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Model Question Papers
Ancillary Paper — X
Theory of Equations And Numerical Analysis
Model Paper — |

Sec - A 8 x 5 = 40marks
Answer any Eight out of 12 questions

Solve the equation x*—5x*+4x*+8x—-8=0 given that 1-+/5

Solve: 4x*—20x°+33x*--20x+4=0

Find the nature of the roots of the equation 4x*--21x+18x+30=0.

If a,B,y are the roots of the equation x3+ax?+bx+c=o0, find the equation

whose roots are a 3,By.y o.
Represent the function x*—12x*+42x?>-30x+9 in the factorial notation.
Find by the method of iteration a real root of 2x--log1ox=7.
Solve the equation 14x-5y=5.5
2x+7y=19.3

by Jacobi method.
Show that V (ay;)=aVy; a being a constant.
Find the cubic polynomial for the following table

x:0 1 2 3

y:1 O 1 10

. : , 1
Derive simpson’s 3 rule.

Solve the equation Yisa+Yis1+yx=K.2

Using Lagrange’s interpolation formula, fit a polymial to the data
X : 0 1 3 4

y: -12 0 6 12

: Sec-B
Answer any 6 out of 10 Questions 6 x 10 = 60 marks
Solve the equation x*+2x*>-21x*-22x+40=0 whose roots are in Arithmetic
progression.
Show that the equation x®+3x?>-5x+1=0 has atleast four imaginary roots
If the sum of the two roots of the equation x*+px®+qx®+rx+s=0 in equal to
the sum of the other two roots, prove that p*+8r=4pq.
Discuss the reality of the roots of x*+4x3-2x*-12xa =0V o .
Solve the equation x*+4x*+5x*+2x--6=0 by removing its second term.
X : 21 25 29 33 37
y . 18.4708 17.8144 17.1070 16.3432 15.5154



Use Gauss’s forward and backward formula to find y for x=30 for the above

data.
]
19. Evaluate | = j_‘dx correct to four decimal places by both Trapezodal and
o1+ X
simpson’s % rules with h=0.125
. dy FKy _
20. From the below table of values of x & y obtain ™ and e for x =1.2
X
X : 1.0 1.2 1.4 1.6 1.8 2.0 2.2

y: 2.7183 3.3201 4.0552 4.9530 6.0496 7.3891 9.0250
21. Solve the following equation by method of differences
i) Ugsq — Ux=X2, Up=1
i) Uys2- 7 Uysq4t+12Uy = COS X with ue=0=u.
22. a) Write a short note on Inverse of Interpolation
b) Derive Lagrange’s interpolation formula.

Model Paper — Il
Theory of Equations and Numerical Analysis

Sec-A
Answer any Eight out of 12 questions
8 x 5 = 40 marks
1 1

1. If a,B,y are the roots of x3*+qx+r=0 find the value of L + +
B+y y+a o+

2. Remove the fractional coefficients form
xa- e Ay 120
4
3. Fine the nature of the roots of
X*+4x*-30x*+10=0
4. Solve the equation 8x°--84x°+262x—231=0, if the roots are in A.P.
5. Find the multiple roots of the equation
27x* —72x%+64x-16=0
Find a real root of the equation x*+x*-1=0 using iteration method.
Give the geometrical meaning of Newton’s method
8. Using Guass Elimination method, find the inverse of the

N o

3 -1 1
matrix.{ —15 6 -5
5 -2 2
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1 1 4
Prove that = —A+— AE™".
He=527%

7.52
Evaluate |f(x)dxfrom the following table
7.47

X: 7.47 - 7.48 7.49 750 7.51 7.52
F(x): 1.93 1.95 1.98 201 2.03 206
Solve y,«1—2yx cosa +y, ;=0

Derive Trapezoidal Rule.

Section-B
Answer Any 6 out of 10 questions 6 x 10 = 60 marks

Solve the equation
3x*--40x3+130x%-120x+27=0. Given that the product of two of its roots in

equal to the product of the other two.

Find the equation whose roots are the cubes of the roots of
2x°+3x*+4x3-2x2-3x+1=0

Find the number of rea! roots of the equation x*+4x®*-4x-13=0 by sturm’s
theorem R

Prove Newton-Gregory’s backwaid interpolation formula.

From the following table, Using Lagrange’s formula find Y when x=0.5

X: 0.4846555 0.4937452 0.5027498 0.5116682

y: 0.46 0.47 0.48 0.49
Find the minimum value of f(x) for the data.
X: 0 1 2 3 4 5 6 7
f(x): 890 844 769 668 541 389 401 462
Xx: 8 9

f(x);. 495 530
Prove the foilowing identity
X 2

X X
Up X+UXPH+UzX 0+ .. = u, + S XAU + 2 AP,
1-x ]1—x ; 1

Using Numerical differentiation find the value of sec 31°for the following
table:

0 : 31 32 33 34
tan 6: 0-6008 0.6249 0.6494 0.6745

6
Evalute {./x(1-x) dx, Using weddles rule.
0

From the following table, obtain f(x) as a polynomial in powers of (x-5)
X: 0 2 3 4 5 6
f(x): 4 26 58 112 466 922.
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Model Paper -3
Theory of equation and Numerical Analysis
Sec-A 8 x 5 = 40marks
Answer any Eight out of 12 questions

2
If o,B;y are the roots of x*~ 5x+7=0 find 29—[3—%
Solve the equation x*—6x*+11x>—10x+2=0 if 2+i+/3 is a root of the
equation.
Solve the equation x®>-12x?+39x—-28=0 given that the roots are in A.P.
Find the multiple roots of the equation 27x*—-72x?+64x--16=0.
Using method of iteration find the real root of the equation 2x—-logiox=7
correct to four decimal places.
Find the missing values in the following data:

X: 0 5 10 15 20 25
Y: 6 10 - 17 - 31
From the table of values.
X: 1.46 1.47 1.48 1.49

f(x): 0.885604 0.885633 0.885747 0.885945
Find f(1.4684)
Prove that y,_x = Yo—KCi V ya+kc2V y +...... +(—1)* vy,

Find the value of %at x=1.05 for the data.
X: 1.00 1.05 1.10 1.15 1.20 1.25 1.30

Y: 1.00000 1.02470 1.04881 1.07238 1.09544 1.11803 1.1401

i . ,
Derive simpson’s 3 rule.

. Obtain the Newton forward interpolation formula.
12.

Solve the equation Y .,+5yy. 1+ Byc=ex

Sec -B -
Answer any out of 10 question 6x10=60marks

2 2 2 2

Show that the equation A + B + c b P + H =k cannot
x—a x-b X—C x—h
have an imaginary root. If A,B,C...H, a,b,c...h are real and distinct.
If «,B,v are the roots of x*~7x+7=0 find 14 + l314 + 14
o Y

Show that the roots of x*+px?+qx+r=0 are in A.P if 2p*~9pq+27r=0
Solve using Cardon’s method:
x*-7x+6=0

. Solve the equation x*--8x>+19x?—12x+12=0 by removing its second term.
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Find the value of e gjven

e'’=5.4739, e'®=6.0496, e'°=6.6859, e*%=7.3891,
e?'=8.1662, e22=9.0250 e?°=9.9742

Using Lagrange’s interpolation formula find Y(10) given that Y(5) = 12,
Y(6) =13, Y(9) = 14 Y(11)=16

From the following find the maximum value of the function:

X: 0 1 2 3 4 5
Y: 0 0.25 O 2.25 16.00 56.25
1 -
Evaluate f1 > Using Trapezoidal rule with h=0.2.Hence determine the
o1+ X
value of n .
Using the Gauss-Jordom method solve the following. Equations

10x+y+z=12, 2x+10y+z=1 3,x+y+52=7



UNIT - |

THEORY OF EQUATIONS AND NUMERICAL ANALYSIS
UNIT-A
THEORY OF EQUATIONS

1.1 An Expression of the Form
f(x)=a x"+ax"+ax"?+.....+a,,

Where n is a positive integer and ag,aq,az,...... a, are constants is called a
polynomial in x of the n' degree if a;#0.

f(x)= aox"+ax" ' +ax"%+........ +a,=0 is called an algebraic equation or
polynomial Equation of the nth degree, if ag=0.

An equation is not altered if all its terms be divided by any quantity.
Dividing the equation by ao.
We can make the coefficient of X" in the above equation equal to unity.

Then the equation can be written in the form

X "+P X" +Px" 2+ L. +P, x+P, =
Equations of the first, second ,Third , fourth...... etc. degree are know as
linear, quadratic , cubic biquadratic ...... equations respectively.

The term independent of x is called the absolute term.

Any value of x for which the polynomial f(x) vanishes is called a root of the
equation f(x)=0.

The main object of the theory of equations is to find the roots of the
equation f(x)=0(i.e),to solve the equation.

In this chapter unless otherwise stated f(x)represents always a polynomial
in X we can easily see that f(x)is a continuous function of x for all values of x.

Remainder Theorem:
If f(x) is a polynomial then f(a) is the remainder when f(x) is divided by x-a.

Divide the polynomial f(x) by x-a until a remainder is obtained which does
not involve x. ,



Let the quotient be Q(x) and remainder R.
Then f(x)=(x-a)Q(x)+R.

Substituting x=a in the above equation.
We get f(a)=R.

Cor:
If f(a)=0, the polynomial f(x) has the factor x-a.(ie) if a be the root of the
equation f(x) = 0 then x-a is a factor of the polynomial f(x).

Theorem:
) If f(a) and f(b) are of different signs, then atleast one root of the equation
f(x)=0 must lie between a and b.

y' y
— T
ﬂa;\\\\ //
1 Db - \\\ N\ /4Qb) )
X () a \/ f(b) f(aU O \/ \./
y 1
y

As x changes gradually from a to b, the function f(x) changes gradually
from f(a) and f(b) and therefore must pass through all intermediate values, but
since f(a) and f(b) have different signs, the value zero must be between them,

(ie) f(x) assumes the value zero for atleast for one value of x between a
and b.

This theorem can be proved by means drawing the graph of the function
y=f(x).

Since f(a) and f(b) have different signs, the graph y=f(x) must cross the
x-axis atleast once between a and b.

At the point where the graph crosser the x-axis there is a real root of
f(x) =0.

There is atleast one real root between a and b.

10



Theorem:

If f(a) and f(b) have the same sign, it does not follow that f(x) =0 has no
root between a and b.

It is evident that when two points are connected by a curve, the portions of
the curve between these points must cut the axis at an odd number of times when
the points are on opposite sides of the axis and an even number of times or not at
all. When the points on the same side of the axis.

y Y
~ / TN
f(a) f(b) f(b)
/\ f(a)
x' o] a < U X x'7 0| a b X
y' | y'
Hence we get the following results:-
1) If f(a) and f(b) have like signs, an even number of roots of f(x) = O lie
between a and b or else there is no root between a and b.
2) If f(a) and f(b) have unlike signs, an odd number of roots of f(x)=0 lie
between a and b.
Theorem:

If f(x)=0 is an equation of odd degree, it has atleast one real root whose
sign is opposite to that of the last term.

Let f(x)be x"+p X" "+.......... +Pn.
Substituting —w ,0,+ 0, for x in f(x).

We get f(-») = —  since n is odd.
f(o) = pn.

f(+o00 )= +0.

Hence if P, in positive f(x) = O has atleast one root lying between — o« and
o and if P, is negative f(x)=0 has atleast one root lying between o and +x.

If f(x)=0 is of even degree and the absolute term is negative equation has
atleast one positive root and atleast one negative root.

11



Let f(x) be x" +p x"" +...... +Pn.

Here n is even and P,is negative.
f(-o) = +w. Since n in even.
f(o) = P, = a negative quantity
f(+ o )=+ o0,

Hence f(x)=0 has atleast one root lying between —c and 0, and atleast
another lying between 0 and + .

We have proved that every equation except one of an even degree with a
positive last term has a real root. Such an equation of even degree may have
even number of real roots or no real root. We shall assume that every equation
f(x)=0 where f(x) is a polynomial in x has a root real or imaginary. The proof of
this theorem is beyond the scope of this book.

Theory:
Every equation f(x)=0 of the n" degree has n roots and no more.

Let f(x) be the polynomial.
f(x) = agX"+a X" +....... +a,

We assume that every equation f(x) = 0 has atlest one root real or
imaginary.

Let o, be a root of f(x) = 0.
Then f(x) is exactly divisible by x— a4,

So that f(x) = (x— a 1) d(X)
Where ¢, (x) is an rational integral function of degree n-1.

Again ¢(x)=0 has a root real or imaginary And Let that root be o,
Then ¢, (x) is exactly, divisible by x—a.,.
So that ¢ (X)=(x—0c2) ¢2 (X)

Where ¢(x) is a rational integral function of degree n-2.
S H(x) = (%= oq) (x—a2) $2(X)

By continuing in this way,
We obtain
f(X) = (Xx— ot 1) (X—a2).enn.nn (X—a.q) dn (X)

12



Where ¢,(x) is of degree n-1,(ie) zero.
- dn(X) is a constant.

Equating the coefficients of x" on both sides.
We get ¢,(x) = Coefficients of x"

Hence the equation f(x)=0 has n roots, since f(x) vanishes when x has any
one of the values o4 a5...... o .

if x is given any value different from any one of these n roots then no factor
of f(x) can vanish and the equation is not satisfied.

Hence f(x) = 0 cannot have more than n roots.

Example:1 (U.Q)

If o be a real root of the cubic equation x*+px®+gx+r =0, of which the
coefficients are real, show that the other two roots of the equation are real, if
p?’>4q+2pa +3a’.

Solution:
Since o is a root of the equation.

Let x*>+ px®+ gx + r is exactly divisible by x — «
Let x*+ px®+ gx + r = (x—a ) (x% +ax+b)
= x>+ ax’+ bx — ax’~ aax—ab
X2 +px% +gx +r = x> +(a~a )x*+x(b—aa) —ab

Equating the coefficients of power of x on both sides,

We get p =—-a+a
q =-aa+b
r =-ba

ra=p+aand b=qgt+aa=gta(pta)
. b=qg+ ap+ a?

The other two roots of the equation are the roots of x> + (p+o)x +q+ pa + a2=0
which is real if (p+a)®* -4 (g+pa+a?)= 0

13



(ie) p° - 2po —4q—3a?= 0[.b?—4ab > 0]
(ie) p? = 4q + 2pa + 3a’

Example: 2
if X1, X2, X3 nnns Xn are the roots of the equation
(ar~-x)(@y—X) ......... (a, — x) + k =0 then show that a4,a;...... an are the real roots

of the equation
(X1~ X) (X2 =X) ...eennne (X, —x) -k =0.

Solution:
Since x4, Xs......X, are the roots of the equation

(a;—x)az—X) ... (an — X) +k =0.
We have
(a1 —=x)az—X) ......... (An—X)*+k = (X1 = X) (X2 =X) .....ue (Xn — X)

[Hint: check that the coefficient of x" on both side are equal].

(X = X) (X = X) e (Xa—X)—k = (@3 = X)(@a2—X) ......oee (a, — X)
So(a;—X)az—X) ......... (ap —X)-b=0 = (x—ay)(x—az) ......... (x-2a,) =0
aq, Az, A3..nnnnne a, are the roots of (X3 = X) (X = X} ..oenveee (Xp — x) — k =0

Example: 3 (U.Q)

Show that if a,b,c are real, the roots of 1 + 1 + L =—3—are real
- X+a X+b x+cC X
Solution:
Let L + L + 1 =_§.
X +a X+b X+cC X

Simplifying, we get

(x +b)(x +¢)+ (x+a)(x+c)+(x+a)(x+b) 3
(x+a){x+b)(x+c) X
=X (x+b) (X+C) +X (x+a) (x+c) +x (x+a) (x+b) -3 (x+a) (x+b) (x+c) =0

Let f(x) be the expression on the left hand side. It can easily be seen that
f(x) is a quadratic function of x.
. f( —a) = —a (b~a) (c—a)
f( ~b) = -b (c-b) (a-b)
f( —c) = —¢ (a—c) (b—c)
with out loss of generality

14



Let us assume that a>b>c and a,b,c are all positive.

Thena—-b, b —c, a—- c are positive.
o f(-a) = -ve

f( —-b) = +ve

f( —c) = —ve

. The equation has atleast one real root between —a and —b, and another
between —a and —-b, and another between —b and —c.

The equation can have only two roots since f(x) = 0 is a quadratic

equation.
.. The roots of the equations are real.

Example:
The equation (x=1)° + (2x-1)® + ........ + (nx—=1)% = 0 has for its root n—2—1—;
+
find the quadratic equation satisfied the other two roots .
Solution:
Let x> —3x2+ 3x— 1+ 8x®— 12x% +6x — 1+ ........ +n® x>~ 3n?x2 +3nx — 1=0.

The given equation is x> In® - 3x% Sn?+3x. Sn-n =0

2
(or) x° [n(n; 1)] _ 32 N +125(2n+1) . 3x[n(n; 1)) .

will divide it without reminder

Since ——g—— is a root of the above equation x —

n+1 n+1
& hence by synthetic division,
We have ,
2 n*(n+1°  n+1){2n+1) 3n(n+t)-n
n-+1 4 2 2

n’(n+1)-n(n+1) n
2
_n(n+n)®  n(n+1)
2 2

2o+ o nbetf  anTD =0

Hence the required quadratic equation is 5

15



Example:
Prove that (1 — a) (1 = b) (1 —c¢)....= n, if 1, a, b, ¢ be the roots of the

equation . x" — 1= 0.

Solution:
We have x"—1 = (x =1) [(x —a) (x=b) (x = ¢C)....... 1

Differentiate both sides w.r. to x treating the R.H.S as product of two
functions.

[(x—a) (x—Db)(x—c).....]
Putting x = 1 in both sides of the above identity

We get
n=1(n-a)(1—-a)(1-c)......

Example: 4

If oy, 0p.e.... o, are the roots of x" +nax — b = 0 show that (oy—0tp)
(ay—0tg) oveene (a1-—an)=n(0t?—1 +a)
Solution:

X" + nax — b = (x—a) (X—a, ) (X—0ty)... (X —ap) Differentiating both sides

We get

nxX"'+na=(x-a,).... X—a,) + (x—a,) dix[(x—ocz) ..... (X —a,

Putting x = a, in both sides the second factor in R.H.S. in zero

no™ +na = (oy—ay) .onne (oq—a,
(or)
n(onﬁ"1 +a) = (= Cy )ernenn. (o,—a,

Example: 5
Prove that the equation

16



Solution:
Let us suppose o +if3 is an imaginary root of the-above equation.

