two metric spaces.

A function f: M; —M, is continuous iff f'(G) is open in M whenever
G is open in Ma.

(i.e) f is continuous iff inverse image of every open set is open.
Proof.

Let (M;,d;) and (M>,d>) be any two metric spaces.

Suppose that f is continuous.

Claim: f'(G) is open in M; whenever G is open in Ma.

Let G be an open set in Ma.

If £(G) is empty, then it is open.

Assume that £1(G) # ¢.

Let xe £'(G).

Therefore f(x) € G.

Since G is open, there exists a positive real number £ , such that
B(f(x),e)E G.—(1)

By the definition of continuity, there exists an open ball B(x,60) &
B(f(x).€) .

From (1) , f(B(x,8)) < G.
Therefore B(x,8) < f'(G).
Since xe £'(G) is arbitrary, 1(G)is openin M, .

Conversely, assume that { l(G) is open in M; whenever G is open in
M.

Claim: f is continuous

Let xe M;.

Now, B(f(x),€) is an open set in M.

By the assumption, "(B(f(x),£)) is open in M |
Also, xe f'(B(f(x).€)).
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Therefore there exists 8> 0, such that B(x,8) < ' B(f(x).£)).
f (B(x,8)) € B(x),)).

Therefore f is continuous at x.

Since xe M, is arbitrary, f is continuous at every point of Mj.
Therefore f is continuous.

Note 3.1.9

If f: M; —M,; is continuous and G is open in M,, then it is not neces-
sary that f{G) is open in M.

(ie)Under a continuous map the image of an open set need not be an
open set.

Proof.

For example,

Let M;= R with discrete metric.

Let M, = R with usual metric.

Letf: M| —M; be defined by f(x) = x.

Since M; is discrete, every subset of M is open. For any open set G in
M, , £1(G)is open in M.

By the above theorem f is continuous.

Let A = {x} be a subset of M.

Since M is discrete, A is open in M;.

But f(A) ={x} is not open in M.

Note 3.1.10

In the above example, fis a continuous bijection whereas
1. M, —M; is not continuous.

Proof.

{x} i1s open in M.

(£ ' {x})={x} which is not open in M.

Therefore ! is not continuous.
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Thus if f is a continuous bijection, ' need not be continuous.
Theorem 3.1.11*

Let (M1,d)) and (M>,d,) be two metric spaces.

A function f: M; —M,; is continuous iff

£l (F) is closed in M whenever F is closed in M.

Proof.

Let (M;,d;) and (M>,d;) be two metric spaces.

Suppose f: M| —M; is continuous.

Let F& M; be closed in M.

Therefore F° is open in M.

Therefore by the above theorem, “f is continuous iff £'(G) is open in
M,

whenever Gisopenin M,” .l ™
By the result,

£(F°) is open in M.

But we know that,

£1[F] = [£'(O)]°.

Therefore [f'(F)]° is open in M,.

Therefore £'(F) is closed in M;.

Conversely, suppose l(F) is closed in M; whenever F is closed in M.
Claim: fis continuous.

Let G be an open set in M».

Therefore G°®is closed in M».

Therefore by the assumption,

£1(G®) is closed in M.

Therefore [f'(G)]°is closed in M.

Therefore f'(G) is open in M.
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By (*), fis continuous. (by Theorem 3.1.8).

Theorem 3.1.12

Let (M;,dy) and (M2,d>) be two metric spaces. Then a function
f: M j— M3 is continuous iff f(Z ) & _J—r(_A—) for all A& M;.
Proof.

Let (M;,d;) and (M>,d;) be two metric spaces.

Suppose that fis continuous.

Claim: f(:‘I ) & ?—(_ZS for all A =M,.

Let AS M;.

Then f(A) & M.

m—) is closed set in M.

We know the following result:

f is continuous iff £(F) is closed in M;
whenever F is closed in M,.  ......... (D)

By the above theorem,
£1(F(4) ) is closed in M.
It is clear that f(A) & ?(_Ai
= A S fI(S(D).
But 4 is the smallest closed set containing A.
Since 4 is the smallest closed sset containing A and

f1(f(A4)) is a closed set containing A, we have

A < fi(f(D).
=fAys f(4),
Conversely, assume that f( A ye f(A) for all A M.

It is enough if we prove that f'(F) is closed in M;. (By (1))
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Let F be a closed set in M.

Then £'(F) is a subset of M;.

By the assumption, f (/" (F)) < ff~(F).

- F

= F. (since F is closed)
Therefore , £/ ' (F)) < F.
= (f(F) < fYEY. . (A)

Also, F'® < (ST F) v (B)

From (A) and (B)

1) = (S (F)).
Therefore ' (F) is closed in M.
Therefore by (1), f is continuous.
SOLVED PROBLEMS
Problem 3.1.13
Let f be a continuous real valued function defined
on a metric space M. Let A= {x e M/ f(x) > 0}.
Prove that A is closed.
Solution.
Let A={xeM/f(x)>0}.
={x e M/ {(x) € [0,0)}.
= £1([0,0)).
Also, [0,) is a closed subset of R.
Since f is continuous, f'([0,00)) is closed in M.(By Theorem 3.1.1 1)

Therefore A is closed.
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Problem 3.1.14
Show that the function f: R— R defined by

“ f(x) = 0if x is irrational and 1 if x is rational *
is not continuous by each of the following methods.

(i) By the usual g, 0 method.
(ii) By exhibiting a sequence (Xn) such that (x,) — x and
(f(x,) does not converge to f(x).
(ili) By exhibiting an open set G such that f (G) is not open.
(iv) By exhibiting a closed subset F such that £'!(F) is not closed.
(v) By exhibiting a subset A of R such that f( A A 7(_;13 .
Solution.
(i) To prove that,

f is not continuous at x ,we have to show that there
exists an € > 0 such that V3> 0, f(B(x, 8))ZB(f(x),s).
Let e = Y.
For any © >0, B(x, 0)=(x-90, x+9 ) contains both
rational and irrational numbers.
If x is rational, choose y € B(x, 9 ) such that y is

irrational and if x is irrational, choose y € B(X, 0 ) such that y is ra-
tional.

Then | f(x) — f(y) | =1 (by definition of f)

(i.e) d(f(x),f(y)) = 1.
Therefore f(y) € B(f(x),1/2)

Thusy € B(x, 9 ) and f(y) € B(f(x),1/2)

Therefore f( B(x, 9)) € B(f(x),s).

Hence f is not continuous at X.
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(i) Letx e R.
Suppose that x is rational.
Then f(x) = 1.
Let (xn) be a sequence of irrational numbers such that (x,,) — X.
Then (f(x,)) — 0 and f(x) =1.
Therefore (f(x,)) does not converge to f(x).
Similarly, if x is irrational numbers, (f(x,)) does not converge to f(x).
(i) Let G =(1/2,3/2).
Clearly G is open in R.
Now f(G) = {x e R/ f(x) € G}.
= {x e R/ {(x) € (1/2,3/2)}.
=Q.
But Q is not open in R.
Thus f(G) is not open in R.
Therefore f is not continuous.
(iv) Choose F =[1/2,3/2].
Then f'(F) = Q which is not closed in R.
Therefore f is not continuous.