In that case o —if3 will also be a root.
Substituting for x both these roots,

We get |
A2 82 - C2 k2 .
....... ————i . = |
(Ot—a)-i-iB * (Ot—b)+i[3 +(0L—c)+jB T +(Ot—k)+i[3 (a+)+if
A2 BZ C2 k2 |
........ ——— I -
“E-aB @b B (o) B Gorp (xR
Substracting the above two relations
We get
A 8” C* k? |
—2. ........ _2|
" {(a—a)2+[32 +((X-—b)2+|32 +(a—C)2+BZ (oc—k)2 +p? B
r A2 82 C2 k2
—2 Bl v T T e g T 1 =0
o " [(O“a)2+32+(a—b)2+[32 +(a—C)2+[32 M +(cnt—k)2+l32+ }

The expression within the brackets in the sum of ‘+ve’ quantities and as
such cannot be zero & hence -2iB=0or 3 = 0.

.. The given equation cannot have imaginary roots.
Hence all its roots are real.
Exercise

If x +3px+q has a factor of the form x —~2ax+a? show that q2+4p = 0.
2. If px3+qgx+r has a factor of the form x?+ax+1 prove that p*=pg+r?

—

3. If a, b, c are all positive, show that all the roots of L + + ="
X—a X-b x-c¢

1
— are real.
X

4. If a<b <c<d, show that all the roots of the equation (x — a) (x — b)(x — ¢)
= k(x — b) (x — d) are real for all values of k.

1.2 Imaginary Roots
In an Equation with real coefficients, Imaginary roots ocuur in pairs:

Let the equation be f(x) = 0. and Let o +if be an imaginary root of the
equation. We assure that a— i3 is also a root of f(x) = 0
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We have
[X—(Ot"'lﬂ)] [x—(a—iB)]l =[(x — o) =i Bl [(x— )+ iB)
=x?— xa +ipX—ax+a 2_jgp+ipx+ipa —ip?
=x?—2xa +a?+ B2
=(x—a)*+ p*
L X = (a+iB)} [x—(a=iB)] = (x - a)® +p* (1)

when f(x) is divided by (x — a )? +p?

Let the quotient be ¢ (x) and reminder be Ax + b,

Here ¢ (x) is of degree n — 2.

L f(x) =[(x—a)®+ B%] ¢ (x)+Ax+B (2)
Substituting (a —ip) for x in the equation (2)

We get
fla—iB) = (a+iB-a)®+ B%] ¢ (a—ip) + A (a-ip)+B
= A(a—-ip)+B
but f(a —iB)=0 since a—iP is a root of f(x) = 0
(ie) A((a+ip) + B =0

(ie) Equating to zero the real and imaginarily part.
Aa+B=20 & AB =0

Since B =0, A=0 and hence B=0
() =[(x—a)*+ B*] ¢ (X)
f(a—iB) = [(a-iB—a)*+ B*] ¢ (a—ip)=0

a—ipB is also a root of f(x) =0.

Example: 1

From a rational cubic equation which shall have for roots 1 3—4-2.

Solution:

Since 3—+/—-2 is a root of the equation.
3++-2 is also a root.

So, we have to form an equation whose roots are 1, 3++—2, 3—+/-2
Hence the required equation is

(x—1)(x—=3-+4-2) (x=3+/-2)=0
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(x =1 [(x=3P%~+-2)*1=0
(x=1)[(x-3)72+2)]=0
(X=1[x=6Bx+9+2]=0 |[.J/-2=iV2
(x—1)[x*~6x+11] =0 {(i\/'z')z-_--z }
(ie) x> —6x* + 11x - x2+6x—11=0
X -T7X2+17x-11=0

Example: 2
Find the equation with rational coefficients whose roots are 1+5 J-1, 5-4-1.

Solution:
Since 1+5+/-1, 5—+/-1.is a roots of the equation , 1-5 J-1, 5+4/—1 is also a root.

So we have to form an equation whose roots are 1+5 J-1,5-v=1,1-5/=1, 5+/-1.
Hence the required equation is

[X—(145 V=1)][x=(1-5V=1)] [x=(5+ V/=1)] [x~(5-v~1)] =0

[(x =12 =(5V-1) [(x-5)* - (J-1)] =0

[x? - 2x+1+425] [x*— 10x + 25+1] = 0

(ie) (x> — 2x +26) (x* — 10x + 26) = 0

(ie) x* — 10x® + 26x? —2x® +20x? — 52x + 26x% — 260x+676 = 0
(ie) x* — 12x® +72x%? — 312x +676 = 0

Example: 3
Solve the equation x* + 4x® +5x* + 2x — 2 = 0 of which one root is

—1+-1.
Solution:
Imaginary roots occur in pairs.

Hence —1—+/-1 is also a root of the equation.

. The expression on the left side of equation has the factors

(x+1=+=1) (x+1+/-1).

~. The expression on the left side is exactly divisible by
(x+1)%+1, (ie) x* + 2x +2.

Dividing x* + 4x® +5x% +2x — 2 by x% + 2x + 2

19



We have

- x%4+2x — 1

x* + 4% +5x2 +2x — 2
X2+2x + 2 | x* + 2x3 +2x2

=) )

T 2x® + 3x% + 2x
2x% + 4x2+ 4x
=) =) )

—x? —2x =2
—x% —2x =2

(+) (+) (+)

0

We get the quotient x? +2x — 1.
Xt AxE +5x2 42x — 2 =(x2+ 2x + 2) (XP+ 2x — 1)

-. Thus the other roots are —1 * JE

~-b++/b? —4ac N ~2+4J4+4

2a 2
X=—1++2
Example: 4
a? b2 c?
Show that — + + - x +8 = 0 has only real roots if a,b,c,
X—a- . X-B X—y

o,B,y.5 arealtreal. - -

Solution:
If possible Let P + iq be a root.

Then P —iq is also a root.

Substituting these values for x,
We have
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2 2 2 g
a + b +—C -P—-ig+ 8 =0 (M
P+ig—a P+ig-B P+ig-vy

2 2 2 )
2+ _ D L, C p_igrs=0 ()
P-ig-a P-ig-B P-ig-y

substracting (2) from (1)

we get
2 k2 2
2 D 4 C _paiigrs )
P-ig-—a P-ig-B P-ig-vy
2 2 2
@ __ P S ip+ig-s "= 0
P+ig—-a P+ig-B P+ig-y

a’(p+iq-a)-a*(p-ig-a) b*(p+iq-p)-b*p-iq—p)
(b -a)-iq) ((p - o) +iq) (b -B)-ia) (P -B)+iq)

+ Cz(p+iq_Y)—C2(p—iQ"Y) + 2iq =

(e -7v)-iq)((p-7v)+iq)

Simplify,
(ie) — 2a%iq  2b%q  2c?iq _2ig=0
P-o)+a* -B’+a* (p-7)f+q?
a? b? c?
(ie) — 2iq { + + +1] =0
P-af +q* (-Bf+a® (-7 +d’

This is only possible when q = 0, since the other factor cannot be zero. In
that case the roots are real

Example: _
Solve the equation x*+2x® — 5x% + 6x + 2 = 0 given that 1++/-1 is a root.

Solution:
Let f(x) = x*+2x® = 5x2 + 6x + 2

Since 1 + i is a root of f(x).

1 —iis also a root of f(x).
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The factor f(x) is
x-(1+i)][x-(1-01=0
[x-1-i][x-1+i=0
(x=12-()*=0
xX>’-2x+1+1=0
xX!-2x+2 =0

X2+4x + 1

x* + 2x% —=5x% +6x + 2
X?=2x + 2 | x* — 2% +2x?

=) +) (=)

4x3 — 7x% + 6x
4x® — 8x% + 8x

=) (+) ()

X2 —=2X +2
X2 —2x +2

(=) (+) )

0

f(x) = (x°=2x + 2) (x*+4x+1)
= (x2-2x + 2) (-2++/3) (-2-4/3)

The four roots are 1 - \ﬁ, 1+ \ﬁ. —2+\f§, —2—J§.

Exercise
1. Find the equation with rational coefficients whose roots are
i) 443,5+24J-1
i) v—1-+5
i) —v/3 + V-2

2. Solve x* — 4x2 +8x +35 = 0 given that 2+i+/3 is a root of it.
3. Solve the equation 3x® — 4x? + x +88 = 0 which has a root 2—/-7
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4. Given that ~2++/-7 is a root of the equation x* + 2x*> —~16x +77 = 0.
5. Show that the equation

2 2 2 2
a+b+c+ +k

----------

x-a' x-b' x-c' x -k’
different cannot have an imaginary root.

=x - mwhereab,c.......... k are all

6. Solve the equation x°- x* + 8x® -9x — 15 = 0, one root being —/3 and
another 1+2+/-1.

Answer:
1. i) x*—10x® + 19x% +480x -1392 =0
i) x*~-8x*+36=0
i) x*-=2x*+25=0
2. 2+i3 -2+

3 24 V778
4. =2 + iJ7,2 + i3,
5 —1.

1.3 Rational Root
In an Equation with rational coefficients irrational roots occur in Pairs:

Let f(x) = O denote the equation.
and suppose that a++/b is a root of the equation where a and b, are rational

and /b is irrational. We assert then a - Jb is also a raot of f(x)=0
[x— (a+vb)] [x - (a- vb)]
=[(x—a) +vbl[x-a)- Vb

= (x—a)’ = (vb)* = (x — a)* - b. (1)
If f(x) is divided by (x — a)? — b.

Let the quotient be ¢ (x) and reminder be Ax+B.

Here ¢(x) is a polynomial of degree n — 2.
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o f(x)={(x-a)’~b} ¢ (x) + Ax+B (2)

substituting a + Jb for x in (2)

we get .
fla+vb) = {(a+vb - a)>-b} ¢ (a++vb) + A(a++b) + B
= A(a+Jb )+ B
butf (a++vb)=0 = A (a++b ) + B=0

Equating rational and irrational parts.

We get
A a+B = 0 and A=0
. B=0_
~f(x)=[(x-a)’-b] ¢ (x)

fa- vb) =[(a— vb-a)’-b] ¢ (a-+b) =0

Hence a — b is also a root of fx)=0

Example: 1
Frame an equation with rational coefficients one of whose roots isv5 +/2.

Since the roots are \/5 +J§

Then the other roots are \/g —J_, —\/g +«/§, —\/-5_—«/5.
Hence ~th§r/eqtjired equation is

(x— VB5=2) (x =5 +2) (x +4/5-v2) (x +/5+/2) = 0

(ie) [(x ~ ¥5)*=v2)] [(x + V5 )~ v2)] = 0

(ie) [(x? — 2x~/5 +3)] [(x? +2x/5 +3)] = 0
(ie) (x°+3)2—4x* 5=0

(ie) x*+ 6x*+ 9 - 20x*=0

(ie) x* — 14 x2+ 9 = 0.
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Example:2
Solve the equation x*-5x° +4x?+8x—~8 = 0 given that . e of the roots is

1-/5 .

Solution:
Since the irrational roots occur is pairs 1+4/5 is also a root.

The factors corresponding to these roots are (x -—1+«/—5_) (x —1—J§)
(ie) (x-1)2 -5
(ie) x*-2x—4

Dividing x*— 5x® +4x? +8x -8 by x* ~ 2x — 4

We have
X°—3x + 2

x* # 5x3=ds@-4+8x — 8
x?-2x — 4 — 2x% —4x?

(=) (+) (+)

——??+8x2+8x
Bx® + 6x* + 12x
| (+) = =
7—4 8
xzz;g

=) (+) (¥)

0

We get the quotient x? — 3x+2.

x* — 5x® +4x% +8x -8 = (x? —2x — 4) (x* =3x + 2)
= (X2 —2x-4) (x—1) (x=2)

.. The roots of the equation are 1+ Jg 1,2.
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Example: 3

Solve the equation x® — 4x® —11x* +40x3+11x*~4x -1 = 0 given that one

root is Ji—«/ﬁ

| Solution:-
Let f(x) = x® — 4x® —11x + 40x° + 11x°- 4x-1 =0

Then the other roots are since v2-+3,V2+43,-v2+43,~v2-4/3 are

also a root of f(x).

[x— V2+3]1[x-V2-VB] [x +¥2-V3] [x +¥2+43] = 0.
[(x - V2)*~ (+/3)7] [(x +V2)*~(¥3)?=0

[P +2 —22x-3] [x*+2+2/2x-3] =0

[x>—2v2 x~1] [X*+2v2x-1]=0

X4+ 2423 = x?- 2253 - 8% + 22 x - X2 -22x +1 = 0.

x*—10x%+1=0.

x2—4x - 2

X% — 4x® —11x* +40x® + 11x2 — 4x—1
X1-10x* +4 | x° -10x*+ a +x2

) = = )

—4x° — x* + 40x% + 10x%- 4x
—4x5 — 0 +40x°+ 0 - 4x \
(+) (+) (=) (-) (+)

—x* +10x% -1
—x* +10x% -1

=) (+) (+)

0 .

f(x) = (x* —10x%+1) (x*~4x-1)
. The six roots of f(x) are V2+43,-42 ¢ J§.2i V5.
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Example: 4

Solve x'- 10x® + 26x?> —10x + 1 = 0 given that 2 ++/3 is a root of the
equation.

Solution:
Since 2++/3 is a root, 2 — /3 is also a root of the equation.

L x=(2+43)] [x~ (2-3)] = (x - 2)?- 3
= x? — 4x +1
when f(x) is divided by (x* — 4x+1) the remainder is zero.
oox =105 + 26x% — 10x +1 = (X* — 4x +1) (x2+ ax +1)
' = x*-ax® + x*~4x3 — 4ax? — 4x +x? +ax +1

N

= x*~(a+4) x3+ (2 — ;1a)x2 + (a-4) x+1

Equating coefficients of x* on both sides,
a-4=0=a=-86.
Hence f(x) = (x? — 4x +1) (x* — 6x +1)

+6+/36-4
2

x> —6x +1 = 0, we get x =

= iiz__ v32 _ 31242

~. The four roots are 2+ J§, 3+242

Example 5:-
Solve the equation x*-8x* +16x?~28x+5 = 0 given that one root 3— 410 .

Solution:
Let f(x) = x*-8x® +16x>-28x~5

Since 3 —4/10 is a root of f(x) .
3+ 410 is also a root of f(x).
[x-3+ J10][x-3 4J10]=0

[(x-3)%-(410)]=0
[x*-6x+9-10]=0

x?—-6x-1=0.
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3.
4.

x2-2x — 5

x* — 8x3+ 16x%2 —28x + 5

X2—6x—1 x* —6x® - x?

(=) (+) (+)

—2x% + 17x% — 28x
23 + 12x% + 2x

+ = &)

5x? —30x -5
—5%? +30x +5

0

f(x) = (x*-6x—1) (x*>-2x — 5)

X-2x—5=0 = x=2% ”;+20
_2++/20
2
x=1z 46

. The three roots are of f(x) = 0 are 3 +, V10 1+ /6

Exercise

One root of the equation 3x°—4x*—42x3+56x?+27x-36 =0 is /2 + /5 Find

the remaining roots.
Find the equation with rational coefficients whose roots are

i) V=1 =V4.ii) 3+ 2. e
Solve 6x*—13x°~35x*~x+3 =0 given that 2—+/3 is a root.

Solve x*~11x%+ 37x — 35 = 0 given that 3+ +/2 is a root.
Frame an equation with rational coefficients, one of whose roots in

J2+ 5. ;
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3, 1
2) 2+ 43, -2+
) V3, St

3) 5,3+ 2
4) x*-14x2+9=0

1.4 RELATION BETWEEN THE ROOTS AND COEFFICIENTS OF EQUATIONS
Let the equation be

f(x) = X" + psx" + pox" +LL +Pn.1 X + Pa=0

If this equation has the roots a,,a,..... oy

Then '
We have x" + px"™" + po, x "2+ ... +P ot X + P
= (X—oy) (X—0y)....... (X-a,)
= Xn - zOL1 Xn ! + ZOL1,(X.2Xn 2 T esrsans +(‘—'1) (11 a2 Ol.n

Where Y o, = sum of the roots.
Sa,,0, = Sum of the products of the roots taken in pairs.
Saq,a,,0; = Sum of the products of the roots taken three at a time

Where S, is the sum of the products of the quantities a,,a,.....a, takenr
at a time . Equating the coefficients of like powers on both sides,

We have -P, = S, = Sum of the roots. .
(-1 )2 P, = S, = Sum of the products of the roots taken two at a time.

(-1)" P, = S, = product of the roots.

If the equation is apX” + a;x"™" + ax"?+...... +a,1X + a, = 0 divided each
term of the equation by ao.
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The equation becomes

!

a a a a
X"+ Lxt T2 -2 +—"1x4+-2 =0 and So
ag = do o
We have
a
2(11 - _—1
Q,
a
Ta,,a,= =2
=1
as
20, 0,,0, = ——
ay
a
Z(l,,(lz ...... an=( ‘l)'-“‘é'L

These n equations are of no help in the general solution of an equation but
they are often helpful in the solution of numerical equations when some special
relation in known to exist among the roots. The method in illustrated in the
examples given below.

Exampile:- (U.Q)
Show that the roots of the equation x*+px®+qx+r = 0 are in Arithmetical
progression if 2p® —9pq + 27r=0

Show that the above condition is satisfied by the equation
x® - 6x%+ 13x — 10 = 0. Hence of otherwise solve the equation.

Solution:
Let the roots of the equations
x>+ px?+qgqx+r=0be
oa—38, a,o+9d.
We have from the relation of the roots and coefficients
a-86+ at+ta+86 =—p
(a-8)a+(a-8)a+8)+a(a+d)=q
& (a-8)a(a+8)=—r

Simplifying these equations

We get
3a0 =-P (1)
3a? - 82=g (2)
o — o §2=—r - (3)
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=_P
From (1), a 3

2
From (2) - 62=q-3a%2 - 8?=q-3|-2| =q-—o—
3 9,

2
82=E§—-q

Substituting these values in (3)

We get,
3 2
_PY _{_PHP__qgl==r
( 3) ( 3)[3 q)
3 3
—-p” L P _PA_ _,
27 9

(ie) —p° + 3p° - 9pq = ~27r
. 2p°-9pq+27r=0

In the equation x®~ 6x* +13x ~10 =0
P=-6 q=13 r=-10
- 2p% — 9pq + 27r = 2 (-6)° -9(-6) 13 +27(-10) =0

. The condition is satisfied and so the roots of the equation are in
arithmetical progression. In this case the equations (1),(2), (3) become.