(v) LetA=Q.
Then A = R.

f(4)=f(R) = {0,1}  (by definition of f).
Also, f(A) = Q) = {1}.

J(4) = {1}= {1},
f(Ayz f(4).

Theretore f is not continuous (by Theorem 3.1 12).
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Problem 3.1.15

Let M;,M>,M3 be metric spaces.

If £ M;—M; and g: M>—M3 are continuous functions ,

then prove that gof': M,;—M3 is also continuous.

That is composition of two continuous functions is continuous.

Secluiion. : Suppose that fM,—M, and g: M,—Mj3 are continuous
functions ,

Lst € be open in M.
S'ies g is continuous, g”! (G) is open in Ma. (By Theorem 3.1.8)

Now, since f is continuous, f l(g'] (G)) is open in M. (By Theorem

3.1.8)

(i.e) (g 0 H'(G) is open in M.

Therefore g o fis continuous. (By Theorem 3.1.8)
Problem 3.1.16

Let M be a metric space . Let f: M —R and

g : M —R be two continuous functions. Prove that f+g: M—R is con-
tinuous.

Solution. Let M be a metric space .

Let f+ M —R and g : M —R be two continuous functions.

Let (x,) be sequence converging to X in M.

Since f and g are continuous functions, (f(xn))—1(x) and
(g(%n))—g(X). (By Theorem 3.1.6).

Therefore (f(xn)+g2(xn))—1(x) +g(x)

(i.e) ((frg) (xn)—(+g)(x)

Therefore f+g is continuous (By Theorem 3.1.6).

Problem 3.1.17

Let f, g be continuous real valued functions on a metric space M.

Let A = { x/xe M and f(x)< g(x)}. Prove that A is open.
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Solution. Let f, g be continuous real valued functions on a metric
space M.

Since f and g are continuous real valued functions of M,
f— g is also a continuous real valued function on M.
Now A= { xe M/ f(x)< g(%)}.

= { xe M/ f(x)- g(x)< 0}.

={ xe M/ (£g)(x)< 0)}.

={ xe M/ (f-g)(x)e(-0,0)}.

=(f-g)" {(-0,0)}.

Now, (;oo,O) is open in R, and f- g is continuous.

Hence (f-g) ' {(-0,0)} is open in M (By Theorem 3.1.8).
Therefore A is open in M.

Problem 3.1.18

If f: R—R and g : R—R are both continuous functions on R and if h:

R2—-R? is defined by h(x,y) = (f(x),g(y)), prove that h is continuous on
R>.

Solution.

Let (xn,yn) be a sequence in R2 converging to (X,y).
Claim: (h (Xn,yn))— h(x, y)

Since ((xn,Ya))—> (%, ¥) in R?, (xa)—X, (yn)—y in R .

Also f and g are continuous.

By Theorem 3.1.6, We have the following:

“Let (M1,d)) and (M2,d>) be two metric spaces. Let aeM; .
A function f: M, —M; is continuous at ‘a’ iff (x,) — a => (f (xn)) —
f( a).”

By this Theorem, (f (xp)) —f( x) and (g (yn)) —g( y).

= (£ (Xn), g (¥n)) —(f(x),8(y)).

= (h(xn,yn)) — h(x,y).
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Again by the above Theorem 3.1.6, h is continuous on R”.

Problem 3.1.19

Let (M,d) be a metric space. Let ae M. Show that the function f: M—R
< efined by f(x) = d(x,a) is continuous.

Sclution. Let (M,d) be a metric space. Let ae M and let xeM.

.=t (xn) be a sequence in M such that (x4) — x.

Mzfine f by f(x) =d(x,a) .

Ciaim: (f(xy)) — {(%).

et e > 0 be given.

>ow [f(xn) — f(x) = |d(xXp,a2) —d(x-a)| < d(Xp,.X).

Since (xp) — X , there exists a positive integer n; such that d(xp,x)<e
oz all n>n;.

Therefore |f(x5) — f(x)| <e for all n>nl.
Therefore (f(x5)) — f(x) .
Therefore f is continuous. (By this Theorem: A function

M —Mj; is continuous iff (x,) —x => (f (xn)) —f( X)).

Prsblem 3.1.20

Let f be a function form R? onto R defined by f(x,y) = x for all (x,y) €
RZ,

Show that f is continuous R?.

Solution. Let f be a function form R? onto R
defined by f(x,y) = x for all (x,y) € R

Let (x,y) € R2.

Tet (Xn,Yn)be a sequence in R? converging to (x,y).
ien (Xa) — x and (yn)— vy.

"« ierefore (f(Xn,yn)) = (Xn) — x = f(X,y).

Therefore (f(xn,yn)) = f(x,y).
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Therefore f is continuous. (By this Theorem: A function

f: M —M; is continuous iff (x,) —x => (f (x,))) —{ x)).

Problem 3.1.21

Define f:1; —1; as follows: If se I, is the sequence s),S2,..... , let f(s) be
the sequence 0,s4,s3,...... Show that f is continuous on I3.

Solution. Define f: 1; —1, as follows: If e 1, is the sequence 51,S2,..... ,

let f(s) be the sequence 0,s1,8z,......
Lety = (y1,¥2,.-...¥n....) € l5.

Let (xn) be a sequence in 1; converging to y.

Let x, =( X s Xn, -onnee b ).
Then (X, ) = y1, X, —Y2, (X4, ) Yio----

Therefore (f(xn))= (0, X 5 Xn, coeens X, seveeees ) —

O, Y1,¥25+++--¥ns.-..) = f(¥)
Therefore (f(x,) —1(y).

Therefore f is continuous. (By this Theorem: A function

f: M| —M; is continuous iff (x,) —x => (f (x4)) — 1 X)).

Problem 3.1.22.

Let G be an open subset of R. Prove that the characteristic function on
G defined by

Xa(x)={lifxeG
{0if x¥¢ G is continuous at every point of G.

Solution.

Let G be an open subset of R.
Z(’,‘(X) == {1 le € G

{0if x¢ G 1is continuous at every point of G.
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Let x € G so that X (x) = 1.

Let € > 0 be given.

Since G is open and x € G, we can find a & > 0 such that B(x, 9) <
G.

Therefore X ( B(X, 5)) € Xs(Q).
= {1}.
< B(l,g).
Thus Yo ( B(x, 0)) & B(Xs(%).€).
Therefore X is continuous at X.

Since x € G is arbitrary, X is continuous on G.

3.2 HOMEOMORPHIS™ "~
Definition 3.2.1
Let (M, d;) and (M>,d;) be two metric spaces. A function
f: M;— M, is called a homeomorphism if
a) fis 1-1 and onto
b) fis continuous.
c) f ! {s-continuous.

M, and M; are said to be homeomorphic if there exists a homeomor-
phism f: M;— M.

Definition 3.2.2

A function f: M;— Ma is said to be an open map if f(G) is open in
M, for every open set G in M.

Definition 3.2.3

A function f: M; — M, is said to be a closed map if
f(F) is closed in M, for every closed set F in M.
Remark 3.2.4

Let a function f: M; — M, be a 1-1 and onto function.

94



Then f! is continuous iff f is an open map.

Proof. Let a function f: M; — M> be a 1-1 and onto function.
f!is continuous iff for any open set G in M;j,

(f'Y(G) is open M,.(By Theorem 3.1.8)

But (f'Y(G) = f(G).

Therefore £ is continuous iff for every open set G in M, f(G) is ope::
in Mz.

Therefore ' is continuous iff f is an open map.
Remark 3.2.5

f! is continuous iff f is a closed map.
Remark 3.2.6

Let f: M;— M, be a 1-1, onto map. Then the following are equiva-
lent.

(1) fis a homeomorphism.

(ii) fis a continuous open map.
(iii) fis a continuous closed map.
Remark 3.2.7

Let f: M;— M be a homeomorphism. G < M; is open in M, iff f{G)
1S open in M.

Proof.

Let f:M;— M, be a homeomorphism.

Suppose G is open in M.

Since f is a homeomorphism, f! is continuous.
By Remark (3.2.6), f is an open‘map.

= f(Q) is open in M;.

Conversely, suppose that f{G) is open in M.

We know that, f is continuous iff £ 1(X) is open in M| whenever X is

open in M.
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Space for hints By the above theorem, { Y(f(G)) is open in M.

= G is open in M.

Remark 3.2.8

Let f: M;—M, be a 1-1 onto map. Then f is a homeomorphism iff
it satisfies the following condition.

F is closed in M iff f(F) is closed in Ma.

Proof.

Define f: [0,1]— [0,2] by f(x) = 2x.
Clearly fis 1-1 and onto.

flx)=%x.

f and ' are both continuous.

Therefore fis a homeomorphi.-._
Example 3.2.9 "

The metric spaces (0,o0) and R with usual metrics are homeomorphic.

Proof.
Define f: (0,00) — R by f(x) = logx.

Here f'(x) = e~
fand f! are both continuous.
Hence f is a homeomorphism.

Example 3.2.10

The metric spaces (0,1) and (0,0) with usual metrices are homeomor-
phic.

Proof.

Define f: (0,1) — (0,) by f(x) = x / (1-x).
We claim that fis 1-1 and onto.

Let f(x) = {(y).

Therefore x/(1-x) = y/(1-y).

Therefore x(1-y) = y(1-x).
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= X-Xy = y-XY¥.

Therefore x =y.

Hence fis 1-1.

Lety € (0,00).

Therefore f(x) =y = x/(1-x) =y.
= y-Xy = X.
= x(1+y) =y.
= x =y/(1+y).

Therefore y/(y+1) € (0,1) is the pre-image of y under f.

Clearly f and f! are continuous.

Therefore fis a homeomorphism.

Example 3.2.11

R with usual metric is not homeomorphic to R with discrete metric.

Proof.
Let M, = R with usual metric.

Let M> = R with discrete metric.
Let f: M;— M; be any 1-1 onto map.
Now, {a} is open in M>,
But f!({a}) ={f'(a)} is not open in M.

Hence f is not continuous.
Thus any bijection f: M;— M is not a homeomorphism.
Hence M, is not homeomorphic to Ms.

Definition 3.2.12

Let (M;,d;) and (M3,d2) be two metric spaces.

Let f: M;— M; be a 1-1 onto map. fis said to be an isometry if

di(x,y) = d2(f(x),f(y)) for all x,y € M.

An isometry is a distance preserving map.
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M, and M, are said to be isometric if there exists an isometry f
from M; onto M.

Example 3.2.13
R2 with usual metric and C with usual metric

are isometric and f : R? — C defined by Ax,y) = x-+iy is the required

isometry.

Proof.

Let d; denote the usual metric on R? and d, denote the usual metric on
C.

Let a= (x1,y1) and b = (X3,¥2) € RZ.

Then di(a,b) = V(¥ —x,)% + (3 — »,)?
= (x1—x%2) +i(y1—y2) |.
=] (x1+1y1) - i(x2 + iy2) |.
= dz2 ({a)Ab)).

Therefore f'is an isometry.

Example 3.2.14 Let d; be the usual metric on [0,1] and d, be the usual
metric on [0,2].

The map f:[0,1] — [0,2] defined by f{x) = 2x is not isometry.

Proof. Let d; be the usual metric on [0,1] and d» be the usual metric on
[0,2].

Consider the map f:[0,1] — [0,2] defined by f{x) = 2x.
Let x,y € [0,1].

Then d; (/) Ay)) = | Ax) —Ay) |-

=|[2x -2y |.
=2|x-y|
= 2d1(x,y).

Therefore d;(x,y) # d(Ax),Ay)).

Hence fis not an isometry.

Remark 3.2.15
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Since f'is an isometry preserves distances, Space for hints

the image of an open ball B(x,r) is the open ball B(f{x).r).
Remark 3.2.16

Under an isometry, the image of an open set is also an open set.
Remark 3.2.17

If f is an isometry, then /™' is an 1sometry.

Remark 3.2.18

Under isometry, the inverse image of an open set is open.
Remark 3.2.19

An isometry is a homeomorphism.

Remark 3.2.20

A homeomorphism from one metric space to another need not be an
isometry.

For example, f:[0,1] — [0,2] defined by f{x) = 2X is a homeomorphism.

But fis not an isometry.
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UNIT- 4
4.1 CONNECTED SPACES

In this unit, we discuss the connectedness of metric spaces.

Geometrically ,it is evident that an interval cannot be written as a dis-
joint union of nonempty open intervals. We define the connected space
and then study its properties.Also, we characterize all connected sub-

sets of R.

Definition 4.1.1

Let (M,d) be a metric space. M is said to be connected if

M cannot be represented as the union of two disjoint non-empty open

sets.

If M is not connected it is said to be disconnected.

Theorem 4.1.2

Let M, be a subspace of a metric space M.

Let Ay & M. Then A; is open in M iff there exists an open set A
in M such that A; = A N M;

Example 4.1.3

Let M = R and M= [1,2] U [3,4] with usual metric. Then M, is dis-
connected.

Proof.
Claim: [1,2] and [3,4] are open sets in M;.

[1.2] = (1/2,5/2)N( [1,2] U [3,4]) and [3,4] = (5/2,9/2) ) N( [1,2] U
[3,4]).

By Theorem 4.1.2, [1,2] and [3,4] are open sets in M.

Thus, M; can be written as the union of two disjoint non-empty
open sets namely, [1,2] and [3,4].

Hence M, is disconnected.
Example 4.1.4

Any discrete metric space M with more than one point is disconnected.
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2roof.

_et A be a proper non-empty subset of M.

since M has more than one point such a set exists.
[hen A° is also non-empty.

since M is discrete ,every subset of M is open.

[herefore A and A°are open .

Thus M = AU A° where A and A° are two disjoint non-empty open
sets.

T'herefore M is not connected.