3a =—(-6)=6

302-5%=13

o®-a 82=-(-10)=10.

. a=2; 3(2)*-8%=13

12~52=13= 8% =-1

o=z

~. The roots are 2-i, 2, 2+i .

Example: 2(U.Q)

Find the condition that the roots of the equation x> + px? + qx + r = 0 may
be in

i) Geometrical progression

ii) Harmonic progression
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Soflution:

i) Let the roots in G.P be %.a ,af where B is the common ratio.

Product of theroot=— . a.aff = —r

DR

(ie) ad=-r (1)
X = a is aroot of f(x) = 0.

wal+pal+qar+tr=0
~r+ o (pa+q)+r=0

o (pat+tgq)= 0 . a = 0.

w9

Putting in (1)
3

We get —q3 = —r
p
- pir=gq°
ii) Let the roots of the equation be H.P
Put x = 1
y

Then the equation becomes

IRORURE

(ie) 1+ py + qy® + ry® = Oxy
~ry’+qy*+py+1=0 (1)

The roots of the equation (1) are A.P.

" Let a—d, a, a+d be the roots of (1)

Sumoftheroots = a—-d + a—a+td = -:1
L 3a = _a
r
o= -3
3r
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o Satisfies the equation (1)

3

(ie) 27‘12 + 29 _PA,4=0

Or? 3r
(ie) —q° + 3q%—9pqr + 27r¥ =0
(ie) 2q° - 9pqr +27r2 = 0

Example:3

Solve x°— 15x? +71x —105 = 0 given that the roots of the equation are A.P.

Solution:
Let the roots be a—-d, o, o +d

Sum of the roots = a—~d + o + o+ d = (-P)= 15
3a =15
a =95

Since x = 5 is a root x — 5 is a factor of f(x) ..

(x®+ax + 21)
Equating coefficients of xZ,
~a—-5=-15
~a=-10
Solving
x? — 10x+ 21 =0
x-3)(x-7)=0
X =3,7
Aliter:
Product of roots = 105
(5 - d).5. (5+d) = 105
25 - d? = 10%
25 —d? = 21
d* =4
d= +2.
The roots are 3,5,7.

Example:4

x>~ 15x% +71x =105 = (x —b)

Solve x*~ 19x% +114x —216 = 0 given that the roots are in G.P
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Solution:

Let the roots be—oi,oc,ar
r

Product of the roots =(0%) Lo.ar=ad=-—r
ad®=—(-216) = 216
o =6
. X — 6 is a root of f(x).
. %= 19x% +114x —216 = (x — 6)(x* +ax+36)

Equating coefficients of x?
a—6=19
=-13
Solving x> — 13x+ 36 = 0
(x-—4)(x—9)=0

we get x = 4 (or) 9
-. The roots are 4,6,9.

Example: 5
Solve 6x3—11x?+6x—1 = Ogiven that the roots are in Harmonic progression.

Solution:-

Putx=-1—
y

Then the given equation becomes,

3 2
da] - (4 o
y y y
(ie) %3 - %2 +&0-1=0

(ie) 6 — 11y +6y* —y® =0
5 yl—B6y*+11y-6 =0 (1)

The roots of (1) are in A.P.

Let the roots of (1) be
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o—-d, a,a+d
.. Sum of roots

o~-d+ a+a+d =6
Ja=6

Lo =2
y ~ 2 is a factor of y* — 6y? + 11y ~ 6.
LY =By?+ 1ty —6 = (y - 2) (y* + ay + 3)

Equating coefficients of y?
La-2=-6
(ie)a=-4
Solvingy° -4y +3 =0
Weget(y-1)(y~-3)=0
y=1(or)3
. The roots of (1) are 1,2,3.
. Hence the roots of given equation are

1 1
'2° 3
Example:6

Find the condition that the roots of the equation ax®+ 3bx® +3cx +d = 0 may

be in geometric progression.

Solve the equation 27x%+ 42x*- 28x~ 8 = 0 whose roots are in geometric

progression.

Solution:

Let the roots of the equation be %—,k,kr.

coefficients,

" 5-t-k+kr =_3®

r a
k? 3c
—+k? +k?r = 2=
r a

d

k kkr=k¥= .=

r .

Q

From (1), k(-}+1+r)=—-§§-
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From (2), k2(1+1+rJ -.=—--?iaE
r

Dividing one by the other,

We get

Substituting this value of k is (3)

3
We get ;(—9—) =—9—.
L b a

- acd=b3d

in the equation 27x3+ 42x?— 28x—- 8 =0

_l..(_ +k+kr=_.4_'2_.
r 27
2
-k—-+k2+k2r=—-2-§-
r : 27
k3=_8._.
27
k :2.
3

Substituting the value of k in (4)

we get
2(1 ) 42
“l—+r+1|=-——=
r 27
7
.1
(le)?+1+r = ———X—=

. 3(1 -
(ie) 7(F+1+r) =0

(ie)3(1+y+7y°)=0

(4)

(5)

(8)



(ie)3y2 +3y+3 =0

(ie) By+1)(y+3) =0

For both the values of v, the roots are -2, % —-g—

Example: 7(U.Q)
Solve the equation 81x® — 18x? — 36x + 8 = 0 whose roots are in harmonic
progression.

Solution:
Let the roots be a, B, v
Then 2.1 + 1
B o vy

(ie) 20y =By + aff

From the relation between the coefficients and the roots,
18

We have a+[3+y=—8—i~

onB+fW+w=—iei

81
8
OLB‘/-*—S'{
From (1) and (3)
We get
2vya + oc——§-§
Yo + Y 81
. 36
e) 3ya=-—
(fe) 3ya 31
a=_
=77
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Substituting this value of ya in (4)
4 8
Weget Bl — |=——
®9e B(27) 81
a2
- B= 3

From (2), we have

18 2 4
o+y=———=——
81 3 9
From (5) and (6)
We get xz—ix—-i—=0 l'.-xz—(oc+y)x+ay=OJ
9 27

(ie) 27x* - 12x-4=0

(9% — 2) (3x +2) = 0

2
X =— and -—
9 3
2 2
==—and y=——
o 9 Y 3
.. The roots are —2-3 and _2
9 3 3

Example: 8(U.Q)
If the sum of two roots of the equation x* + px® + gx* + rx + s = 0 equals the
sum of the other two, prove that p* + 8r = 4pq.

Solution:
Let the roots of the equation be o, 3,y and 3.

Then aa+B=y+90.
From the relation of the coefficient and the roots,
We have o+ B+y+8=—p : (2)

af+ay+ad+B3+PB6+7y0=q (3)
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afy + apfd +ayd + Byd = -r

afyd=s

From (1) and (2)
Weget2(a +B)=—-p

(3) can be written as

B+18+(@+B)y+38)=q

(ie) (aB +y8) + (o + (3)2 =q

(4) Can be written as
ap (v +8)+ y8 (@ + B)=-r

(ie) (@ +B)+ (ap + v8)=—r
From (6) and (7)

2
We get aB+78+%—=q

2
.'.a[3+78=q-%—

From (8)
We get — —g-(aB +18)=—r

(ie) af + yd = 2
. P
Equating (9) and (10)
2
p 2r
W —_—— =
e getq 2"

(ie) 4pq — p° = 8r
(ie) p® + 8r = 4pq
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Example: 9
Solve the equation x* — 2x® + 4x® + 6x — 21= 0 given that two of its roots
are equal in magnitude and opposite in sign.

Solution:
Let the roots of the equation be a,B,7,5.
Here y = - §
(ie) y+6=0 (1)

From the relations of the roots and coefficients

a+B+y+5=2 - (@)
af+oy+ad+By+PBd+v5 =4 (3)
afy + aBd +ByS + ayd = —6 (4)

afys =~ 21 (5)

From (1) and (2)

We get o + B =2 )
(3) Can be written as ap + v5 + (o + B) (y + 8) = 4

S of+ys=4 ’ (1)
(4) Can be written as af (y + ) + 8 (« + B) = — 6

(ie) ¥3 (a +B) = -6 ®)
From (6) and (8)

We get y6 = -3 (9)
but y+3 =0

. Y=\/§, 5=-+3

From (7) and (9)
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We get afd =7

~ o and B are the roots of X2~ 2x + 7 =0

a=1+-86, B=1-4J-6

. The roots of the equation are

+,3, 1:x/-6.

Example: 10

Find the condition that the general biquadratic equation ax* + 4bx® + 6¢cx? +
4dx + e = 0 may have two pairs of equal roots.

Solution:
Let the roots be o, a, B, B

From the re!ations of Coefficients and roots

2a+23=-f‘£ (1)
o2 + p? +4a[3=%9- ()
20,32 +2a2(3=-faﬂ (3)
o2 Bs:S- (4)
From (1) we get a+B=—-2a—b (5)

From (3) we get 2ap (o + B) = —f?

. onl3=g -0 | (6)
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From (5) and (6)
We get that o, B are the roots of the equation

x2+—29-x+g=0
a b

. 4 3 2 2 2b d z
saxt +4bx® +6exc +4dx +e=a| X +_a._x+.6.

Comparing Coefficients.

6c =a ﬂ91+39 ande=3§2—
a2 b b2
3 2
. 6 = a(4!:: + 2da ]
ab

. 6¢ ab = 4b® + 2da®
- 3abc = a’d + 2b® & eb? = ad?

Example: 11 _
' Solve 2x° — x? — 22x — 24 = 0 given that two of its roots are in the ratio 3:4

Solution:
" Let the roots be 3k,4k, and v
Sum of the roots = 7k + y= 1/ | . (1)
and

Tapf = 12k? + 4ky + 3ky

22 .
5 (2)
Using y = yz -7k in (2)

1 1 -
12k’ + 4k | = -7k |+ 3k | = -7k |=-11
(2 )+ (2 )
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(ie)12k? + 2k — 28k* + 925 ~-21k?2 =-11

~ 37k* + 7K 11
2

7k
37k? - — =11
2

(ie) 74k* -7k —22=0
(ie) 74k* -7k —22 =0

(ie) (37k —22) (2k + 1) =0

Taking k = —%2,

The roots are — E, -2,

1 7
—_— —
2 2 2

(ie) -35.-2,4

Taking k = %, 3k = —63-'-?,- does not satisfy the equation.

Example: 12
Form the third degree equation, two of whose roots are1 — | and 2.

Solution:
Since 1 —lisaroot1 +lis alsoa root.

.. The equation of degree three is
x-(1-x-(1+Mx-21=0
(x-1)2-il1(x-2)=0

(x?-2x+2)(x-2)=0
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(i.,e)x®*—4x*+6x-4=0

Example: 13
Solve x* + 2x® — 21x? — 22x + 40 = 0 whose roots are in A.P.

Solution:
Let the roots bea -3d,a-d,a+d, a+ 3d

Sumofroots=4a=-2

C o= —1
. a %

Product of roots = (a? — 9d?) (a? — d°®) = 40

1 2) (1 -
(or) (z—gd ) (Z—k) =40

9k2—-2-k+1—16—=400r144k2—40k—639=0

(4k-9)(36k+71)=0

k=gor_ﬂ
4 36
9 71
i,e.)d?= — or - —
( ) 4 36

The roots are -5, -2, 1, 4.

Example: 14

If o, B,y are the roots of x*> + Px? + gx + r = 0 find the condition if i) a +P
=0ii) ap = -1 h

Solution:
i) Since a+p+y=-P
O+ vy =-P
oy =-P

y satisfies the equation

. -P*+P*_-Pq+r=0
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~ r=Pq.
ii) Since aBy =-r
—y =—r
. v = r satisfies the equation substituting.
rP+Pri+qr+r=0

(ie)r?+Pr+q+1=0

Exercise

1. Solve x® - 12x? + 39x — 28 = 0 whose roots are in A.P.

2. The roots of the equation 8x® — 14x? + 7x — 1 = 0 are in geometrical
progression. Find them.

3. Show that the roots of the equation.

2
r L .
x*-Px®+qgx?-rx+ i 0 are in simple proportion. Hence solve x* —

12x3 + 47x* -~ 72x + 36 = 0.

4. Solve the equation 6x°- 11x*~ 3x + 2 =0 given that the roots of the
equation are in harmonic progression.

5. Show that the four roots a,p,v,5 of the equation x* + Px® + qx® + rx + S =
0 will be connected by the relation ap+y5 = 0if P?S + r? = 4qS.

6. Solve the equation x* + 4x3 — 2x% — 12x + 9 = 0 given that it has two pairs
of equal roots.

7. If the equation x* + ax® + bx? + cx + d = 0 has three equal roots show that

each of them is equal to E’_Z:f_tf_
3a-8b

1.5 SYMMETRIC FUNCTION OF THE ROOTS
if a function involving all the roots of an equation is unaltered in value if

any two of the roots are interchanged. It is called a symmetric function of the
roots.
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we have learned that

S1 = Z a1 = - P1

S;=X oy o, = P,

Without knowing th.e value of the roots separately in terms of the
coefficients, by using the above relations between the coefficients and the roots
of an equation. We can express any symmetric function of the roots in terms of

the coefficients of the equation.

Example: 1
If a, B,y are the roots of the equation x® + Px? +qx + r = 0, find the value of

i) X a?pii) X a?iii) T ad

Solution:
oa+B+y=-P

a B+rpy+ya=q
a By=-r
Zoa?B =afBra’y+Pa+rPy+ryad + 3P
i) Za’B=((Zap) ((Za) -3 afy
=(ap+By+ya) (ax+P+7v)-3 aPy
=q(-P)-(3)(-r) =3r-Pq.
Ya?B=3r-Pq
i) Ta? = a? +pB2 +¢2
=(a+B+7)* -2 (aB+ay+By)
=(aa)2 -2

=P2_-2q
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i) Yo = o +p% +9°

= ((0c+[3+y)3 ~-3(a+B+y) (aB+PBy+oy) +3aPy
T a® = -P%+ 3Pq - 3r.

Example: 2
If o, B,y, 5 be the roots of the bi quadratic equation x* + Px® + gx® +rx + S

= 0.
Find i) Y o?,ii) Ta? py iii) Ta? B° iv) Sa® Bandv) Yo
Solution:
The relation between the roots and the coefficients are
a+B+y+d =-P
aff+ay+ad+Py+Bo+yd=q
aABy+oPBS+ayd+Byd = ~r
afyd =S.
Yol = aé+Bz+y2+62
= (a+B+y+8)° -2 (aB+ay+ad+By+RS+7v9d)
=(XZo)® ~2 Zoap
= P? - 2q

YaZ By = o By+aBiy+apPy? +aPiy+a?fs+a P2
+ o Y8+ v +ayd2 +P2yS+PY 8 +PyS2
=(aBy+aPd+ayd+Pyd)(a+P+y+3)—-4uPByd

=(Zafy) (Za)-4aPyd
=Pr-48.
ZO»Z BZ :-012 B2+OLZ ,Y2+a2 62 +B2 V2+5252+Y282

=(Zap)? -2 Za’By-6aByd
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=q*-2(Pr-48)-
=q®-2Pr+28.
>o’B = (To?) (ZaB) - Ta’By
=(P’-2q)q-(Pr-48)
=Pq-2g°-Pr+48S.
Ya* = ot +p* +y* +8°
= (a? + B2 +92 +58%)2 =2 (a2 B2 +B%y? +v%8% +8%a?)
=(P?-2q)® -2 (g*-2Pr+28)
Sa*=P*-4P?q+2qg°+4Pr-48s,

Example: 3
If o,B,y are the roots of the equation x> + ax®> + bx + ¢ = 0, from the

equation whose roots are o,y and ya.

Solution:
The relations between the roots and coefficients are

o +B + y=-a

af + By +yoa=b

afy =—cC

The required equation is

(x-oaB) (x=By) (x-ya) =0
(i.e) (x?-xBy-apx+apf’y) (x—ya)=0
C(ie) xXP-x?yo-x?By +x aPyi-aPx?+a’Byx+oap?yx—-a?p3y?=0
(.i:t’;:.-)xs—x2 (@B+By+vo)+x(a®By+aP’y+apy*)-(apy)® =0
(i.e.) x*x® (aB+By+ya)+x aP(a+B+y)—(apy)*=0

(i.,e)x®*—bx?+acx—-c?=0
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Example: 4
If o, By are the roots of x> + Px* + g x + r = 0 form the equation whose

roots are
B+ry—20, vy+a—-203, oa+pB-2y

Solution:
We have a+p+y=—-P

aB+By+rioa =q
afBy =-r
In the required equation
S, =Sumoftheroots = B+y—-2a+y+a—-2B+a+p—-2y
=0
S, = Sum of the products of the roots taken two at a time

=(B+y-20) (y+a-2B)+(B+y-2a) (a+B-27) + (a+B-27) (y+a~-2p)

S;=(a+p+y-3a) (a+PB+y—-3P)+a+pP+y-3a)
(a+B+7-3y) +(a+B+y-3y) (a+B+y—-3P)

S;=(-P-30a) (-P-3B) +(-P -3 a)(-P-3y) + (-P-3y) (-P-3p)
S,=(P+3a) P+3B)+(P+3a)(P+3y)+(P+3y)(+P+3pB)
S;=P?+3PB+3aB+9uaB+P2+3Py+3aP+9ay+P?+3yP+3PB+97yB
S, =3P%+6P(a+B+y)+9(aB+By+ya) |
~8,=3P2+6P(-P)+9q
S,=9q - 3P?
S; = Products of the roots

=(B+y-20) (y+a-2B)(a+B-27)

= (o+B+y-3a)(a+B+y—-2PB)(x+P+y-3Y)

= (-P-3 a)(-P-3B)(-P-3Y)

49



=~ {P°+3P2 (a+P+7)+9P (ap+Py+yo)+27 oyl
= - {P%+3P? (-P)+9Pq-27r} ’

S, =2P3_-9Pq+27r
Hence the required equation is x> — Sy x* + 83 X — S3 = 0
X*-(9q-3P)x-(2P*-3Pq+27r)=0

Example: —
If o, B,y are the roots of x*> — 14x + 8 =0 find Yo? and Yol

Solution: i
We have Y a =0, Saf =—- 14, afy = -8

Sa?=(Sa)? -2 SaB=0-2(-14)=28

o’ - 14 o — 8 (since o satisfies x* —~14x +8
Sal=14 Ya-24=14(0) -24=-24

Aliter: Use the identity for £ a®.
Ta®=(Za®)-3(ZTa)(ZaB)+3 apy

=0-3(0)+3(-8)=-24

ORif a+B+y=0
a®+p%+7y°=3 aBy =-24
Exercises

1, If o, B,y be the roots of the equation x* + Px* + q x + r = 0 find the value of

i) a®+p%+y°

2 2 2 2 2 2
ii)B+Y LY ta +a+B

By Yo ap

i) (B+ry—a)® +(y+a—B)° +(a+B—7)°
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2. Show that for the cubic equation

apox’*+3a,x* +3a,x+a, =0

(B-7)*+(y=a) +(a~B)* =18 (a,” —a, a,)
3. If a,B,y,8 are the roots of the equation x* + Px*+qx? + rx + S = 0, Evaluate i)
‘ 2 y e 1

Za‘BYlUEXB+Y+®2HW§:—7
o

4. If a,B,y are the roots of the equation x® + gx + r = 0, find the value of

) (B+7y) (v+a) (a+B)

. 1 1 1
i) + +

B+y Y+ a+f3

(1 1 1) (1 1 1) (1 1 1}
i) | = + ——— —_———— —t———
B v « Yy o P a B v

5. Find the sum of the cubes of the roots.of x* — 22x% + 84x — 49 =0

1.6 SUM OF THE POWERS OF THE ROOTS OF AN EQUATION

Let a,a, a,...... a, be the roots of the equation f (x) = 0. The sum of the r'"
powers of the roots. ‘

(ie.) a, + o, +..... a," is usually denoted by S,.