Theorem 4.1.5

Let (M,d) be a metric space. Then the following are equivalent.
(1) M is connected

(1i1) M cannot be written as the union of two disjoint non-empty closed
sets.

(iii) M cannot be written as the union of two non-empty sets A and B
such that

ANB=ANB=¢.

(iv) M and ¢ are the only sets which are both open and closed in M.
Proof.

(1) => (i1)

Assume that M is connected.

Suppose (ii) is not true.

Therefore M = AUB where A and B are closed A # , B#¢ and
ANB=¢.

Therefore A°=B and B°= A
Since A and B are closed, A° and B° are open.

Therefore B and A are open.

Therefore M=BUA =AUB
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. Thus M can be written as the union of two disjoint non-empty open
Space for hints

sets.

Therefore M is not connected which is a contradiction to the assump-

tion.

Therefore (i)=> (ii)

(i)=>.(iii)

Suppose (iii) is not true.

Then M=A U B where A #§ , B#p, ANB=ANB=¢
Claim: A and B are closed.

Let er_

Since ANB=¢, x¢B.

Since AUB=M , X€ A.

N
N
N

But A is the smallest closed set containing A .

Hence A=4,
We know that A is closed iff A=4 (1)

Therefore A is closed.

Let XEE.

Since ANB=¢, x¢ A
Since AUB=M, xe B

EgB

But B is the smallest closed set containing B.

B

&
I

Hence B=25B.



Therefore B is closed.(By (1))
Now ANB=ANB (. A=4)
=
Thus M = AUB where A, B are non-empty disjoint closed sets.

This is a contradiction to the assumption that

M cannot be written as the union of two disjoint non-empty closed

sets.

Therefore (ii) => (iii)
(i1)=> (iv)

Suppose (iv) is not true.

Then there exists 4 © M such that A# M and A#$ and A is both open
and closed.

Let B =A°.
Then B is both open and closed.

Also B # .

Therefore M = AU B.

Since Aisclosed, A=4,
Therefore AN B = AN A° =g,
Also ANB=ANB=ANA = ¢

Therefore M= AUB where 4N B=4 N B=¢ which is a contradic-
tion to the assumption (iii)

Therefore (iii)=> (iv)
(iv) => (i)
Suppose (i) is not true.

Therefore M is not connected.

Therefore M = AUB where A and B are closed A #¢ , B#$ and
ANB=¢.
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Then B°= A.

Since B is open , A is closed.

Also, A #§ and A #M. (since B #P).

Therefore A is a proper non-empty subset of M

which is both open and closed which is a contradiction to (iv).
Therefore (iv) => (1).

Theorem 4.1.6

A metric space M is connected iff there does not exist a
continuous function f from M onto the discrete metric space {0,1}.
Proof.

First assume that M is connected.

Suppose there exists a continuous function f from M onto {0,1}.

We know that , every subset of a discrete metric space is both open and
closed.

Therefore {0}, {1} are open.
We know the following result,
“ Let (M;,d1) and (M>,d>) be any two metric spaces.

A function f: M; —M, is continuous iff f'(G) is open in M; whenever
G is open in M.

(i.e) f is continuous iff inverse image of every open set is open.”—(*)
Therefore £'({0}) and £'({1}) are open.

Let A=f'({0}),B=f'({1}) .

Since fis onto, A and B are non- empty.

Also AN B=¢and AU B=M.

Thus M = AUB where A #¢ , B#p and ANB=$ and A and B are open.
This is a contradiction to the fact that M is connected.
Therefore there does not exist a continuous function f

from M onto the discrete metric space {0,1}.
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Conversely, assume that there does not exist a continuous
function f from M onto the discrete metric space {0,1}.
Claim: M is connected.

Suppose that M is not connected.

Then there exists disjoint non-empty open sets

A and B in M such that M= AUB.

Define f: M—{0,1} by f(x)=0 ifx e Aand f(x)=1 ifx e B.
Clearly, f is onto.

Also f£'(@) = ¢ , F'({0}) =A, f'({1}) =B and f'({0,1}) =M

Thus inverse image of every open set in {0,1} is open in M.
Therefore by (*), f is continuous .

Therefore there exists a continuous function f from M onto {0,1}.
This is a contradiction to the assumption .

Therefore M is connected.

Note 4.1.7

The above theorem can be restated as follows:

M is connected iff every continuous function f: M —{0,1} is not onto.

PROBLEMS
Problem 4.1.8

Let M be a metric space . Let A be a connected subset of M.
If B is a subset of M such that A< R < A then B is connected.

In particular 4 is connected.
Solution.
Let M be a metric space .

Let A be connected subset of M.

Let B be a subset of M such that AC B< 4 |
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Suppose B is not connecied.

Then B = B, U B, where B; #¢ ,By#p, BiNB; =¢ ,B; and B> are open
in B.

Since B, and B, are open sets in B, there exist open sets G; and G>
such that B; =G, N B and

=Gy N B.( By Theorem 4.1.2)
Therefore B=B; U B-.
=G, NB)U (G, B)
=G,U GyNB

Therefore B = (G; U G»)

tatAcBc A

Therefore A <(G; U G»)

Therefore A=(G; U Go)) N A.

=G;NAYU (G,N A)

(Gi1MN A)and (G2MN A) are open in A.

Further, (GiN AN (G2NA)Y=(G, U Gy)NA
=(G1NGz) N B (Since A &
=GiNBYU (G2NB)
=B N B;
=3.

Therefore (GiNAYN (G2 NA)=¢

Since A is connected, either (G; N A) = ¢ or ( G2 NA )= .

Without loss of generality assume that (G; 1 A) = ¢.

Since Gj is openin M, G; N A4 = ¢.

Therefore (G; N B) = ¢, since B < A

“herefore Bi= ¢ , which is a contradiction.
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Therefore B is connected.

Problem 4.1.9

If A and B are connected subsets of a metric space M and if ANB #g,
prove that A UB is connected.

Solution.

Letf: AUB — {0,1} be a continuous function.
Since A N B #¢ , we can choose xg eANB.

Let {(x0) =0 .

Since f: AUB — {0,1} is continuous.

f/a : A — {0,1} is also continuous.

But A is connected.

Hence f/4 is not onto (by theorem 4.1.6)

Therefore f(x) = 0 for all xeA or f(x) = 1 for all xeA.
But f(xg) =0and xg € A .

Therefore f(x) = 0 for all xeA.

Similarly, f{x) = 0 fo for all xeB

Therefore f(x) = 0 for all xeA U B.

Thus any continuous function f: AUB — {0,1} is not onto.
Therefore AUB is connected. (by theorem 4.1.6)
4.2 CONNCETED SUBSETS OF R.
Theorem 4.2.1*

A subspace of R is connected < it is an interval.
Proof.

Let A be a connected subspace of R.

Claim: A is an interval.
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This is contradiction , since A1 N Ay = ..
Therefore A is connected.

Theorem 4.2.2

R is connected.

Proof.

R = ( - o0, 20) is an interval.

Therefore R is connected.( By Theorem 4.2.1)
PROBLEMS

Problem 4.2.3

Give an example to show that a subspace of a connected
metric space need not be connected.

Solution.

We know that R is connected.

M; = [1,2] U [3,4] is a subspace of R with usual metric.
Since [1,2] and [3,4] are open sets in M, M, is disconnected.

Problem 4.2.4

Prove or disprove: if A and C are connected subsets of a metric space
M

and if A < B < C | then B is connected.

Solution.

We disprove this statement by giving a counter example.
Let A=[1,2] ;B=[1,2]1 U [3,4] .C=R.
Clearly, AcBcC |

Here A and C are connected.

But B is not connected.
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4.3 CONNECTEDNESS AN CONTINUITY
Theorem 4.3.1
Let M, be a connected metric spac 2. i.et M- be any metric space.

Let f : M;—M, be a continuous function . Then f{M;) is a connected
subset of M,.

(i-ey Any continuous image of a connected space is connected.
Proof.
Let M) be a connected metric space.
Let M, be any metric space.
Let f : M|—M> be a continuous function .
Let A= f(M;).
Claim: A is connected.
Suppose A is not connected.

We know that , M is connected iff M and ¢ are the only sets which
are both

open and closed in M.

Since A is not connected, by the above theorem, there exists

a proper non- empty subset B of A which is both open and closed in A.
We know that, f'is continuous iff inverse image of cren set is open.
By the above theorem, ' (B) is a proper open siibsct of M.
Therefore M, = £ (B) U [fT(B)}°.

Since f'(B)is closed, [f! (B)]° is open.

Therefore M, can be written as the union of two

disjoint non-empty open sets.

Therefore M; i1s not connected.

This is a contradiction .

Therefore A is connected.

Theorem 4.3.2 (Intermediate value theorem)
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Let £ be a real valued continuous function defined on an interval L.

Then f takes every value between any two values it assumes.

Proof.

Let f be a real valued continuous function defined on an interval 1.

Let a,b € I and f(a) # f(b).

Without loss of generality, assume that f(a) < f(b).

Let c be such that f(a) <c < f(b).

We know that the following theorem

“ A subspace of R is connected iff it is an interval”

Since I is an interval, by the above theorem, I is connected subset of R.

We know : let M; bé a connected metric space . Let Ms be any metric
space. ;

Let f: M; — M, be a ¢u.. - uous function. then f(M,) is a connected
subset of M.

By the above theorem, f(I ) is connected.
Therefore f(I) is an interval. By Theorem 4.2.1)
Clearly, f(a), f(b) € (D),

Hence [f(a), f(b)] = {(I).

Since f(a) <c < f(b), c € {(1).

Therefore ¢ = f(x) for some x € 1.
PROBLEMS

Problem 4.3.3

Prove that if f is a non- constant real valued continuous function
on R then the range of f is uncountable.
Solution.

We know that R is connected.

Since f is a continuous functionon R, f( R) is a

connected subset of R .(By Theorem 4.3.1)
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Therefore f (R) is an interval in R.

Also, since f is a non- constant function the interval f(R) contains
more than one point.

Therefore f(R) is uncountable.
(i.e) the range of { is uncountable.

Problem 4.3.4

Give an example to show that union of two connected sets need not be
connected.

Solution.

Let A=[1,2] and B = [3,4].

We know that, A subspace o R is connected iff it is an interval.
By the above theorem, [1,2] and [3,4] are connected.
LetC=AUB=11,2] U [3,4].

We know the following theorem,

Let M, be a subspace of a metric space M. Let A; & M,.

Then A; is open in M, iff there exists an open set A in M such that A,
=A n M].

By the above theorem, [1,2] and [3,4] are open sets in C.

Hence C can be written as the union of twc disjoint non-empty open
sets.

Therefore, C is not connected.

Exercises:

1. Prove that if £: R— R is a continuous function which assumes
only rational values then fis a constant function.

( Hint. Use intermediate value theorem).

2. Prove that A = {(X,y)/ x2+y2 =1 } is a connected subset of RZ.

(Hint. Consider £:[0,2I11 —A given by f(x) = (cos x, sin
X) ).
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UNIT- 35
5.1 COMPACT METRIC SPACES |
Definition 5.1.1

Let M be a metric space. A family of open sets {G . } in M is called
an open cover for M if UG, =M.

A subfamily of {G. } which itself is an open cover is called a sub-

cover.

A metric space M is said to be compact if every open cover for M
has a finite subcover.

(i.e) for each family of open sets {G. } such that UG .= M, there
exists a finite subfamily TS CN Eup ,G, } such

that UG,,, = M.

=1
Example 5.1.2

R with usual metric is not compact.
Proof.
Consider the family of open intervals {G,} = { (-n,n) / ne N}.
We know that “ Every open interval is an open set”.

This is a family of open sets in R.

Clearly, Q (-n,n) = R.
Therefore {G,} = { (-n,n) / ne N} is an open cover for R.
This open cover has no finite subcover.
Therefore R is not compact.
Example 5.1.3
(0,1) with usual metric is not compact.

Proof.

Consider the family of open intervals {(1/n,1) /n=23,....}.
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s

Clearly, (1/n,1) = (0,1).

il
\¥]

Therefore {(1/n,1) /n=2,3,....} is an open cover for (0,1) and
this open cover has no finite subcover.
Hence (0,1) is not compact.
Example 5.1.4
[0,00) with usual metric is not compact.
Proof.

Consider the family of intervals { [0O,n) / ne N }.

Also 0 [0,n) = [0,00).

Therefore { [O,n) / ne N } is an open cover for [0,00).
This open cover has no finite subcover.
Hence [0,0) is not compact.
Example 5.1.5
Let M be an infinite set with discrete metric. Then M is not compact.
Proof.
Letxe M.

Since M is a discrete metric space, {x} is open in M.

Also, I x3=M.

xeM
Hence { {x} / x € M } is an open cover for M and
since M is infinite this open cover has no finite subcover.
Hence M is not compact.
Theorem 5.1.6
Let M be a metric. Let A& M.

A is compact iff given a family of open sets

{ G, } in M such that UG, 2A there exists a
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subfamily G, -Gg, > G, such that LG, =2 A.

1=

Proof-
Let M be a metric space.
Let A & M.

Suppose that A is compact.

Let { G, } be a family of open sets in M such that UG. 2A.
Then (UG.) N A=A.

Therefore U(G. NA)Y=A. ........... (1).

We know that, “Let M be a metric space and M, be a subspace of M.
Let A} & M,;.

Then A, is open in M, iff there exists an open set A in M such that A,
= AN M,.”

By the above result, G, N A is an open set in A.
Therefore { G, N A} is a family of open sets in A.

From (1), { G, N A} is an open cover for A.

Since A is compact, this open cover

has a finite subcover namely, G,, N 4.G,, NA4.......G, A4,

Therefore | J(G, NA4) = A.
=1

Therefore (| JGa, )N A =A.
i=l

Therefore | JG, 2 A.

i=l
Conversely, let { f1,} be an open cover for A.

Therefure each H, is open in A.