We can easily see that S, constitutes a symmetric function of the roots and
hence we can calculate the value of S, by the methods described in the previous
article. When'r is greater than 4, the calculation of S, by the previous method
becomes tedious and in those cases, the following two methods can be used

profitably.
We have
f(xX) =(Xx=ay) X-o0y)....... (X - ay)

Taking Logarithms on both sides and differentiating we get

10 _ 1 1 1

f(X) X -0, X—o0, X—-o
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+ + ... +
f (x) X — 0ty X —0ly X — 0O,
= 1 + L b S + 1
_ % _ %2 1 %n
X X X

0
P
}
X l_?
{
+
TN
|
X ‘NQ
[
+
+
N
a—
j
x |8
N’

2 n
L
=1+ 2 0 T
X X x"
2 n
(04
= +1+ 22 4 %2 4 + 2+
X x? x"
e
2 n
=41+ S0y S0 + Lo
X x? X,
- 2 1 r
—n+(Za1)-+(Za1);2—+ ----- t{(Zoay) — +
1 1 1
=n+S; —+8, — +..... +S, — +. ...
X X X
' . 1 . . x f1(x
= . 8, = Coefficient of — in the expansion of f(())
X X

Example: 1
Find the sum of the cubes of the roots of the equation x°=x? + x +1.

Solution:
The equation can be written in the form

f(x) =x°-x*-x-1=0

S; = Coefficient of —13— in the expansion of
X

x (5x° —2x —1)

X7 —x?% —x -1
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= Coefficient of L in x*__x*

x3 1 1 1 1

_;?_;(T""x—s—

_ . 1 . 2 1 1 1 1)
= Coefficient of ) in (S—F—Fj (1_ NEl xsj
_ . 1, 2 1 1 1 1 1 1 12
—Coefﬂcsentof;é— in 5—;?—)(—4) {1+x3-x4—x5 + (x3+x4+x5) F o }
_ . 1 . 2 1 1
= Coefficient of—)zg—m [5—;5—-;;} (1+ ;?+ ....... )
_ 5 2
';(_3'—')(?
S3=3.

Example: 2
Calculate the sum of the cubes of the roots of the equation x* + 2x + 3 =0

Solution:
Letf(x)=x* +2x+3=0

1
S, = Coefficient of 1 in the expansion of xt (x)
X' f (x)

S, = Coefficient of -—1-3- in the expansion of

X
x (4x% +2)
x* +2x+3
1 4+_?3_
= Coefficient of in X
x3 1 2 3
+x—3+x_4
-1
= Coefficient of — in (4+£3) (1+_23_+14]
X X X X

. 1 . 2 2 3 2 32
= Coefficient of — in |4+ — 1-| —+— —_—t— | +.....
x® ( x3) [ ( x3+x4J +(x3+x4) " J



3

3 4 9
= Coefficient of — in (4+—2—j (1——2——-—+—+-8- ........ )

= Coefficient of —13- in [———83—4-—2?)
S3 =6

Example:
Calculate the sum of the cubes of the roots of the equation x3—6x*+11x -6 =0

Solution:
Let f(x) = x®-6x*+11x -6 =0
f‘l
S, = Coefficient of i in the expansion of xT ()
x" f(x)
2 _ 11
S, = Coefficient of 13 in X3(3X > Ox+11)
X x> —-6x°+11x -6
3_§+_1_1_
= Coefficient of A in x__x*
x° 486,11 _6
x x2 x®
1
= Coefficient of —1— in (3—9 —1—1—) 1—§+ 13 ——63—)
x3 X x2 X X% X
2
= Coefficient of —= in (3—9+-1—:j T AP (-G—Jrll-——%) .....
x3 X X x x* x° X xX° X
4
= Coefficient of —1? in [3—9+-11J 1~§+ 11 - 6 + 36 +121—36 ..........
X X X2 X X2 XS X2 X4 XG
= Coefficient of —13— in (13 + 6? -—6§ —2136 + Ei e )
X X X X X X
= 36
Exercise

1. Find the sum of the cubes of the roots of the equation.
i) x*— 2x%+x-1=0
i) x*—3x*+5x* - 12x+ 4 =0

jii) x* —7x* —4x -3 =0
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1.7 NEWTON’S THEOREM

Newton’'s Theorem on the sum of the powers of the roots.

Let oy, 00y ... ... o, be the roots of the equation
fX)=x"+P;x"T+P,x"2+....+P,=0.
andletbe S, = o, + a, +..... + o,

so that Sp = n
f(X)=(X—ay) X—oy) .. .... x-a,)-

Taking logarithms on both sides and differentiating we get

feo__ 1,1 1
f(x) X-o, X-a, X—o

(i.e) ' (x) = Xf(x) RS BN LR

By actual division,

We obtain
f(x
() _ yns +(og +P) X"+ (02 +P oy +P) X" 4+ (0" P o 4 Py)
X — Oy
F(xX) _ _na n-2 n-3 n-1 n-2
=x""+(a, +Py) X"+ (0, +Pya, +P) x4 +(a,  +Pyo, ++P )
X—a,
fF(xX)  _ng n-2 2 n-3 n-1 n-2 ‘
=x""+(a, +Py) X"+ (a,  +Pio, +P)x" + . +(a, +Pyo, T +.0+P )
X —o

n

Adding all these fractions, we get

f (x
......... AN

2°'.,n-3
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- - - - n-3 n-3
+ o + X" o X"+ P X" a2 X" 4P o, X+ P, X
+ + n-1 P n-2
...... o, +Pjo, "+...+P_,
- n-1 4 + + n-2 n-2 4 2 4 2 4 +a2)xn—3

n x (oo, +....... o,) X “+nPyx (o (e P n
1 n-1
+ Py (o +0o, +0g +.. a )+nP, X"+ .+ (o,""+ .. a, )

APy (0", + a,"?)+...+nP,_,

=n X"+ S X" H NP X"+ S, X" PP S X+ n P X"
+S 1 +PyShoF ... ... +n Py
But f' (x) is also equal to
=nx""" + (N=1)p1x" 2+ (N=2) poX"3+ ........ + 2Pn_o + Pt

Equating the coefficients in the two values of f'(x), we obtain the following
- relations.

S, +P; =0
S1+P1S1+2P2=O
S3+P182+st1+3p3=0

S4+P133+P282+P3S1+4P4=0

-------------------------
-----------------------------
.........................

From these (n— 1) relations we can calculate in succession the values of
Si,Ss ... Sn-1 in terms of the coefficients Py, P, . ... P,_;.

We can extend our results to the sums of all positive powers of the roots,
viz., S,, Sp+1.... S, wherer>n.

We have x™ f (x) = x"+ P x™" + P, x™2+ . .. . P X"
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Replacing in this identity, x by the roots «,, a,,.....,a, in succession and
adding.

We have
S,+P; S, +PyS, o+, ... +P,S.,=0
Now giving r the values n, n + 1, n+2 . . . . successively and observing that

S():n.

We obtain from the last equation

S, +P, S, ,+P,S+..... +nP,=

S, +P, S, +P,S ,+..... +P_.S, =

S,.,*tP,;,S,,+P, S, +..... +P.,S, =0
and so on.

Thus we get

Considerr <n

S, +P,S,,+P, S, ,+..... +rP, =0
and S, +P, S, +P, S, +..... +P,S,,=0ifr=n.
Cor:
To find the sum of the negative integral powers of the roots of f (x) = 0. Put
X = 1 and find the sums of the corresponding positive powers of the roots of the
y

transformed equation.
Example: 1 (U. Q)

Show that the sum of the eleventh powers of the roots of X’ + 5 x* + 1 =0
is zero.

Solution:
Since 11 is greater than 7,

The degree of the equation,
We have to use the latter equation in Newton’s Theorem.

If we assume the equation as

X" +P, x® +P, x°> +Py x* +P, x> +P; x> +Pg x+P;, = 0

57



Wehave'P1=P2=P4=p5=p6=o,p3=5,p7=1,r=11,n=7_

Sy +P; S +P; S+ Py Sg +P,S; +P5S; +Pg Ss +P;8,=0
ifr 2n

Again (i.e.)S,, +58, +S, =0 - (1)

S,+P,S,+P,S, +P,S,+P,S,+P5S,; +P; S, +P, $,=0
(i,e)Ss +58,+S,=0 ‘ (2)
Using the first equation in the Newton’s Theorem.
s, +P,S$,+P, S, +P,S,+P,S,+5P5=0
(i.,e) S; +5S, =0 | (3)
AgainS, +P, S, +P, S, +P,S,+4P, =0
(i.e)S,+58,=0 ‘ (4)
AgainS, +P, S, +2P, =0
(i.,e.)S, =0 (5)
Also S, =0 (6)
From (4) (5) & (6)

WegetS, =0

From (3) and (5)

We get S; =0
From (2), we get S; =0
From (2), we getS; =0
Substituting the values of S,, Ssin (1)

wegetS,, =0
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Example: 2 (U. Q)
Ifa+b+c+d=0, show that

5
a’+b°+c®+d® _ a®+b%?+c?+d? a’+bd+c+dd

5 2 3

Solution:
Sincea+b+c+d=0

We can consider that a, b, ¢, d are the roots of the equation.

x*+P, x> +P, x* +P; x+P, = 0 where P, = 0.

From Newton’s theorem, on the sums of powers of the roots.

We get

S +P, S, +P,S,+P;, S, +P,S,=0

(1)

S,+P,S,+P,S,+P,S,+4P, =0 (2)
S, +P,S,+P,S,+3P;, =0 (3)
S,+P,S§;+2P,=0 (4)
S,+P, =0 (5)
From (5), we getS, =0
From (4), we getS, =-2 P,
From (5), we get S, =-3 P,
From (1), we get S, 3 P,P, -2P; P, =0
(i.e.) S5 =5 P, P,.
Ss _S; Ss
5 2 3
e a®+b%+c%+d® _ af+b?+c?+d® a®+b®+c®+d’
e) 5 2 3
Example: 3
Find ——13 + —B% + —15— where «, B,y are the roots of the equation
o Y

XX+ 2x2-3x-1=0
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Solution:

Put x = g— in the equation,

Then, the equation becomes,

1,23, 4

y y y

(ie)y?® +3y2 —_2y—-1=0

The roots of the equation are 1 1 1
a B v
1 1 1 : 3 2 _
+ + = S, for the equationy” —3y" -2y -1=0

: C(.S BS ,Y5

From Newton’s theorem on the sum of the powers of the roots of the
equations, we get

S, +3S,-2S,-S,=0
S,+3S,-2S,-S,=0

S,+3=0
. 8,=-3,S,=-3(-3)+4
S, =13

S, =-3(13)+2(-3)-3

S, = - 42

S, = 149

S, =—518 3
LI L)
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Example: 4

Show that the sum of the m™ powers, where m < n, of the roots of the
equation.

x" —2x" —2x™2 .. -2x-2=0,is3™ — 1.

Solution:
If m < n, we get from the Newton’s theorem.

Sm
Sh1-2S,,—....—(mMm-1)2=0
Subtracting one from another,
| WegetS_-3S_ ,-2=0
(i.ve.)‘ S,=2+38S,_,
S,=2+3((2+3S,.,)
=2+3 2+3?8S_,
=2+32+ 32 (2+38,.,)

=2+32+ 322+3%8_,

Continuing like this, we get

S, =2+32+ 322+3°2+ ... . +3™".S,butS, =2.
S =2+32+3%22+3%2+.....+3™" 2
=2(1+3+3%2+3%+ .. ... + 3™
_— 3™ -1
2
S =3m—1

m

Example: 5

Determine the value of ¢(a,) + ¢(ay) + . . . . + ¢(a,) where
ay, 0y, Os. ... 0, are the roots of f (x) and ¢ (x) in any rational and integral

function of x.

61



Solution:

We have () e e + 1
f(x) x-o, Xx-0, X — Oty
and .. f1(x)¢(x): ¢ () + ¢ (X) + ... .. + )
f(X) X—G.1 X—0L2 X—(xn

Performing the division and retaining only the remainders on both sides of
the equation, we have

Ro X" +R; x"? +...+ Ry = ¢ (o) + ¢ (22) + ..t —-——“(b ()
f(x) X-aq X—0p X O

Hence
RO %1 +R1 X2 +----+Rn—1 = Z¢(a1) (x — 0(‘2) ..... (x — Oln)

Equating the coefficients of x"' on both sides of the equation,

we get 2 ¢(a;) = Ro.

Example: 6
If the degree of ¢ (x) does not exceed n -2 prove that ‘;‘ ?;—((—Oﬁf—); =0
_ o,
Solution:
We have partial fractions
6 _ A . Ay L. LA,
f(x) Xx-a, X-o,  X=-a,
$(X) = Ay (X = 0p) (K= &g) .« v (X = o) + Ay (X—0g) (X = 0tg) ..o (X = o)
+ ..., FA (X)) (X—ap) ... (X= oqy)
[ f(X)=(X—0) (X=0ap)un (x—an}
Putx = o, .. ¢(ay) = Ay (o — 0y) (otg — ag) . ... (g — o)
f(X) =(x— o) X=—ay).....(xX- a,)
flx)= (X—0p). .. (X—o,) +(X=0oy) (X=0az)..... (X - o)
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fl (o) =(oy — ay) (o —og)..... (oy — o
¢ (a) =A, ! (ay)
co0 (o) = Ay f (otq)

$0) _ b)) 1) 1, (@) 1

Hence F ) ) x—a, Fla,) X—o, T Pl X—a.
_ o~ O(x) 1
; f'(a,) x-a,
X0(X) _ <~ (o) X
T & T X
- 9 (o) 1

= () (1_9%)
! {H%r_{%.]ﬁ...}

q:(ar) = term independent of x in X 9 (X)
r=1 f (O('r) f(X)

=]

¢ (x) is of degree n — 2,
f (x) is of degree n.

Hence x ¢ (x) is of degree n — 1.

CX0(X) Box""+B;x"?+..B,, Byx""+B;x"?+...B

_ n-1
TFix " T = P, P P
(x) X' +py X"+ 4P, 140,72 L P
X X, X,
B B
— =L
- X X X
P, P P
1+—L 42 4.+
X X, X,
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xf¢ ();) there is no term independent of x.
(X

Hence in the expansion of

N $(e) _
- ; f' (ex,) °

Exercise

1. If o, B,y are the roots of x® + qx + r = 0, prove that
i)38285=58384.

ii) CX,5+BS+’YS _ o(‘3_1_63_‘_,),3 _ a2+B2+,YZ
5 3 2

iy @ B YT af 4By’ ot B4y’
7 5 2

2. Find the sum of the fourth powers of the roots x3-2x2 + x —1
3. Find the sum of the fifth powers of the roots of x* —3x%® +5x? -12x+4=0

4. In the equation x* — x> ~7x? +x+6 =0, find the values of S, and S,.
5. Find the sum of fifth powers of the roots of x*-7x%2 —4x-3=0
6. Find the sum of the sixth powers of the roots of the equation x”—x* +1=0

7. Show that the sum of ninth powers of the roots of x® +3x+9=0 is zero.

8. Prove that the sum of the twentieth powers of the roots of the equation.

x*+ax+b=0, is 50 a*b? —4b’
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UNIT -l
2.1: TRANSFORMATIONS OF EQUATIONS

If an equation is given. It is possible to transform this equation into another
whose roots bear with the roots of the original equation a given relation. Such a
transformation often helps us to solve equation easily or to discuss the nature of
the roots of the equations we shall explain here the most important elementary
transformations of equations.

ROOTS WITH SIGNS CHANGED:

To transform equation into another whose roots are numerically the same
as those of the given equation but opposite in sign.

Let ooy, 0. ... ... o, be the roots of the equation.

X+P1 n1+P2Xn—2+ ...... +Pn=

Then we have
X"+ Pyx" Py X" +P,=(X-a))(X—0az)...... (X — an)
changing x into — X,

we have
(—x)" + P4 (—X)"'1 + P (—x)“'2 + ... ... + P,
= ('—X_ (1,1) ("‘X— ocz) ........ (—X— o,

.. The roots of the equation
X" Py X"+ Py xR L + Po=0are — oq, =0y «eeennen —o,.

Therefore to effect the required transformation we have to substitute —x for
x in the given equation; that is to change the sign of every alternate term of the
given equation beginning with the second.

Example: 1

Find the equation whose roots are the roots of x° + 6x* + 6x°> = 7x* + 2x -1 =0
with the signs changed.

Solution:
The roots of the equation
X"— Py X"+ Py X" + P,=0are — oy -0y ...... a,

. Then the transformed equation.

I B+ T+ 2x+1=0
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Example: 2 2
Change the sign of the roots of the equation x” + 4x° + x*> — 2x° + 7x + 3 = 0.

Solution:
The roots of the equation.
X"— Py X"+ Py x" - +P,=0are-a1—y..... - p.

. Then the transformed equation
X +4xX°+x3+2x2+7x-3=0.

2.2 ROOTS MULTIPLIED BY A GIVEN NUMBER
To transform an equation into another whose roots are m times that of the

given equation.

X"+ Py X" Py x4 +Pro=X=-oa)(X=-0az)...... (X - an)
instead of X substitute F)r%
We get

=(y-moy)(y-moy).......(y—-ma,).
The equation y" + m P; y™' + m? P, y"2 + m" P, = 0 has the roots
mo,, Mo, ..... mao,.

Hence to effect this transformation is useful for the purpose of removing
the coefficient of the first term of an equation when it is other than unity and
generally for removing the fractional coefficients from an equation.

Example: 1
Remove the fractional coefficients from the equation
-1 s 1=0
3
Solution:
Multiply the roots by 12.



We get the transformed equation as
-1 12 x2+ 1122 x112° =0
4 3

(i.e) x* - 3x*+48 x - 1728 =0

Example: 2
Remove the fractional coefficients from the equation
3, 1.2 1 1

JLEVE SV S
S SO T-Sa

Solution:
To transform the equation into another whose roots are multiplied by m.
We get

s m _, m*_ md
X>+— X* ——X+—-==0
T2 16 72
2 3
(i.e.) x‘"’+——2-x2—-';4 x+2r:32 0

m

if m = 12, the fractions —, ,
2 24 23.32

will be integers.

Hence we have to multiply the roots by 12.

The equation becomes
. 12x* 12%x 28
X" +

22 24 +23.32 )

(i.e.) x> +3x2-9x+24=0

Example: 3

Change the equation 2x* — 3x® + 3x? — x + 2 = 0 into another the
coefficient of whose highest term will be unity.

Solution:
Multiply the roots by 2. Then the transformed equation becomes.
2x%-3.2x% +3.22 x2 -2°x+22* =0

(i.e.) 2x*-6x% +12x? —-8x +32=0

Dividing by 2,
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We get
x*-3x® +6x% —-4x+16=0

Example: 4
Transform the equation 3x2+4x?+5x—-6=0 into one in which the

coefficient of x2 is unity.

Solution:
Muitiply the roots by 3.

Then the transformed equation becomes.

yh4mP, y" e mP P,y L + m" P, = 0 has the roots m a,,

modad,,....Ma,.
3x%+34x%x%2+325x-3%6=0
3x°+12x°+45x - 162 =0

Dividing by 3.
We get

X2 +4x°+15x-54=0

Example: 5

Remove the fractional coefficients from the equation.
x3+3 2 s 251 =0
18 108

Solution:
Mulitiply the roots by 12
5 12% _

We get the transformed equation as x° + 12. 34122, 2+ 12 o
2 18 108

x2 +18x2+40x+16=0

Exercise
1. Find the equation whose roots are the roots of x> +8x* + 3x®* - 7x* + 5x -6 =0
with the signs changed.
2. Change the sign of the roots of the equation.
x7+7x®% +4x* +2x° -3x+6=0
3. Transform the equation 4x® + 2x®* + 6x — 12 = 0 into one in which the
coefficients of x* in unity and all coefficients are integral.
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4. Remove the fractional coefficients from the equation.

5. Transform the equation 3x“—%x3 +%x2 —x+—128— = Q into another with integral

coefficients and for the coefficients of the first term unity.

6. Transform the equation 2x“—%x3 +§x2 —x+% = 0 into another with integral

coefficients and for the coefficients of the first term unity.

2.3 RECIPROCAL ROOTS
To transform an equation into another whose roots are the reciprocals of
the roots of the given equation.

Let o0y, cty. v ... o, be the roots of the equation x" +P; X" +P, x"? + P, = 0.
We have
X" +P, x" P, X"+ L +Pp= (X— o) (X—0y) ... .. (x - o)
put x = 1
y
1

Multiplying’ihroughout by y"
We have
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2.4 RECIPROCAL EQUATION _
If an equation remains unaltered when x is changed into its reciprocal it is
called a reciprocal equation.

Let x"+P, x"" +P,x"2+P ,x+P_ =0 (1)
be a reciprocal equation.

When x is changed into its reciprocal % .

we get the transformed equation

P . X"+P _ x""4+P ,x"2+ . ..... P, x+1=
(i.e.) x"+ Po-y x" +F’“—’2x"“2 oo + l:‘—1—x+i = (2)
n Pn Pn Pn

Since (1) is a reciprocal equation, it must be the same as (2)

Pos = P - Poz - P, . ..... —1=P,_, and L P
Pn Pn n Pn
P2n =1
P, =+ 1

Case 1: P, =1
Then Pn__1=P1, Pn_2=P2! Pn—-3=P3

In this case the coefficients of the terms equidistant from the beginning and
the end are equal in magnitude and have the same sign.

Caseii) P, = -1

We have P, _,=-P,, P, ,=-P,,. .. ... P,=-P, ;.

In this case the terms equidistant from the beginning and the end are
equal in magnitude but different in sign.

Standard from of reciprocal Equations.

If oo be a root of a reciprocal equation 1 must also be a root, for itin a
(04

root of the transformed equation and the transformed equation is identical with the
first equation. Hence the roots of a reciprocal equation occur in pairs.
1

B

a,l,B,
(04
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When the degree is odd one of its roots must be its own reciprocal.

1
'Y —_ —
y
(u) y2=1
(u) y = %1

If the coefficients have all like signs, then —1 is a root. If the coefficients of
the terms equidistant from the first and last have opposite signs, then +1 is a root.
In either case the degree of an equation can be depressed by unity if we divide
the equation by x + 1 or by x —1. The depressed equation is always a reciprocal
equation of even degree with like signs for its coefficients.

If the degree of a given reciprocal equation is even. Say n = 2m and if
terms equidistant from the first and last have opposite signs, then

Pm=-Pn
(i.,e.) P, =0, so that in this type of reciprocal equations, the middie term is
absent. Such an equation may be written as

X2 4P, X (XP™2 )+l L. =0

Dividing by x? -1, this reduces to a reciprocal equations of like signs of
even degree. Hence all reciprocal equations may be reduced to an even degree
reciprocal equation with like sign, and so an even degree reciprocal equation with
like signs is considered as the standard from of reciprocal equations.

A Reciprocal Equation of the standard form can always be depressed to
another of half the dimensions.

It has been shown in the previous article that all reciprocal equations can
be reduced to a standard form, in which the degree is even and the coefficients of
terms equidistant from the beginning and the end are equal and have the same
sign.

Let the standard reciprocal equation be

ao X2 +a, x™™ " +a,x®? 4+, . +a, x" + +a,x+a, =

Dividing by x™ and grouping the terms equally distant from the ends,
we have
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Letx+—=zandx'+i=x
X x"

r

We have the relation X, =2Z. X, - X,

Giving r in succession the values 1, 2, 3,
we have X, =

2 1 _ 2

ZX1—X0=ZZ—2 l:'.'X2=X +;(—2'—Z
1

X3 =zx,— xy=2°-3z =X2+;3-—Z

Xe = ZXg—Xp =2V - 4x%3+ 2 =22-2

Xs =zx* —x3=2°-52%+ 52
and so on.

Substituting these values in the above equation, we get an equation of the
m™ degree in z. To every root of the reduced equation in z. Correspond two roots
of the reciprocal equation. Thus if k be a root of the reduced equation, the
quadratic '

X+_1_=k'
X

k + k2 -4
(i.,e.) x¥*— k x + 1 = 0. gives the two corresponding roots of the
given reciprocal equation.

Example: 1

Find the roots of the equation
XP+4x* +3x3+3x*+4x+1=0
Solution:
This is a reciprocal equation of odd degree with like signs
~(x+ 1)is a factor of X° + 4x* + 3x® + 3x® + 4x + 1

The equation can be written as

XP4+x* +3x*+3x3+3x2+3x+x+1=0



Ge)x* (x+1)+ 3x®(x+1)+3x (x+1)+1(x+1)=0
(.e)(x+1) (x*+3x*+3x+1)=0

x+1=0o0rx*+3x3*+3x+1)=0

Dividing by x?, we get (xz +—17] +3 (x+1j =0
X X

X
z2ZZ2-2+3z2=0
< ~3+417
2
-3+
Hencex+—1—= 317
X 2
. x2 +1 ~3+417
(i.e.) = 5

2(x2+1)= x (=3 +417)
2x2+2=-3x +17 x

(ie)2x®+ (3 +J17)x+2=0
(or) 2x2+ (3 = J17)x+2=0
From these equations x can be found.

Example: 2
Solve the equation 6x° — x* - 43 x®* + 43x*+ x -6 =0

Solution:
This is a reciprocal equation of odd degree with unlike signs.

Hence x — 1 is a factor of the left — hand side. The equation can be written
as follows. Given
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Bx° — x* —43 x* +43x°+x-6=0
Bx%— Bx* + 5x* —5x° - 38x3+ 38x* +5x° - 5x+6x-6=0

(.e)bx* (Xx—1N+5x3(x-1)-38x°(x-1)+5x(x-1)+6(x-1)=0
(i.e.) (x=1) (6x* + 5%~ 38x* +5x+6)=0
x=10r6x*+5x>-38x2+5x+6=0

We have to solve the equation
6x* + 5x* — 38 x* +5x+6=0

Dividing by x?
6x2 + 5x — 38 + 2 + -6—2-
X X

1
Put x+— =2, .. x>+ — =2z"-2
X X

The equation becomes
6(z2-2)+52~-38=0 =622+52-50=0

(ie)(2z-5)(3z+10)=0

(i,e)z= —1% or %

1 -10 1 5

X+— = —— OFf X+— = —
X 3 X 2

(i.,e)3x*+10x+3=0(or)2x*-5x+2=0

(i,e.)) (x+3) (3x+1)=0(or) (2x - 1) (x - 2)

. -1 1
ileyx==-30or —or2or —.
(i.e.) 3 5

.. The roots of the equations are

-1 1
1, -3, —, 2 and —.
: 3 2



Example: 4
1. Solve the equation 4x* — 20x® + 33x* - 20 x + 4 = 0.

Solution:

The given equation in a first type and even degree is a standard reciprocal
equation.

Let f (x) = 4x* — 20x® + 33x® — 20 x + 4.
Dividing the equation by x? and regrouping we get
4x* —20x* +33x* -20x+4=0

=)4x2—20x+33—2%+4x2=o |
=) 4 (x2+yx2)—2o (x+ %) +33=0 (1)
Put x+ ¥ =y& x*+ %(2 =y2_2

[(x+%()2=x2+%(‘2 +2]

(1) becomes
4(y*-2)-20y+33=0
= 4y?> -8 - 20y +33 =0
= 4y* - 20y +25=0

= (2y - 5)2=0

y=%, %
Let x+—1— =y
X

X2+1__5
— =%

= 2x%+ 2 = 5x
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= 2x° - 5x+2=0
= (2x-1)(x-2)=0

= 1
= X = 2,2

Again, Let X+ = 52
X

= 1
X X 2
1
The roots are yz 2, /2 2.
Example: 5
Solve the equation 6x® + 11x* - 33x* - 33x2 + 11x + 6 = 0

Solution: bt

Let f(x) = 6x°+ 11x* - 33x® - 33x%* + 11x + 6
This is a Reciprocal equation of first type and of odd degree.

Hence x+1 is a factor of f (x) by actual division.
_416 11 -33 -33 11 6
0 -6 -5 38 .5 -6

6 5 -38 S) 6 IO

6x* + 6x° ~ 38x* + 5x + 6 = 0 is a S.R.E. Dividing by x* & regrouping.

We get
6x* + 5x* — 38 x> + 5x+ 6 =0 [« x?]
6x? + 5x - 38 + 5/ + %2 =0
= 6 (x2+%2)+ 5 (x+%()-38=0 (1)

L. 24 V. =2
Put x+-)-(— y and x +AZ y° -2

(1) becomes
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6(x2+%(2)+5(x+%()..33=0

= 6(yY?-2)+5(y)—-38=0
= By? - 12+ 5y -38=0
= By + 5y - 50=0

-5+/25+1200
12

y:

_ -5% 1225 _ 5135

12 12

5+35 -5-35
12’ 12

_ 30 -40
12° 12

Let x + %(:y

= X+ 1x=%

= 2x*® + 2 = Bx
— 2x2 _5x+2=0

= 2x-1Y(x-2)=0

=>x= Y%.2

Again, Let x + %( = _ 1%

xZ +1 10
- [~
~ %

— 3x*+3=-10x
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= 3x*+10x+3=0

:>(3x+1)(x+3)=0:>x=—%),—3
The roots of f (x) = 0, -1, %,2,—%,—3.

Exercise

1. Solve the following equation
i) x*—10x® + 26x2 - 10x+1 =0

i)x*+3x*-3x-1=0

iii) 60x* — 736x% + 1433x2 — 736x + 60 = 0
iv) 2x® —9x®+ Ox* = 3x* + 10x* - 9x+ 2 =0
v)x - 3x®+5x® - 5x*+3x*-1=0
viyx®+2x° +2x* - 2x*-2x-1=0

vi)x* - x®-8x*+x+1=0

2.5 STANDARD FORMS TO INCREASE AND DECREASE THE ROOTS

OF A GIVEN EQUATION BY A GIVEN QUANTITY
Let the roots of the given equation

f(x)=aox"+ax"" +axx"?+. ..., +a, =0
be o, 0y, 0z ..c.u.n.n. o, and suppose.
We require the equation whose roots are a,—h, a,—-h, ag —h...... o, — h.
We havef(x) = a, (Xx— o) (X— a,). ..... (X - o).

In this if we change x intoy + h.

We have
fy+hy=ag (y+h-a)(y+h-a,)....... (y+h-a,)
The right — hand side vanishes wheny = o, —h, (r=1, 2, ..... n).
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Hence if an equation is to be transformed into another whose roots are
those of the first diminished by h. Substitute y + h for x in the given equation.
Then we obtain the transformed equation as

a, (y+h)" +a, (y+h)""+a(y+m"?+.......+ta, =0 (1)
a, [y”+n<:1 VA 1 RO +h“J+a1[y”“’+nc., VAR + TS +h”‘1j
+a, |y"2+nc, Y 4, h" 2]+ ... .. +a,=0

Expanding and collecting the coefficients of the powers of y.
Let the equation be

Ay, +A1y”“’ + Ay "2 ... ... +tA Jy+A, =0 (2)

Here A , A, As...... A, A, are functions of ag, ai....... an

Sincey =x — h.
This equation (2) is equivalent to
Ag (x—h)" + A, (x~h)"" + A (x~=h)"2 + ... +A (x-h)y+A_ =0 (3)

This equation (3) must be identical with the given equation (1). This forms
suggests an easy rule for calculating Aq, A4, As...... Anp.

We can easily see that Ay = a,

If the polynomial on the left — hand side (3) is divided by x - h. The remainder is
A, and the quotient is

Ag (X =)+ Ay (x=h)" 2+ A, (x~h)" 3+ ... .. Anz (X —=h) + A,
If the quotient again is divided by x — h. The remainder is A,_; and the
guotient is

Ag (X =h)" 2+ Ay (x-h)"2+ . + Apa (X —h) + A,

By continuing this process we can find all the coefficients of the
transformed equation (2).

Instead of diminishing the roots is we desire to increase them, we take h
negative.

79



Form of the Quotient and remainder when a polynomial is divided by a
binomial.

Let the quotient when
f(x) = agx" + ax™ +ax" i+ ... . +a, is divided by x — h be
by X" + by x" 2+ bx"C L. +bps X + b4
This we shall represent by Q and the remainder by R. We have then the

following equation.
fxX)=(x-h)Q+R

(x-—h)Q+R=(b, x™ +b; x"2+....+bs2x+b,4)(Xx-h)+R
= bO x" + (b1 Xﬂ—1 + b2 Xn—2+ ...... + bn_> X2 + bh4X —
bohx™ "' — bihx"™? — bohx"™® + . . . ... + b,oxh + by h + R
= bo x" + (b1— hbo) Xn_-1 + (bz — hb1)Xn—2 + ... + (bn_1 —hbn_z) X +R - hbn_1

Equating the coefficients of corresponding powers of x on both sides.

We get the following series of equations to determine

bo, b1, b2 . ... baoy, R el
bo=ao
b1 — hbo = aq (le) b1

ai +hbo=a1 + hag

bg - hbg = ar (le) b2 =as + hb1
b3 - hbg = as, (le) b3 = as+ hb2

------------------------------
..............................

bno — hbnz = @p_2, (i.€) br> = @an2 + hb,_3
bn—1 - hbn—z = an-1, (le) bn-1 = dAn-1 + hbn-—z

R — hb,.1 = a,, (i.,e.) R =a, + hb,_4
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These equations supply a ready method of calculating in succession the
coefficients bg, by, bo . . . . .. b,.1 of the quotient and the remainder R.
For this purpose we can write the series of operations as follows.

a, a, a, Az. ... . . 8,4 a,
a,h bih  bsh.......... by.2h bn_+h
b bo  ba....... b1 R

In the first line the successive coefficients of the given equations are
written. The first term in the second line is obtained by multiplying ao by h. The
product agh is placed under a, and then added to it in order to obtain the term b4,
in the third line. This term when obtained, is multiplied in turn by h and placed
under a,. The product is added to a, to obtain the second term b, in the third line.
The repetition of this process furnishes in succession all the coefficients of the
quotient, the last term thus obtained being the remainder.

Example: 1
Find the quotient and remainder when 3x® + 8x*+ 8x + 12 is divided by x — 4.

Solution:
The calculation is arranged as follows.

4 |3 8 8 12
0 12 80 352

3 20 88 364 = R

The quotient is 3x? + 20x + 88 and the remainder is 364.

Example: 2
Find the quotient and remainder when 2x® + 3x° — 15x% + 2x — 4 is divided
by x + 5.

Solution:
The calculation is arranged as follows:

5|2 3 0O 0 -15 2 -4
0 -10 35 -175 875 -4300 21490
2 -7 35 -175 880 -4298 21486 = R

The quotient is 2x® — 7x* + 35x® - 175x? + 860 x — 4298 and the remainder
is 21486.
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Example: 3
Diminish the roots of x* — 5x® + 7x2 — 4x + 5= 0 by 2.

Solution:
The coefficients in the transformed equations are the remainders when the

polynomial is divided by x — 2 in succession.

The division of the polynomial by x — 2 can be exhibited as follows.