Therefore 7, = G, N A, where G, is open in M.
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Since family of { 1, } is open cover for A, U H, = A.
Therefore U( G, N A ) =A.
Therefore (UG, YN A=A.

Therefore UG « =2A.

Hence by hypothesis, there exists a finite subfamily, G, G, +------ Gy,

such that UG, =2 A.
1=1
Therefore (| JG., YA A = A.
i=1

Therefore J(G, NA) = A

1=1

Therefore | JH, = A.

=1

Thus {#, },i=1,2,....,n is a finite subcover of the open cover { H,}.

Therefore A is compact.
Theorem 5.1.7
Any compact subset A of a metric space M is bounded.
Proof.
Let M be a metric space.
Let A be a compact subset of M.
Claim: A is bounded.
Let xp € M.

Consider {B(xp,n)/neN }.

Clearly, U B(x¢,n) = M.

n=1

Since A is a subset of N’I,

lJ Bxon) 2 A.

n=I
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Since A is compact, there exists finite subfamily say. B(xo,n1),

B(x0.n2),... B(x¢,nk) such that

U B(xe,nj) =2 A.

n=I1

Let np = max {n,nz___ ng}.

k

U B(xon) = B(xono).

n=t

— B(xong) =2 A.

We know that, every open ball is an open set and every open vall is
bounded.

Therefore B(x¢ nyp) is bounded.
We know that, subset of bounded set is bounded.
Therefore A is bounded.

Note 5.1.8

Converse of the above theorem is not true.
(0,1) is a bounded subset of R.
But (0,1) is not compact.
Theorem 5.1.9
Any compact subset A of a metric space (M. d) is closed.
Proof.
Let M be a metric space.
Let A be a compact subset of a metric space M.
Claim: A is closed.
It is enough to prove that A° is open.
Lety e A°, x € A.
Then x #y.
Therefore d(x,y) =1y > 0. (since d(x,y) =0 < x = y. ).

Clearly, B(x, r:/2) B(y, rv/2) = ¢.



Now, consider the collection { B(x, rx/2) / x €A }.

Clearly, U (B(x, rv/2)) =2 A.

xe A

Since A is compact, there exists a finite number

of such open ball say B(x,.r, /2),.......B(x,,r, /2)

such that | ) B(x,.r, /222 A. ... (1).

=1

Let Vy= [ |B(.7, /2).
=1

Vy is open set containing y.
Since B(y.r, /2)[ B(x,r,/2)=¢,

VyN B(x,,r, /2) =, forallI=12,....n.

Therefore V, N [ | B(x,,r. /12)]1=¢.
i=l

Therefore Vy N A =¢. (by (1))

Therefore V, < A°

Therefore U V, = A and each V, is open.

yed
Therefore A° is open.
Hence A is closed.
Note 5.1.10
The converse of the above theorem is not true.
For example, [0,o) is a closed subset of R.
But it is not compact.

Theorem 5.1.11

A closed subspace of a compact metric space is compact.

Proof.

Let M be a compact metric space.
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Let A be a non-empty closed subset of M.

Claim: A is compact.

UGa o A
Let {G./ ®el}bea family of open sets in M such that o</
Therefore AS is open, since A is closed.

Therefore {G./ @ €1} is open cover for M.

. . - - v
Since M is compact, it has a finite subcover say Gq, Y Cop G, , A”.

Therefore (\JG., ) U A°=M.
=1

Therefore | JG., 2 A.

=1
Therefore A is compact.

5.2 COMPACT SUBSETS OF R

We know that , every subset of a compact space is closed and bounded.
However the converse is not true.

For example,

_ Consider an infinite discrete metric space (M,d).

Let A be an infinite subset of M.

Then A is bounded since d(x,y) < 1, for all x,y € A.

Also, A is closed since any subset of a discrete metric space is closed.
Hence A is closed and bounded.

However, A is not compact because in an infinite discrete metric space
M,

{x} is open in M, where x € M.

Also, U {x} =M.

xeM

Hence { {x} /x € M } is an open cover for M and since M is infinite,
this open cover has no finite subcover.
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Hence M is not compact.

In R with usual metric the converse is also true.

Theorem 5.2.1 ( Heine Borel Theorem)

Any closed interval [a,b] is a compact subset of R.

Proof-
Let [a,b] be a subset of R.

Claim: [a,b] is a compact subset of R.

UG, 21a,bl.
Let {Go/ @ €1} be family of open sets inR such that @</

Let S = { x / x € [a,b] and [a,x] can be covered by a finite number of

Clearly a € S and hence S # ¢.
Also, S is bounded above by b.

Let c denote the L.u.b. of S and clearly ¢ € [a,b].

Therefore c € G,,, for some & e L.
Since G4, is open, there exists € > 0 such that (c-¢, ct+e) © Gg, .
Choose x; € [a,b] such that x; < c and [x,,c] & Ga.,.

Now, since x; < ¢, [a,x;] can be covered by a finite number of G, ’s.

(by (1)).
These finite number of G, ’s together with G, covers [a,c].

By using (1), c € S.
Now, we have to prove that c = b.

Suppose ¢ # b.

Then choose x; € [a,b] such that x; > ¢ and [c,x2] & Ga,.
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A metric space M is compact iff any family of closed sets with finite
intersection property has non- empty intersection.

Proof.

Let M be a metric space.

Suppose M is compact.

Let {A,} be a family of closed subsets of M with finite intersection

property.

Claim: N Ag# ¢ .

Suppose N Ay =¢ .

Then (N Ay)¢ = §°.

Therefore W A" = M.

Also, since each A, is closed , A,° is open.

Therefore { A,° } is open cover for M.

Since M is compact this open cover has a finite subcover

say A]C . Azc st eeaonn Anc .

Therefore A4, =M

1=1

((4) =M

N4 =4

=i
>

Which is contradiction, since {Aq} has FIP to the definition

of finite intersection property.

Therefore N AG# .

That is, any family of closed sets with finite intersection property
has non-empty intersection.;

Conversely, suppose that each family of closed sets in M with

Space for hints







A non — empty subset A of a metric space M is said to be tota ']y
bounded

if the subspace of A is a totally bounded metric space.
Theorem 5.3.5
Any compact metric space is totally bounded.
Proof.
Let M be a compact metric space.
Then { B (x, €)/x € M } is an open cover for M.
Since M is compact this open cover has a finite sub cover say

B (x1,8),B(x2,€) ,......... B (Xn, €) .

Therefore M is totally bounded.
Theorem 5.3.6

Let A be a subset of a metric space M. If A is totally bounded, then A
is bounded.

Proof.

Let A be a subset of a metric space M.

Also, let A be a totally bounded subset of M.

Let € > 0 be given.

Then there exists a finite number of points ¥: X5 . X, € A such that

Bxi,e) Y B(x8e) Y .......... Y B (xn, £) = A, where B (x;, g)is an
open ball in A.

We know that an open ball is a bounded set.

Thus A is union of a finite number of bounded sets and hence A is
bounded.

Note 5.3.7
The converse of the above theorem is not true.