The quotient is x® — 3x® + x — 2 and the remainder is 1.
1 is the absolute term in the transformed equation.

The coefficient of x is the remainder when x®> — 3x* + x — 2 is divided by x — 2.
The calculation is arranged as follows:

2 1 -3 1 -2
0 2 -2 -2
1 -1 -1 | -4

The quotient is x> — x — 1 and the remainder is —4. When this is divided by x — 2.
We get

2o | 1 -1 -1
0 2 2
1 1 1=R

The quotient is x + 1 and remainder is 1.

When x + 1 is divided by x — 2, we get

2| 1 1
0 2
1 [ 3
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The remainder is 3.

The coefficients of the transformed equation are 1, 3, 1, -4 and 1.
.. The transformed equation is

xX*+3x3+x*-4x+1=0

All these operations can be combined and exhibited as follows.

1 -5 7 -4 5
2
0 2 -6 2 -4
o 1 -3 1 -2 1
0 2 -2 -2
2 |1 -1 -1 —4
0 2 2
1 1 1
2 I
0 2
2 | T
0 2
1 3
Example: 4

Increase by 7 the roots of the equation is the same as diminishing the
roots by —7. Increase by 7 the roots of the equation 3x* + 7x® — 15x* + x — 2=0

-713 7 -5 1 —2

0 —21 98 -581 4060
-713 -14 83  -580[4056

0 ~21 245 -2296
-7{3 ~35 328 |-2876

0 21 392
-7|3 -56 {720

o 21

3 —77

.. The transformed equation is 3x*-77x°+720x? — 2876x+4058 = 0

Example: 5

Show that the equation x*-3x3+4x?-2x+1 = 0 can be transformed into a
reciprocal equation by diminishing the roots by unity. Hence solve the equation.
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Solution: -
The operation of diminishing the roots by 1 can be exhibited as follows.

11 -3 4 2 1
0 1 2 2 0
4 |1 _2 2 0 1
0 1 —1 1
1 1 —1 1
0 1 0
;| 0 |1
0 1
1 1

The transformed equation is x*+x*>+x*+x+1=0 which is a reciprocal equation.
The equation can be written as
(x2+—17] + (x+1) +1=0
X X
e 1
writing x + — = z, we get
X
22 -2+z+1=0

(ile)z®+z-1=0

_ —1+4/5
(i,e.) z= 5
Goyx+ 1= Y5 (o xa 1o 12Y5
X 2 X 2

(.,e)2x?(1 - B)x+2=0(r)2x*+(1+ J5)x+2=0

J5 -1+ J(1-+/5)2 ~16 (on —(1+/B5)+4(1++/5)* —16
4 4

(i,e.) x =

The roots of the original equation are these roots increased by 1.

B +3+4-10-2J5 3-5+4/2/5-10
4 ’ 4

They are
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Example: 6

Transform x* —-5x3+7x?>-4x+5=0 into another equation whose roots are less

by 3.
Solution:
The calculation is arranged as follows:
1 -5 7 —4 5
2
0 2 -6 2 —4
2> |1 -3 1 -2 |1
0 2 —2 -2
2 11 -1 -1 -4
0 2 2
o 1 1 | 1
0 2
1 3

The transformed the equation is

X3+ X2 —4x+1 =0

Exercise

1.

Diminish by 3 the roots of the equation

X°-4x*+3x° —4x+6 =0

. Transform x*+5x°+8x*>-4x+5 = 0 into another equation whose roots are less by

Find the equation each of whose roots exceeds by 2 a root of the equation
x>~4x%+3x-1=0.

Find the equation whose roots are the roots of x* — 5x> + 7x2 — 17x + 11 = 0.
each diminishe_d by 2.

Find the equation whose roots are the roots of 4x° — 2x°+7x-3 = 0 each
increased by 2.

Find the equation whose roots are those of the equation 2x* ~ 5x®+11x2-208x+
140 = 0 diminished by 3. Hence or otherwise solve the given equation.

Find the equation whose roots are the roots of the equation
x*+8x°+12x*~16x-28=0 each increased by 2. Hence solve the equation.
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2.6 REMOVAL OF TERMS

One of the chief uses of this transformation is to remove a certain specified
term from an equation. Such a step always helps to find the solutions of an
equation.

Let the given equation be
apX" +a, X" +a,x"? 4 +a,  x+a, =0
Thenify =x - h.
We obtain the new equation
ag(y+n)" +a,(y+n)"" +a,(y+h)" +......... +a, =0
which when arranged in descending powers of y, becomes

n(n-1)
21

aoy”+(naoh+a1)y“’1+{ aoh2+(n—1)a1h+a2}y“’2+ ........... =0

If the term to be removed is the second,
we get

n ah+a, =0

na,

so that h =

If the term to be removed in the third, we get

n(n—1)

> ash?+(n-1Na,h+a,=0

and so obtain a quadratic to find h and similarly we may remove any othel
assigned term.

Example: 1
Find the relation between the coefficients in the equation

x*+Px3+qx?+rx+S=0 in order that the coefficients of x* and x may be removable by
the same transformation.

Solution:
Let us reduce the roots of the equation by h.

Instead of x. Substitute x + h.
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The transformed equation is
(x+h)*+P(x+h®+qx+h2+r(x+h)+S=0
X+ AP h+6x2h2+4xh2+h*+P (3 +3x2h+3xh?>+h% +q (x®+2xh+h?
+r(x+h)+5=0
x* +4x3h +6x2h?>+4 x h® + h* + Px® + 3Px? h + 3Px h? + Ph® + g x* + 2g x h +q
h?) rx +hr+S=0

(i.e.) x* + (4h+P)x*+(6h?+3Ph+q) x* + (4h®*+3Ph?+2gh+r)x
h*+Ph3+gh®+rh+S =0
The coefficients of x° and x in the transformed equation are zeros.
4h + P =0, 4h® + 3Ph? + 2qh + r = 0.

Eliminate h between these equations.

_4 3 P3
(o) —2P 3P 2P,

=0
64 16 4

~P®+3P°-8Pq+16r=0
2P® —8Pq+16r=0
. PP—4Pq+8r=0
Example: 2
Solve the equation x* + 20x® + 143x® + 430x + 462 = 0 by removing its
second term.
Solution:
Let us assume that by diminishing the roots by h, the second term is
removed.

Then the transformed equation becomes

(x +h)* + 20 (x+h)® + 143 (x+h)? + 430 (x+h) + 462 =0
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x* + 4x%h + 6x%h? + 4xh® + h* + 20 (x® + 3x% h + 3xh? + h®
+143(x2+2xh+h2)+430(x+h)+462}=O

=0

x* + 4x3h + 6x2h2 + 4xh® + h* + 20 x®+ 60 x2 h +60 x h? + 20h®
+ 143 x2 + 286 x h + 143 h? + 430 x +430h + 462

(i.e.) x* + x® (4h + 20) + x? (6h? + 60 h + 143) +x (4h® + 60h® + 286 h + 430)
+h*+20h®*+143 h?+430h +462=0
(i.e.) The coefficients of x° in the transformed equation are zero.
4h +20=0
h=-5

Hence to remove the second term, increase the roots of the equation by 5.

5|1 20 143 430 462
0 _5 -75 —340 -450
_5 |1 15 68 90 12
0 5 -50 -9
57 170 18 0
0 _5 _25
5 |1 5 ~7
0o -5
hr 0

. The transformed equation is y* — 7y? + 12 = 0
(ilLe)(y*-3)(y*-4)=0
. The roots of the transformed equation are ++/3, + 2.

These roots are greater than the roots of the original equation by 5.

. The roots of the original equation are
J3 -5,-4J3-5,2-5,-2-5

(i.,e.) -5 + /3, -3, -7.
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Example: 3
Solve the equations by removing the second term in each.

X* = 12x*+48x° - 72x +35 =0

Solution:
Let f (x) = x* — 12x3+ 48x% — 72x + 35 (1)

Putx =y +h
(1) becomes
(y+h*-12(y+h)®+48(y+h)2-72(y+h)+35=0
y* + h* + 4y°h + 6y*h? — 12 (y® + h® + 3y?h + 3h?y)
+48 (y*+h*+2hy)-72y-72h+35=0

= y'+(4h-12)y’ + (Bh* =36 h -48)y?+ (4h®* - 36 h - 12+ 96 h) y
+h*-72h+35=0 (2)

Equating the coefficients y® to zero in (2) becomes = 4 h - 12 =0

- =12/ =
4h=12 = h A 3

we diminish the roots of (1) by (3)

3 |1 ~12 48 -72 35
0 3 27 63 -—27
3 |1 -9 27 -9 | 8
0 3 -18 9
3 1 -6 3 0
0 3 -9
3 |1 -3 |-6
0 3
1 0

The transformed equation by y* — 6y?> + 8 = 0
= y* -6y’ +8=0

= y*-4y*-2y*+8=0
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= y? (y?-2)-2(y*-4) =0

= (y*-2)(y*-4)=0

= y*=2,y"=4

S y=+/2,y==+2
Therootsof x=y+hareh=3

y=2,y=-+2,y=2,y=-2

Xx= 2 +3, x=-J2 +3, x=2+3,x=-2+3

.. The roots are

J2 +3,- 42 +3,5,1.

Example: 4
Remove the second term from the equation x* - 6x* + 10 x -3 =0

Solution:
Letf(x)=x®*—6x*+10x-3 (1)

Putx=y+h
(1) becomes
(y+h)?-6(y+h?+10(y+h)-3=0
— y® + h® + 3y?h + 3h% — 6 (y> + h? + 2hy) + 10y + 10 h -3 =0
— y3+ (3h — B) y?+ (3h?+ 10— 12h)y +h’-6h*-3=0  (2)

Equating the coefficients y? to zero is (2) becomes =3 h-6=0h= % =2

We now diminish the roots of (1) by 2.

2 |1 -6 10 -3
0 2 —8 4

2 |1 —4 2 1
0 2 ~4

2 1 -2 -2
0 2
1 0
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The transformed equation is y® = 2y + 1 = 0

= (y-1)(y’+y-1)=0

—1++/5

Sy=1, Y2
2
Therootsof x=y+hareh =2
y =1 y_—1+-J§ _ —-1-45
’ 2 Y 2
XxX=1+2 = ._1_+i_—i+2 x:ﬂ-ﬁ-Z
2 2

x=3 x=3+J§, x=3_\/5

: 2 2
. The roots are 3, 3+2‘/§, 3_2\[5

Exercise
1. Remove the second term from the equation.

x>+ 56x*+3x3+x2+x+1=0

2. Transform the equation x* - 4x® — 18x® - 3x + 2 = 0 into one which shall want
' the third term.

3. Solve the following equations by removing the second term in each:
i) x*+4x* +5x2+2x-6=0

i) x*+ 16x> + 83x2+152x +84 =0
i) x> —12x* + 48x-72=0

iv) x* + 10x® + 83x? + 152x + 84 = 0
V)X +6x2+12x-19=0

vi) x* — 21x% + 144x - 320 =0

vii) x* - 8x* -~ x> + 68x + 60 =0
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UNIT -1l

DESCARTE’S RULE OF SIGNS

3.1 An equation f(x)=0 Cannot have more positive roots than these are changes
of sign in f(x).

Let f(x) be a polynomial whose signs of the terms are

+ + - — — F —

In this there are seven changes of sign including changes from + to — and
from — to +. We shall show that if this polynomial be multiplied by a binomial
(corresponding to a positive root) whose signs of the terms are + —, the resulting
polynomial will have atleast one more change of sign than the original. Writing
down only the signs of the terms in the multiplication, We have

+ + - - - + — + + o+ - o+
+ -
— — + + =+ - — -+ — o+
+ + - - - o+ -+ o+ o+ - + -
+ £ - £ : + - + = — + - +

Here in the last the line the ambiguous sign + in placed wherever there
are two different signs to be added. Here we see in the product

1) An ambiguity replaces each continuation of sign in the original
polynomial.

2) The sign before and after an ambiguity or a set of ambiguities are
unlike and

3) A change of sign is introduced in the end.

Let us take the most unfavourable. Case and suppose that all the
ambiguities are replaced by continuations, then the sign of the terms becomes

+ + - — - + —~ F+ + + - + — ¥

The number of changes of sign is 8. Thus even in the most unfavourable
case there is one more change of sign than the number of changes of sign in the
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original polynomial. Therefore we may conclude in general that the effect of
multiplication of a binomial factor x — o in to introduce at least one change of
sign.

Suppose the product of all the factors corresponding to negative and
imaginary roots of f(x) = 0 be a polynomial F(x). The effect of muitipuling F(x)} by
each of the factors x — o, x - B8, x— vy ......... corresponding to the positive roots,
o, B3, v in to introduce atleast one change of sign for each, so that when the
complete product is formed containing all the roots. We have the resulting
polynomial which has atleast as many changes of signs as it has positive roots.
This is Descartes’ rule of signs.

Descartes’ rule of signs for negative roots:
Let f(X) =(Xx— a1) (X— az)...... (x-- any)

By substituting — x instead to x in the equation,
We get,

f(—=x) = (=X — o) (=X~ ) ..... (—x—0op)
Theroots of f(—x) =0 are -~ ay,— asz....... - Og.

- The negative roots of f(x)=0 become the positive roots of f(—x) =0.

Hence to find the maximum number of negative roots of f(x) = 0, it is
enough to find the maximum number of positive roots of f(—x)=0.

So we can enuciate Descartes’ rule for negative roots as follows:

No equation can have a greater number of negative roots then there are
changes of sign in the term of the polynomial f(— x).

Using Descartes’ rule of signs we can ascertain whether an equation f(x)=0
has imaginary roots or not.

We can find the maximum number for possible roots and also for negative roots.

The degree of the equation will give the total numbers of roots of the
equation. So if the sum of the maximum numbers of positive roots and negative
roots is less than the degree of the equation, we are sure of the existence of
imaginary roots. Take for example the equation

X"+8X°-X+9=0
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The series of signs of the terms are as follows:
+ + - o+

The number of changes of signs is 2 and the equation cannot have more
than two positive roots.

Now change x into —x.

Weget— X +8X°—X+9=0
(ie) X' +8X°—=X+9=0

The series of signs of the terms are
+ + - —
and the number of changes of sign is only one and so the equation cannot have
more than one negative root.

Hence in the equation there cannot exit more than three real roots. Since it
is a seventh degree equation, it has seven roots real or imaginary.

Therefore the given equation has atleast four imaginary roots.

An equation f(x)=0 is called complete. When all powers of x from n'" to the
constant term are present. In an complete equation we can easily see that the
sum of the number of changes of sign in f(x) and f(—x) is exactly equal to the
degree of the equation.

Hence this rule can be used to detect the imaginary roots only in
incomplete equations.

Example: 1
Determine completely the nature of the roots of the equation

x°— 6x°~ 4x +5 =0.

Solution:
The series of signs of the terms are + — — +.
Here there are two changes of sign.

Hence there cannot be more than two positive roots.

Changing x into —x,

The equation becomes,

— x°— 6x*— 4x +5 =0.
(ie) x°+ 6x*— 4x -5 =0.
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The series of the signs of the terms are
+ 4+ - —,

Here there is only one change of sign.
“. There cannot be more than one negative root.

So the equation has got at the most three real roots. The total number of
roots of the equation is 5. Hence there are atleast two imaginary roots for the
equation.

We can also determine the limits between which the real roots lie
X=—-a -2 -1 01 2 «a
X® —6x2—4x+5= — - 4+ 4+ - + +

The positive roots lie between 0 and 1 and 2 the negative root between -2 and -1.

Example :2
Show that the equation x’ — 3x* +3x® — 1 has atleast 4 imaginary roots.

Sol :-
Let f(x) = x” — 3x* .+ 3x* - 1
The sign of polynomials are
+ — + —

The number of changes of sign in f(x) in three
Almost three (+ve) root of f(x)

Here
F(= %) = (-X)" = 3(=)* + 3(-x)° -1
= — x’ =3x* =3(—x)*~1

The sign of polynomials are

f(—x) has no (+ve) real root.
f(x) has no (-ve) real root.
~. f(x) has three real roots.
Degree of f(x) = 7
Imaginary roots =7 - 3 =4
~. f(x) = 0 lias at least 4 imaginary roots.
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Example: 3
ST x® + 3x2 — 5x + 1 = O has atleast 4 imaginary root.

Sol : -
Let f(x) = x® +3x% — 5x +1

The sign of polynomials are
+ + — +

The number of changes of sign in f(x) is two
At most two +ve root of f(x)

Here
f(x) = (—x)® + 3(—x)? =5(—x) +1

= x® + 3x%+ 5x +1

The sign of polynomials are
+ + + +

f(—x) has no (+ve) real root

f(x) has no (—ve) real root
. f(x) has two real root
Degree of f(x) = 6

Real root = 2

Imaginary root =4
- f(x) = 0 has 4 imaginary roots.

Example : 4
Find the number of real roots of the equation x° + 18x — 6 = 0.

Solution:
Let f(x)= x>+ 18x — 6
The sign of polynomials are

+ o+ —

The number of changes in f(x) is only one.
Atmost one (+ve) root of f(x)

Here f(—x) = (—x)® + 18(—x) —6

= x> —18x—6
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The sign of polynomials are

f(—x) has no. (+ve) real root
f(x) has no.( —ve) real root

- f(x) has only one real root
Deg. of f(x) =3

Real root = 1
Imaginary root=3 -1 =2

. f(x) = 0 has atleast 2 imaginary root

Example : 5
Show that 12x” —x* + 10x®-28 = 0 has atleast four imaginary root

Solution:
Let f(x) = 12x” —x* + 10x°-28

The sign of polynomials are

+ - + -

The number of changes is f(x) are three Atmost three (+ve) root of f(x)
Here f(—x) = 12(—x)’ — (=x)* + 10(—x?) —28

f(—x) = —12x” — x* —10x°>- 28

The sign of polynomials are

f(—x) has no. (+ve) real root

f(x) has no. (—ve) real root

~. f(x) has three real root

Deg. of f(x) =7

Real root = 3
Imaginary root=7 -3 =4
- f(x)=0 has 4 imaginary root
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Exercise

Show that x® + 3x? + 5x — 5 =0 has at least four imaginary roots.

Prove that the equation x* + 3x — 1 =0 has two real and two imaginary roots.

Find the number of imaginary roots of the equation x°+5-7=0.

Find the number of real roots of X" — x® — x* — 6x* + 7=0.

Show that x° + x® + x* +x? +1 = 0 has one real root which in negative and eight

imaginary roots.

6. Show that the equation x" — 1 =0 has, when n is even, two real roots 1 and -1
and no other real root and when n is odd, the real root is 1 and no other real
root.

orwN

3.2 ROLLES’ THEOREM:
Between two consective real roots a and b of the equation f(x) = O where

f(x) is a polynomial, there lies at least one real root of the equation f1(x)=0.

Let f(x) be (x — a)™ (x — b)" ¢ (x) where m and n are positive integers and
¢ (x) is not divisible by (x — a) or by (x — b). Since a and b are consecutive real
roots of f(x), the sign of ¢ (x) in the interval a < x <b in either positive throughout

or negative throughout, for if it changes its sign between a and b, then there is a
root of ¢(x)=0 that in of f(x)=0 lying between a and b, which is contrary to the

hypothesis that a and b are consecutive roots.

L R(X) = (x—a)" n(x —b)™" ¢ (x) + m(x—a)™" (x-b)" ¢ (x)
+(x—a)" (x—a)" $(x)

= (x—a)™" (x—a)™" % (%)
where 1 (x) = {m(x-b) + n (x-a)} ¢ (x) + (x-a) (x-b) $'(x)
. x(a)=m (ab) ¢ (a)
x(b) = m (b-a) ¢ (b).

v (a) and y (b) have different signs since ¢(a) and ¢(b) have the same
sign.

. ¢ (x) =0 has at last one root between a and b.

Hence f'(x) = 0 has atleast one root between a and b.
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Cor.1
If all the roots of f(x) = 0 are real, then all the roots of f'(x) =0 are also
real.

If f(x) =0 is a polynomial of degree n, f'(x) =0 lies in each of the (n-1)
intervals between the n roots of f(x) =0

Cor.2
If all the roots of f(x) =0 are real, then the roots of f'(x) =0, f"(x) =0,
" (x) =0 are real.

Cor.3
At the most only one real root of f(x)=0 can lie between two consecutive
roots of f'(x) =0, that is the real roots of f’'(x) separate those of f(x)=0.

Cor.4

If f(x) =0 has r real roots, then f(x) =0 cannot have more than (r+1) real
roots.
Cor.5

f(x) =0 has atleast as many imaginary roots as f'(x) =0
Example 1:

Find the nature of the roots of the equation 4x® — 21 x* +18x + 20 =0.
Solution:

Let us consider the function
f(x) = 4x® — 21 x* +18x + 20

We have f'(x) = 12x? — 42x +18
= 6(2x — 1) (X — 3)

Hence the real roots of f’'(x) =0 are yz and 3. So the roots of f(x) =0, if

any will be in the intervals between -a and % yz and 3, 3 and +, «

respectively,

X:—ayZSa
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. f(x) must vanish. Once in each of the above intervals.
Hence f(x) =0 has three real roots.

Example: 2 -
Show that the equation 3x* — 8 x® — 6x* + 24x — 7 =0 has one positive, one
negative and two imaginary roots.
Solution:
Let f(x) be 3x* — 8x® — 6x* + 24x - 7
We have,
f'(x) =12x% — 24x% — 12x +24
= 12(x+1) (x—1) (x-2)

The roots of f'(x) =0 are -1, +1, +2

X : —a -1 +1 +2 +o
f(x) + - + + +

. f(x) =0 has a real root lying between —1 and —«, one between -1 and +1
and two imaginary roots.

We know that f(+1) =+, f(0) = -
. The real root lying between —1 and +1 lies between 0 and +1.
Hence it is a positive root.
The other real root lies between —1 and —o and so it is a negative root.

Example:3
Discuss the reality of the roots x* + 4x® — 2x* — 12x +a =0 for all real values of a.

Solution:
Let f(x) be x* + 4x> — 2x* — 12x +a

f'(x) = 4x®+12x* — 4x — 12
=4(x + 1) (x = 1) (x + 3)

.. The roots of f'(x) =0 are -3, -1, and |
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X ! -a -3 -1 1 +a
f(x) : + a-9 7+a a-9 +
If a — 9 is negative and 7 + a is positive, the four roots of f(x) are real.
If -7 <a <9, f(x) = 0 has four real roots.
If a>9, then f(x) is positive throughout and hence all the roots of f(x) =0 are

imaginary.

if a< -7, the signs of f(x) at —a, — 3,— 1, 1, a are respectively,
+, -, =, = +.

Hence f(x) =0 has two real roots and two imaginary roots.

Example: 4
Prove that all the roots of the equation x> — 18x + 25 = 0 are real.

Solution:
Let us consider the function f(x) = x> — 18x +2x
f'(x) = 3x*— 18
- =3(x%-6)

Hence the real roots of f'(x) = 0 are + 6 . So the roots of f(x) =0

X - -6 V6«

f(x) = + - +

-.f(x) must vanish, once in each of the above intervals.
Hence f(x) =0 has three real roots.
Example : 5 ‘

Discuss the nature of the roots of the equation 3x* +8x® — 30x® — 72x
+ k = O for different values of k.
Solution:

Let f(x) = 3x* +8x® — 30x% — 72x +k

f'(x) = 12x% + 24x* - 60x —72

=12 (x® +2x? — 5x — 6)
= 12(x+2) (x—1) (x+3)
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0 2 8 6
11 4 3|0
lo -1 -3
1 3 |0

~. The roots of f'(x) = 0 are -2,1, — 3.

X I —om -2 -3 1 0

fox)—— + +8+k —27 +k 91+k  +

if 8+k in positive, and — 27+ k is positive. 91 + k is positive.
The two roots of f(x) are real.
If -8<a <27, — 91< a <27,
. f(x) =0 has two real roots.
If a>27, then f(x) is ‘+ve’ throughout & hence all the roots f(x) = 0 are imaginary.
a< -8, thesigh of f(x) at —», -2, - 3,1,
+ o+ - + +

Hence f(x) = 0 has two roots real and two roots imaginary.

Exercise:

1. Find the nature of the roots of the equation
(i) 4x® —21x*+ 18x +30=0
(i) 2x® — 9x* +12x +3 =0
(iii) x +4x® - 20x* +10 = 0

2. Determine the value of a such that the equation x*> — 12x +a = 0 has only one
real root.

3. Find the range of the values of k for which the following equations have real
roots
(i) x>+4x*+5x+2+k=0
(i) 2x°-9x*+12x-k=0
(iii) 3x* —4x®* - 12x*+k = 0

7/
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3.3 MULTIPLE ROOTS
If f(x) is a polynomial in x and the equation f(x)=0 has n roots equal to o,
then f(x) must be of the form (x — o)™ ¢ (x) where ¢(a) = O.

oo f(x) = (x — a)™ ¢$(x) where m and n are positive integers and ¢(x) is not
divisible by (x — a)

fr(x) = (x= &)™ ¢'(x) +m(x —a )™ $(x)

=(x— )" {(x= ) ¢’ () +md (x)}

Hence (x — o)™ ' is a common factor of f(x) and ' (x) and it is easily seen that
(x = a )™ will not be a common factor unless f(x) is divisible by (x— o ).

Hence the multiple roots of f(x),

If any are to be deducted by finding the greatest common factors of f(x) and
f’ (x) by the usual algebraic process.

We may then state a rule for finding the multiple roots of an equation f(x) = 0
as follows:
i) Find f"(x)
ii) Find the H.C.F of f(x) and f'(x)
iii} Find the roots of the H.C.F.

Each different root of the H.C.F will occur once more in f(x) than it does in
the H.C.F. '

Example 1:
Find the multiple roots of the equation x* — 9x? + 4x +12 =0

Solution:
Let f(x) = x* — 9x? + 4x +12 ol 0 -9 4 12
0 2 4 -10 -12
f'(x) = 4x° — 18x +4 2/l 2 -5 -6 o
= 2(2x° - 9x +2) 0 2 8 B8
14 3 o
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The H.C.F of f(x) and f’(x) ol4 0 -18 4

0 8 16 -4
4 8 -2 [0

f(x) = (x = 2)* (x + 1)(x+3)

£ (x) = (x — 2)

=)

2

H.C.F of f(x) and f' (x) is x— 2.
- (x — 2)? is a factor of f(x)
sofX) = (x = 2)2 (x +1) (x +3)
-. The roots of f(x) = 0 are 2, 2, — 1 and — 3.
Example: 2
Find the values of a for which ax® — 9x* + 12x — 5 =0 has equal root and

solve the equation in one case.

Solution:
Let f(x) = ax> - 9x*+ 12x -5

f'(x) = 3ax® — 18x +12

Find the H.C.F
f(x) = ax’ — 9x*+12x -5

f' (x) = 3ax? — 18x +12

The process of finding the H.C.F is exhibited below.

13 x [ax¥—9x* + 12x -5 3axf — 18x + 12 -a
ay® - 6x% + 4x 3ak® — 8ax + 5a
) (+) (=) # ) ()
— 32 + 8x -5 (8a— 18)x + 12 — 5a
— 3(8a— 18yx* + 8(8a — 18)x ~ 5 (8a + 8)
3(86—/"|;T:(2 + 3(12 - 5a)x

(49a — 108) x — 5(8a — 18)
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If f(x) and f'(x) have a common linear factor

49a-108 -5(8a-18)
8a-18 12-5a

(ie) 588a + 540a — 245a° — 1296 = — 320a +720a +720a — 1620
(ie) 75a2 — 312a +324 = 0

(ie) 25a2 — 104a + 108 = 0
(ie) (25a — 54) (a — 2) = 0

'.a=20r24—
25

If a = 2, the linear factor on both sides bocomes —10x + 10 and —2x +2.
f(x) =2x*-9x*+ 12x - 5
= (x ~1)? (2x -5)
fr{x) = (2x - 2) (x— 2) = 2(x -1) (x - 2)
s~ HCFis(x—-1)

. PR 5
.. The roots of the equation : 1,1,4.

Example: 3
Find the condition that the cubic equation ax® + 3bx? +3cx +d = 0 has two
equal roots and when the condition is satisfied, find the equal roots.

Solution:
Let o be the equal root.

Then o is also a root of f' (x) = 0 where
f(x) = ax® +3 bx? +3cx +d

fla) =aa®+3ba?+3ca+d =0 . (1)
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and f'(x) =3aa’+6ba +3c=0
(ie) a2 +2ba +c =0 (2)

Substracting the product of (2) and o from (1)
We get

(1) > ao’®+3ba?+ 3ca +d=0

(2)xo0 = aa’+2ba?+ ac=0
=) =) =)
ba?+2Ca +D =0 (3)

From (2) and (3)
We have

o’ o 1

obd — 202 be—ad  2ac — 2b2

a? o 1

2(bd — ¢?) “bo_ad 2(ac —b?)

- (bc — ad)? = 4(bd — c?) (ac — b?)

1{ bc -ad
and oo = — >
2lac-b

Example :4

Find the condition that the equations ax® + 3bx +c = 0, a'x® +3b'x +c¢' =0.
Should have a common root. When this condition is satisfied, show that the
common root is a double root of the equation

2((ab’ —a'b)x® + (ac’ —a’c)x? + (bc’ —b’c) =0

Solution:
Let o be the common root of the equation

Then aa® +3ba +¢c =0 (1)
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aa®+3ba+c’'=0

Multiplying (1) by 8’ = :?és +3ba’a +ca’' =0
Multiplying (2) by a = "o® +3ab’ o +c'a=0
-y (= (-)

Subtracting, = 3(a’b-ab’)a+ca’'—ac’'=0

ac' —a'c
o =
3(ab’ - a’'b)

Substituting in (1)
We get,

a(ac’' —a'c)’  3b(ac’-a'c)
27 (ab’ - a'b)? 3(ab’ — a'b)

(ie) a(ac’ —a'c)® + 27b(ac’ —a'c) (ab’ —a'b)? —27c(ab’ —a'b)? =0

If o is a double root of the equation
2(ab’ —a'b)x® + (ac' —a'c)x? + (bc' —b’c)=0
o is also a root of

6(ab’ —a'b)x? + 2x(ac’ —a'c)=0
(i.e) 6(ab’ —a'b)a? + 2a(ac’' —a'c)=0
(ie) 2a{(3) (@b’ — a’b) a + (ac’ - a'c)} =0

o is cannot be equal to zero

__ (ac' - a'c)
3(ab’' — a'b)

*. o is a double root of the equation (4)
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Example : 5
Solve the equation 8x® — 20x? + 6x +9 =0 given that it has a multiple root.

Solution:

Let f(x) = 8x° — 20x2 +6x +9
f'(x) =24x% - 40x + 6

Now f'(x) =0
24x* - 40x+6=0 [+2]

12x? - 20x + 3 =0

(6x — 1) (2x —3) = 0
i f(%):s(%)3 - 20(%f +6(3)+9

- 1/ o0x_1
8 x 416 20x36+1+9

= %7—/9+1+9
f(%):22_576¢0
f34)=8034) - 2034 +6(34)+ o

=8—-20.—+6.—+9
8 4 2

=27-45+9 +9

=45-45=0
- 134)=0
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% is a root of f(x) = 0

but % is also a root of f'(x)=0

- %)2 in a H.C.F of f(x) & f'(x)

% is a multiple root of f(x) = 0

(x — % )2 is a factor of f(x)
(2x — 3)° is a factor of f(x)

(4x2 +9- 12x) in a factor of f(x)

2x + 1
4x2 - 12x+9 | 8x3*—20x° +6x + 9
8x3 — 24x° + 18x
(=) (+) (-)

4%x2 - 12x + 9
4x% —12x + 9
0

- (2x + 1) is a factor of f(x)

2x =—1 = x = —% is a root of f(x)

-. The multiple roots are y %—yz

Exercise:

1. Find the multiple roots of the equations
i) 4x* + 24x® +49x® + 45x +25 =0
ii)4x® —12x* - 15x -4 =0
i) x* —6x°+ 13x° - 24x +36 =0

2. Find the value of k for which x® + 4x* + 5x + 2 + k = 0 has equal roots. Also find
those roots
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3.4 STRUM’S THEOREM
Let f(x) = O be an equation having no equal roots. Let fi(x) be the first

derived function of f(x)

Let the process of finding the greatest common measure of f(x) and fi(x) be
performed

Let q; be the quotient and f,(x) the remainder with the sign changed.
Then f(x) = q¢ f1(x) — fa(x)
Similar operation can be performed between f;(x) and f,(x) and

We get fi1(x) = q2 f2 (X) — fsfx)
If we continue the operations

We get
() =0q5 f3(x) = f4(x)

fr—1 (X) q, fr(x) - fr+1 (X) and so on.

The successive remainders with their signs changed. (ie) the functions
fa(x), fa(x) ...... will go on diminishing in degree till we reach a numerical
remainder, say f,(x).

These functions f(x), f1(x), fa(x) ...... fm(x) are called Strum’s function.

The difference between the numbers of changes of sign in the series of
Strum’s functions when a is substituted for x and the number when b .is
substituted for x express exactly the number when b is substituted for x express
exactly the number of real roots of the equation f(x) = 0 between a and b. This is
known as Strum’s Theorem and the proof of this theorem is beyond the scope of
this book.

Substitute 0 and o in the series of Strum’s functions and the difference
between the number of changes of sign will give the positive roots

Substitute —a and O in the series of strum’s functions and the difference
between the number of changes of signs will give the negative roots.
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The difference between the number of changes of sign when —a and +a
are substituted in the series of Sturm’s function will give the number of real roots

of the equation.

Example:1

Find the number of real roots of the equation x* — 14x* + 16x + 9 =0

Solution :
Let f(x) = x* — 14x% + 1

fi(x) = 4x° — 28x +

6x+9=0

16 =0

(+)=x®~-7x+4=0

(x)| XP-7x +4 XY - 14x% + 16x +9 (x)
YN a2 4
3_12/y2_ 9 a— X X
7% AX L) () (+)
~7x%+ 12x +9
1gx2—7x+9-x+4 X X
7 7x2—12x -9 =1,
12 5 40x (x3) 214 — 36 x — 27
Zxf - ——4+4=0=7 2
7 7 (X7) 2x° — 70 x + 49
12x2 - 40x + 28 + 3 B ™ @)
> 34x — 76
3x2 — 10x + 7
(+2) 17x—38=1;
(x17) = 512 — 170x + 119
952x — 2128
(x) (x3) = ;Xz(—)““x _952x + 2023
- +
—56x + 119 — 105 x 56
(=(3)) 35 =1,

fo(x) = 7x*—12x -9
fa(x) = 17x — 38
fa(x) = 35

The signs of the Sturm’s functions when —-a,0 and +a are substituted are

tabulated below.
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Example: 2
Find the number and position of real roots of the equation x>-—3x+6=0

Solution:
Let f(x) = x* — 3x +6

fi(x)=3x2=3=0

=x? -1
x| xX*-=1 x’—3x +6 X
X% — 3x x> — X
(=) (+) (=) (+)
3% — 1 —2X + 6 +2
Fo(x)= X—3
X3$3X—9
3x -1
-8

The Strum function are

f(x) =x®-3x + 16

f1 (X) = X2 -1
fo(x) =x -3
f3(X) =—-24

When —a, 0, +a are substituted in the series of Sturm’s functions,

We get the signs.

f(x) f4(x) fa(x) fa(x) Numbers of
changes of sign
—a - + - - 2
0 + - - - 1
+ o + + + — 1

The number of real roots is only one and we can see that it is negative. To
fix the exact position of the negative root substitute -1, -2, -3

...... , until you get
the same number of changes of sign.
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f(x) fix) fa(x) fa(x) fa(x) Numbers of
changes of sign

-l + - + - + 4
0 : + + —_ - + 2
+o + + + + + 0

Hence the number of real roots is 4. Two of which are positive and the
other two negative. '

Example: 3
Find the Sturm'’s function of the polynomial x> —3x + 1 =0

Solution:
Let f(x) = x> — 3x + 1
f'(x) =3x*-3 (+3)
=x%— 1
x2 — 1 x3 — 3x + 1 N
(x?) x3 — x
=) (+)
x | 2x* -2 —2x + 1
2x% — x (=-)
- * 2x—1 = f, (x)
X—-2 2x — 1 2
— 2x -4
X=2 =56 () (+)
3

The Sturm’s function
f(x) = x® —3x + 1
fi(x) = 3x* -3

fa(x) = 2x — 1
fa(x) = x —2
fa(x) = 3

When —a is substituted in the Strums functions

f(x) fi1(x) f2(x) f3(x) Numbers of
changes of sign
-1 + + - - 1
-2 + + - - 1 -
-3 — + - — 2

. The negative root lies between -2 and -3
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Example : 4

Find the number of real root of x° — 5x* + 9x°® — 9x* + 6x — 1 = 0, Using

Strums function.