For example,
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. Let M be an infinite set with discrete metric.
Space for hints

Clearly, M is bounded.

Now, B (x1,1/2) = {x}

Since M is infinite, M cannot be written as the union of a finite
number of open balls B (x1,1/2).

Therefore M is not totally bounded.

Definition 5.3.8

Let (xn ) be a sequence in a metric space M.

Letni<ng........... <ng<..o..... be an increasing sequence

of positive integers. Then (¥, ) is called a subsequence of (x.).
Theorem 5.3.9

A metric space (M.,d) is tot pvounded iff every sequence in
M has a Cauchy subsequer;ce.

Proof.

Let (M.d) be a metric space.

Suppose every sequence in M has a Cauchy subsequence.
Claim: M is toally bounded;

Let € > 0 be given.

Choose x1 € M.

If B (x1, €) = M, then obviously M is totally bounded.

If B (x1, €) #M , choose x2 € M - B (x1, €) so that d(x;,x2) = €.
Now, if B (X1, &) Y B (x2, €)= M.

Then M is totally bounded.

In not, choose x3 =M — [ B (x4, ) U B (x2, €)] and so on.
Suppose this process does not stop at a finite stage.

Then we obtain a sequence X X2, Xn, .... Such that d(xp,xm) > € if n

#+ m.
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Clearly this sequence (x;,) cannot have a Cauchy subsequence.
Hence the above process stops at a finite stage and

we get a finite set of points { x;. X2 . %, }

Such that B (x),&) Y B(x2,8) Y ......... B (%, £} = M.
Therefore M is totally bounded.

Conversely, suppose M is totally bounded.
Let S = 1X,,X; 5ecceneX, wevnrenne } be a sequence in M.

If one term of the sequence is infinitely repeated,

then S; contains a constant subsequence which is obviously a Cauchy
sequence.

Hence we assume that no term of S; is infinitely repeated

so that the range of S is infinite.

Now , since M is totally bounded, M can be covered by a

finite number of open balls of radius Y.

Hence at least one of these ball must contain an infinite nu.mber
of terms of sequence S;.

Therefore S; contains a subsequence S, ,

So = {X3, 5%, seeeeeeXy veriienns Jall terms of which lie within an open ball
of radius '%.

Similarly, S, contains a subsequence Si = {¥3 X3 se.eeea Xy ceiennens 3 all
terms of which lie within an open ball of radius 1/3.

We repeat this process of forming successive subsequences and finzally
we take the diagonal

sequence.

S= ({Xy,5 X5 seeeeeeXyy covmenenn. } we claim that S is a Cauchy subsequence

If m> n both X,, and X, lie within a open ball of radius 1/n.

Therefore d(Xx,, ,X, ) <2/n.
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Hence d( X, ,X, ) <eifnm > 2/e.

This shows that S is a Cauchy subsequence of Sq.
Thus every sequence in M contains a Cauchy subsequence.

Corollary 5.3.10

A non- empty subset of a totally bounded set is totally bounded.
Proof.

Let A be a totally bounded subset of a metric space M.

Let B be a non- empty subset of A.

Let (xn ) be a sequence in B.

Thererfore (x5) is a sequence in A .

Since A is totally bounded , (xn ) has a cauchy subsequence. (by theo-
rem 5.3.9)

Thus every sequence in B ha auchy subsequence.
Therefore B is totally bounaed.
Definition 5.3.11

A metric space M is said to be sequentially compact if every sequence
in

M has a convergent subsequence.

Theorem 5.3.12

Let (x5 ) be a Cauchy sequence in a metric space M.

If (xn ) has a subsequence ( X,, ) converging to x, then (x, ) converges
to X. '

Proof.
Let (X5 ) be a Cauchy sequence in a metric space M.
Lete> 0 be given.

Since (X, ) is a Cauchy sequence, there exists a positive integer m;

*such that

d(Xn,Xm) = &/2 for all n, m > m;.—(1)
Also, since ( X, ) — x , there exists a positive integer m; such that

d(x,, ,x) > €/2 for all nx > my.—(2)
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Let mp= max { m;, my} and fix nx > my.
Then d(xn,x) < d(xXn, X, ) + d(X,, ,X)
<g/2+¢/2 for all n> my. (by (1) & (2)).
= € for all n > m,.
Hence (Xxn) — X.
Theorem 5.3.13
In a metric space M the following are equivalent.
(i) M 1is compact.
(i1) Any infinite subset of M has a limit point.
(ii1) M is sequentially compact.
(iv) M is totally bounded and complete.
Proof.
(1) => (1)
4 et us assume that a metric space M is compact.
Also, let A be an infinite subset of M.
Suppose A has no limit point in M.
Letx e M.

Since X is not a limit point of A, there exists an open ball B(x, rx) such
that

Bx, i) N(A—-{x})=¢.
Therefore B(x, rx) N A = { {x} if xe A.
¢ ifx € A.
Now, { B(x,rx)/ x € M } is open cover for M.
Also, each B(x, rx) covers at most one point of the infinite set A .
Hence this open cover cannot have a finite subcover which is a
contradiction be the assumption.
Hence A has at least one limit point.
(i1) => (ii1)

Let us assume that, A is an infinite subset of a metric space M having a
limit point.
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Claim: M is sequentially compact.

Let (xn) be a sequence in M.

If one term of the sequence is infinitely repeated then,
(xn) contains a constant subsequence which 1s convergent.
Otherwise (X,) has an infinite number of terms.

By the assumption this infinite set has limit point , say X.

“let (M,d) be a metric space. Let A & M . Then x is a limit point of A
iff

each open ball with centre X contains an infinite number of points of
A”.

By the above statement, for any r > O the open bal 1 B(x, r) contains

infinite number of terms of the sequence (x;).

Now , choose a n;> 0, such that X, € B(k,l)
Then choose n;> n; , such that X, € B(x,1/2).
In general for k> 0, choose ni such that ny> ny.; and X, e B(x,1/k).

Clearly, ( X, ) is a subsequence of (x,) .

Also, d( X ,x)<1/k.

n, k4
Therefore ( X, ) — x.

Thus ( X, ) is a convergent subsequence of (xy)

Hence M is sequentially compact.

(ii)=> (iv):

Let us assume that M is sequentially compact.

That is every sequence in M has a convergent subsequence.

But every convergent sequence is Cauchy sequence.

Thus every sequence in M has a Cauchy subsequence.

By the theorem ,” A metric space (M,d) is totally bounded iff every
sequence in M has a Cauchy subsequence”.

Therefore M is totally bounded.
Now we prove that M is complete.
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Let (x5) be a Cauchy sequence in M.

And (x,) contains a convergent subsequence ( X, ) .
Let ( %, ) — x (say)

Then (xn) — x (by theorem 5.3.12)

Therefore M is complete.

(iv) => (i)

Let M be complete and totally bounded metric space.
Claim: M is compact.

Suppose M is not compact.

Then there exists an open cover {Gy} for M which has no finite sub
cover.

Let r, =1/2".
Since M is totally bounded , M can be covered by a finite number
of open balls of radius r;.

Since M cannot be covered by a finite number of G,’s at least one of
these

open balls say B(x.r;) cannot be coverzd by a finite number of Gy’s.
Now, B(x,.r)) is totally bounded.

Hence as before we can find x; € B(xy,r1} such that B(xs,r2) cannot be
covered by a finite number of G,’s.

Proceeding like this we obtain a sequence {x;} in M such that B(x;,rq)

cannot be covered by a finite number of G,’s. and Xn+1 € B(X,.10) for all
n.

Now , d(Xn,Xn+p) <, d(Xn,Xn+1) + d(Xn+1,Xn+2)+. . ...+ A(Xn+p-1.Xn+p)
<In *t It oot Fnepet
=1/2" +1/2™" + ... + 1/2mPt
=1/2"1(1/2 +1/2%+ ...... + 1/27)
< 1/2™!
d(Xn,Xntp) < 1/2°7,

Therefore (x,) is a Cauchy sequence inM.
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Since M is complete there exists x € M such that (xa) — X.

Now , x € G, for some a.
Since G, is open we can find € > 0 such that B(x, €) & Go —(1)
We have (x,) — x and (1) = 1/2" — 0.

Hence we can find n; > 0, such that d(xn, X) < €/2 and (r,) < €/2 for all
n=n

Now fix n > n;.
Claim: B(x,, ) & B(x, g)
Let y € B(Xp, 1n)
Therefore d(y,x,) <r, <&/2 (since n>ny)
Now d(y.x) < d(y.xn) + d(xn,X)
<g/2 + &/2.
= g,
(i.e) d(y,x) <e.
Therefore y € B(x,€) (by the definition of open ball).
Therefore B(xn, 1) & B(x,8) S Go  (by (1)).

Thus B(xn,rn) is covered by the single set G, which is a contradiction to
the assumption.

Hence M is compact.
Theorem 5.3.14
R with usual metric is complete.
Proof.
Let (xn) be a Cauchy sequence in R.

Then (x,) is a bounded sequence and hence it contained in a closed in-
terval [a,b].

Now, [a,b] is compact and hence it is complete.
Hence (x;) converges to some point x € [a,b].

Thus every Cauchy sequence (x,) in R converges to some point x in R
and hence R is complete. )
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SOLVED PROBLEMS
Problem 5.3.15

Give an example of a closed and bounded subset of 7> which is not
compact.

Solution.

n=l

o 1 p
“We know that d(x,y) = {ZI Xp = Vn lp:l where x = (Xp) and y = (yn)
then d is metric on ,”
Consider 0 = (0,0,0,...... ) € 0.
Consider the closed ball B[0,1].
Clearly, B[0,1] is bounded.
Also, B[0,1] is a closed set.
Claim: B{0,1] is not compact.

Consider e; = (1,0,0,.....); e = (0,1,0,....); .ooen...... € =
0,0.,0,.....,1,0,...)).

Now, d(0,e,) = 1 and hence e, € B[0,1] for all n.

Thus (ey) is a sequence in B[0,1].

Also, d(ep,em) = \E if n#m.
Hence the sequence (e,) doesn’t contain a Cauchy subsequence.
Therefore B[0,1] is not totally bounded. (by previous theorem)
Therefore B[0,1] is not compact.
Problem 5.3.16

Prove that any totally bounded metric space is separable.
Solution.
Let M be a totally bounded metric space.

Claim: M contains a countable dense subset.

For each natural number ‘n’, let A, = { X, X, .- X, } be a subset of
M such that

k
UBG, 1/m) =M. ..o 1) (by definition)

1=}
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o0

LetA=J An

n=1

Since each A, is finite, A is a countable subset of M. .............. (2)

Claim: A is dense in M.

Separable: “A metric space M is said to be separable if there exists a
countable dense subset in

M"’
Let B(x,€) be any open ball of radius &> 0.

Choose a natural number ‘n’ such that 1/n <e&.
Now, x € B(X,, ,1/n) for some i (by using (1)).
Therefore d( X, ,x) <1/n <e.

Therefore (X, ) € B(x,g) (by the definition of open ball).

Thus every open ball in M has non-empty intersection with A (limit
point definition).

- Therefore B(x,e) N A * ¢.

We know that, “ Let M be a metric space and A M. Then the follow-
ing are equivalent.

(1) A isdensein M.

(i) The only closed set which contains A in M.
(ii1) The only open set disjoint from A is ¢.
(iv) A intersects cvery non-empty open set.
(v) A intersects every open ball.”

Thus A is a countable dense subset of M.

Hence M is separable.

Problem 5.3.17

Prove that any bounded sequence in R has a convergent subse-
quence.

Solution.
Let (xn) be a bounded sequence in R.

Then there exists a closed interval [a,b]\s"uch that x,, € [a,b], for all n.
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Thus (x,) is a sequence in the compact metric space [a,b].

(by Heine Borel Theorem: Any closed interval [a,b] is a compact
subset of R).

We know that, “In a metric space M the following ar equivalent.
(1) M is compact.
(ii) Any infinite subset of M has a limit point.
(iii) M is sequentially compact.
(iv) M is totally bounded and complete.”
Then (x,) has a convergent subsequence.
Problem 5.3.18
Prove that the closure of a totally bounded set is totally bounded.
Solution.

Let A be a totally bounded subset of M.
Claim: 4 is totally bounded.

We shall show that every sequence in 4 contains a Cauchy subse-
quence.

Let (xn) be a sequence in 4.

Let £ > 0 be given.

Then since xn € 4, B(xn,1/3£) N A # .
Choose y, € B(x4,1/3 €) N A.

Therefore d(yn,Xxn) <1/3& ..o ... (1).

“ A metric space (M,d) is totally bounded iff every sequence in M has
Cauchy subsequence.”

By using the above result,

Now (yn) is sequence in A. Since A is totally bounded (y,) contains
a Cauchy sequence say (JV,, ).

Hence there exists a natural number ‘m’ such that

d(Vu->Yn)<1/3 g foralln,ni>m  ................. 2).

Therefore d(X,, ,*, ) <d (X, ¥s )+ d(V,, 2 Vn, )+ d( Yn, »Xn, ).

Space for hints




Space for hints

<1/3e+1/3e+1/3e. -
= g, forall nyn,>m  (by (1) and (2)).

Hence ( X, ) is a Cauchy subsequence of (xn)-

Therefore A4 s totally bounded.
Problem 5.3.19

Let A be a totally bounded subset of R. Prove that A is compact.

Solution.

We know that “ The closure of a totally bounded set is totally
bounded.”

Since A is totally bounded, A is also totally bounded.

We know that, < A subset A of a complete metric space M is complete
iff A is closed.”

Also, since A4 is a closed subset of R and R is complete A 1S com-
plete.  ......... (2)

From (1) and (2) 4 is totally bounded and complete.
“ In a metric space M the following are equivalent.
(i) M is compact.

(i) Any infinite subset of M has a limit point.

(iil) M is sequentially compact.

(iv) M is totally bounded and complete.”

By using above theorem, it is proved that 4 is compact.
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