Soliution:

Let f(x) = x° — 5x* + 9x® — 9x® + 5x — 1

f'(x) = 5x* - 20x®+ 27x* - 18x + 5

x |5x* - 20x3 + 27x* - 18x + 5

x% — 5x* + 9x® — 9x® + 5x — 1

The Sturm’s function are

5x*+ 0 — 5x° (x5)
~20x* + 32x2 - 18x + 5 5x3/— 25x* + 45x% — 45x% + 25x - 5
— 20x° + 20x 5%- 20x* + 27x% — 18x2 +5x
(+) (-) =) (=) (+) (=)
fs = 32x% - 38x + 5, —;7+18x3—27x2+20x—-5
(x38) — Bt +20x° - 27x* + 18x -5
1216x2 — 144x + 190 +) = & G ()
f3(x) x 26 —2x°% + 2x
832x2 — 988x +130 . (+2)
2 fa(x) =x"—x (x D)
832x° - 60 8x .
) +) 5x> — 5x  (4)
: 20x° — 20x
—380x +i30
x® - x (x 32)
(+-10)
32x3 — 32x
38x — 13
32x° — 38 x% + 5x
(x26) - )
088x — 388 38x* + 37x (x 32)
988":722 1216x% — 1184x + 0
=) ) 1216x% — 144 x + 1190
(<) (+) —
fs = 384

260x — 1190 (+ 10)
f,=26x — 19 (x 32)

= 832x — 608

f(x) = x5 — 5x* + 9x® — 9x® +5x ~ 1

fi(x) = 5x* — 20x® + 27x* - 18x + 5

fo(x) = x° — x
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fa(x) = 32x* - 38x + 5
fi(x) = 26x — 19
fs(x) = - 384

when —a, 0, and + o are substituted are

f(x) f1(x) fa(x) fa(x) fa(x) fs(x) Numbers of
changes of sign
- QL —_ + - + —_ - 4
0 — + + + - - 2
a + + + + + - 1

Hence the number of real root are is 4 two of which are positive and other
two negative.

Example : 5

Find the number of real roots of the equation x* + 4x* —4x - 13 =0

Solution:
Letf(x) = x*+4x®> - 4x - 13

f(x)=4x® +12x% - 4

= x4+ 3x% -1

(+4)

x>+ 3x2+ 0 -1
x3+ x%+4x
=) ) )

x*+4x3+0—-4x - 13
x*+33+0- x
) ) = )

2x% — 4x — 1
2x2 + 4x + 8
=) &) (=)
—-6x-9
(= ~3)
fa(x) =2x + 9

x>+0 —-3x-13
x3+3x%+ 0- 1
=) <) =) #)

—3x°—-3x—-12
+ 3

fo(x) = x* + x + 4
(x)2
2x% + 2x +8

2x2 + 2x +8

2x? + 3x
=) )

- X+ 8
x (=2)
2x — 16

2x+ 3
=) )

- 19
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The Strums functions are
f(x) = x* + 4x®> ~ 4x - 13
fi(x) =x%+3x* -1

fo(x) =x?+x+ 4

fa(x) =2x + 3
fa(x) = - 19
Exercise :

Find the number of imaginary roots of the equation x* + x]—x?~2x+ 4
Find the number of distinct real roots of the equation x> — 3x + 1 = 0 & locate
them.
Find the number and position of the roots of i) x°-5x+1=0

i) x® — 7x +7=0
Find the range of values of ¢ for which the equation x* + 43 - 8x% + c= 0
has four real distinct roots.

B O b=

3.5 GENERAL SOLUTIONS OF THE CUBIC EQUNATION
i) Cardon’s Method:
1. Let the cubic equation be x* + px+ g =0 (1)
Letxbeu+v
Substituting this value of x in equation (1)
We get
(U+vF +p(u+v)+q=0
(ie) u®+v®+[3uv (u+v) +p (u+v)]+q=0
(ie) WP+ v¥+q+ (u+v) (Buv+p)=0
Choose u and vsuch that 3uv+p=0
Then the equation reduces to
uw+vi+q=0 (2)

with the condition 3uv + p =0

Eliminate u from (2) and (3)
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3
P 3
We get | - — =0
g [ 3VJ +Vv® +q

P
(ie) —§+v3 +q=0

3

ﬁe)—%7+v6+qv3=0

3

ie)ve+qvi—P_ =0
(ie) Qv - 52

From (4) and (5) relations,

We get that u® and v? are the roots of the equation

3
P+rgt—P_=0 utvd=t
at- - p

u® and v® can be determined from this equation

3
g+qt-P_=0
. 27

(%)
-qgqx_]q° -41)]| -— 3
27 —qi\lq2+4p/27

2(1) 2 4

2 3\
t::_.c_‘i _q___+..p__
2 4 27

1
u3=_._3+ ._q_2_+Ei/2 V3=__q..+ 32_.+.F£.}é
2 {4 27) ° 2

2 3
Roots of the equation (6) are real only, when 34— + %7— >0.

in that case two roots of equation (1) are imaginary and one root real or

two of the roots of the equation (1) are equal. ~

2 3

Let -q—-+P—-

4 27

(ie) 4p® + 279 is positive.
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Then u® and V? are real and
Letu*t=md v¥*=nd

Here we obtain 3 values of u.viz. m.wm, w’m and 3 values of viz., n, wn,
w?n, where w and w? are the cube roots of unity.

Hence we get 9 combinations for u + v. Out of the nine ccmbinations the
following 3 combinations values are only valid for u + v since
V3 = — _’f.
27
m+n; mw+nw? and mw?+nw

3 i = - P_
u (ie) uv 3

Hence they are the roots of the given equation(1).
The solution of the cubic equation depends on the roots of the equation (6)

4p3

The roots of the equation (6) are imaginary if q° + >7 <0 in that case

both u® and v® are imaginary quantities.

This has no arithmetical meaning. Hence Cardon’s method is not useful.
So before trying to solve a cubical equation. Find the nature of its roots. If all the
three roots are real we can not use cardon’s method to get arithmetic values for
the roots.

Example: 1
Solve the equation x* - 6x -9 =0

Solution:
Here p=-6,andq=-9
4p® + 27q° =4 (-6)* + 27(- 9)*=1323>0

Hence the equation has one real root and two imaginary roots and so
Cardon’s method is applicable.

.. x = u + v where u® and Vv® are the roots of the equation.
3

t2+9p—-2—_;=0

(ie)t?-9p+8=0 (p=-6,q=-9)

(ie) t-8)(t -1)=0 '-17—8
~udP=8and v =1

118



Hence 2 + 1 (ie) 3 is one of the roots of the equation.

The other roots are 2w +w? and 2w? + w. (or) since 3 is one of the roots of
the equation, Dividing the given equation by x — 3.

We get the other roots of the given equation.
They are the roots of the equation

x>+3x+3=0

Hence the given equation has the 3 roots x*+3x+3=0

[ _3+,/9-4(3)(1)
. 2
~3+i43 -3-iW3 X =
3, . _3+49-12 -3+i43
2 2 12 - 32
L

These are the same as 3, 2w + w? and 2w? +w.

Example: 2
Solve the equation x® — 9x* +108 = 0.

Solution:
Transform this equation into one without the second term. (ie) the term
without x* term.

This can be done by decreasing the roots by 3.
That equation is x> — 27x + 54 = 0 @)

If o, B,y are the roots of the equation (1), the roots of the given equation
are a+3, B+ 3, and y +3,.

3
Here u® and Vv? are the roots of the equation t* + qt — %7- =0 where q = 54,
p=-27.

(ie) t* + 54t + 0

(27)° _
) -

(ie) t2+ 54t + (27)>=0
(ie) (t+27)*=0 [(@+b)? =+ a? + 2ab + b?]
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Hence two of the roots of equation are equal
~u¥=-27 and v® = - 27

Henceu=-3 andv=-3

~. The roots of the equation (1) are
-6, — 3w —3w? and-3w? -3

Since ® and »? are the cubic roots of the unity.-

1+ o + o =0.

Hence these roots are —6, 3, 3.
The roots of the given equation are —3, 6 and 6.

Example:
Solve the equation x®* — 12x + 65 =0

Solution:
This is the standard form
Putx=u+yv
x3 = (u +v)3

x% = u® + v + 3uv(u+v)
= u® + v® + 3uvx

=x®~3uvx— (W +v¥®) =0

Comparing the given equation.

We get,
—3uv=-12; — (U +v® =65
uv = 4 u+v3i=_-65
u3v3 —_ 43
uv® =64

form an equation whose roots are u® & v®
t?+ 65t+ 64 =0

(t+64)(t+1)=0

t=-64, -1
Or.e or the roots are u; & v,
u’ =-64, v =—_1
u; = — 4, vi=-—1
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Hence the roots of the equation.
U + Vy, W + Vw2, uw? + vw
u;=-—4, vy = -1

() o[ (28 o

5 A-4iW3 143 4+4if3 +1-iV3
’ 2 ! 2

Hence the three roots are

_5 5-i3V3 5+i3/3

2 ' 2

Example:
Solve the equation x> —9x +28 = 0

Solution:

This is the standard form
Put x = u +v
x2 = (u + v)®
= u® + v? + 3uv(u + v)
=u® + v + 3 uvx

x3-3uvx — (W3 +v¥) =0
Comparing the given equation,
We get — 3uv = — 9; —(u® +v3) =28

uv = 3 u? + v =-28

form an equation whose roots are u® & v*

t? +28t +27 = 0

g+27)(t+1)=0

t=-27, -1

One of the roots are u, & v,
3 =-27, vi=-1

Uy = -3, v=-1

121

-—1+i«\/§

2

J



Hence the roots of the equation

uq + vy u, o + v, Q)z, U1(02+V1(D
u, = — 3, vi=-—1
~3 -1, -3[:%1£J+(_1)(i%@_}

a4 [3—3iJ§+1 iﬁ) (3+i3J§'+1_iJ§]
: > | _

a4 [4—i2J§](4+2i\/§J
’ 2 3 )

Hence the three roots are

- —4, 2 —i+/3, 2+ i3

Example:
Solve the equation x°> - 27x +54 = 0

Solution:
This is standard form
Putx=u+v

xX=(u+v)P=ud+v:i+3uv(u+v)

= u® + v®+ 3uv x
— x3 - 3uvx — (W +v¥) =0
Comparing the given equation, we get

— 3uv = - 27; — (u®+v® =54

uv =29 ul+v:=-54

form an equation whose roots are u® & v°
t?+ 54t +729=0

~54 1+ ,/2916 - 2916 54 _
2 2

- 27

= t=

t = — 27 (twice)
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One of the roots are u; & v;
ud =-27,v> =-27

uy=-3; vy=-3
Hence the roots of the equation are u; + v4, U1 *+ Vi @2, U1w? + Vie

ur=-3,vi=-3

/ .
—1+|-\/§]+(_3)
L 2

(—1+i~[~?—n
2

(—1-i/3)
. 2 )
(—1-i3)
. 2 )

J +(-3)

\

2 2

= e (3—3i\/§+3+3iJ§J (3+3iJ§+3—3iJ§J

= -6, 3, 3.

Exercise:
1. Solve the equation
i) x?=6x>-6x+63=0

i)x*= x*-16x+20=0
iiiyx*= 3x2-21x+49=0
iv)x®= 6x*+ 9x+ 4=0
v) x> = 15x* ~ 33x +847 = 0

123



UNIT - IV

NUMERICAL METHODS
NUMERICAL SOLUTION OF ALGEBRAIC AND TRANSCENTAL EQUATIONS

4.1 Introduction:

The function f(x) of the form
f(X) = agx" + a;x"" + ax" 2+ ... +3, X+ @p ... (1)

where n is a positive integer and a, ,a; a, ....a, are independent of x ((ie) are
constants) with a,=0 although some of a,, a,....... a, may be zero in known as a
polynomial of degree n.

This may also be called as an integral function when x in f(x) occurs in an
integral form only (ie) never in denominator or with negative power. The values of
X making f(x) zero are known as zeros or Roots of the polynomial f(x), and every
polynomial of degree n has n roots.

The Polynomial f(x) equated to zero gives the rational integral equation
which is Algebraic or Transcendental according as f(x) is purely a polynomial in x
as (1) or contains some other functions (transcendental) such as trigonometric,
Logarithmic or exponential etc.,

Ex: x® + 2x* — 3x>* + x -9 = 0 is an algebric equation, while
3x?® + log(x+1) + e™+ cos x = 0 is a transcendental equation solution of an
equation f(x) = 0 means to find its roots or zeros.

The problem is to find an approximate value of x which satisfies the
equation f(x) = 0. One way is to draw the graph of y = f(x) and find the
approximate values of the abscissa of the points where the graph crosses the
X — axis. |t is not always easy to draw the graph of y = f(x). In some cases the
equation can be written as f;(x) = f,(x)

Then Ehe abscissa of the intersecting points of the two graphs y = f,(x) and
y = fa(x) will give the real roots of the equation f(x)=0. These two methods will
give at the most an approximate values of the real roots correct to one place of
decimal.

Before finding an approximate value of the root by drawing graphs, it is
better to find the limits between which a real root lies. “If f(x) is a continuous
functions function in the range (a,b) and if f(a) and f(b) have different signs, then
there is at least one real root between a and b”.
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1. Find the positive root of the equation
x2—x-1=0

Solution:
Givenf(x)=x*-=x-1=0

We shall find the values of f(x) when x=0,1,2,3,......

x=0 : f(0) = (0)® -0 -1 = —1

x=1; f(1) = (1)®-1-1=-1

Xx=2 ; f(2) = (2)*-2-1=8-2-1=5
x=3; f(3) = (3)® -3 -1 = 27-3—-1= 23
XxX=4 ; f(4) = (4)° -4 -1 =64-4-1=59

Here f(1) is (—ve) and f(2) is (+ve)
~. Hence a root lies between 1 and 2
To find a still closer approximation find the values of f(x) for intermediate values

between 1 and 2.
Let x be 1.5 [x=1+2 3=1_5}

f(1.5) = (1.5* - 1.5 -1
= 0.815
Here f(1) is (— ve) and f(1.5) is (+ve)
Hence the root lies between 1 and 1.5

To find still closer limits find f(x) for x =1.1,1.2,1.3,1.4 .
o x=1.1
f(x)=(1.1°-1.1-1=1.331-1.1-1 = -0.769

x=12; f(x) = (1.2°-1.2-1=1728-1.2-1=-0.372
x=13; f(x) = (1.3°-1.3-1=2.197-1.3-1=-0.103
x=14; f(x) = (1.4°-14-1=2744-14-1=-0.344

]

Here f(1.3) is (—ve) and f(1.4) are (+ve)

[x=1.3+1.4 _27 =1.35]

.. The root lies between 1.3 and 1.4. 2 2
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To find still closer limits, find f(x) = 1.35
f(1.35) = (1.35)> = 1.35 - 1 = 2.460375 —~ 1.35 — 1
= 0.1104 & is (+ve)
. The root lies between 1.3 and 1.35.
To find still closer limits find f(x) for
x=1.31,1.32, 1.33, 1.34.

=1.31 ; f(1.31) = (1.31)° -1.31 -1 = 2.248091 - 1.31 - 1
=-0.619

x=1.32 ; f(1.32) = (1.32)° —1.32 -1 = 2.299968 — 1.32 — 1
= -0.02

x=1.33 ; f(1.33) = (1.33)°>-1.33 -1 = 2.352637 — 1.33 — 1
= +0.0226 -

x=1.34 ; f(1.34) = (1.34)° -1.34 -1 = 2.406104 —1— 1.34 — 1
= +0.0661.

Here f(1.32) is (—ve) and f(1.33) is (+ve)

Hence the root lies between 1.32 and 1.33.

x=-1'32+1'33 =_?_.6_5_=1'325
2 2

To find still closer limits, find f(x) for x = 1.325

f(1.325) = (1.325)% - 1.325 —1
= 0.0012.
Here f(1.32) is (—ve) & f(1.325) is (+ve).
Hence the root lies between. 1.32 & 1.325
Find f(x) for x = 1.321, 1.322,1.323,1324.
x=1.321 ; f(1.321) = (1.321)° -1.321 -1 = 2.305199161 — 1.321 — 1
= -0.0158
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x =1.322 ; f(1.322) (1.322)% -1.322 -1 = 2.310438248 — 1.322 - 1

=-0.01156

x =1.323 ; (1.323)

(1.323)° -1.323 -1 = 2.315685267 — 1.323 - 1
= -0.0073

x = 1.324 ; (1.324) = (1.324)° —1.324 -1 = 2.320940224 — 1.324 - 1
= -0.031.

Here f(1.324) is (—ve) and f(1.325) is (+ve)
Hence the root lies between 1.324 and 1.325.
1.324 +1.325 2.649
=- =——=1.3245
To find still closer limits, find f(x) for x = 1.3245 [x 2 2 ]

f(1.3245) = (1.3245)° — 1.3245 — 1= 2.323570681 — 1.3245 - 1
= —0.0009

Here f(1.3245) is (—ve) and f(1.325) is (+ve)
. The roots lies between 1.3245 & 1.325
To a third place of decimals.

We can take the value as 1.325.

Aliter:
The equation x* — x =1 =0 can be written in the fcrm x® = x +1.

R .
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Draw the graphs of the equation
Y = x® and y =x+1

And find the x coordinates of the points of intersection from the graphs itin
seen that the two curves intersect at only one point an its abscissa lies between 1
and 2.

If we take a bigger scale, it can be shown that the root lies between 1.3
and 1.4.

4.2 INTERATION METHOD
Suppose f(x) = 0 can be written in the form

x = F(x) (1)
Let xo be an approximvation to the root a
Then x; = F(Xo) (2)
X2 = F(X1)

b

gives a future approximation.

in general Xx.y = F(xk), where k = 0,1,2,...... (3) will give further
approximations.

This formula (3) is known as the Iteration formula.

This is valid if f
X13X20 0o n Xy Xkt forenos converge to ‘a’
subtracting (2) from (1)

we get
X — X1 = F(x) — F(Xo)

but F(x) — F(xo) = (X - Xo) F' (g,) where x < g, < x4,
By mean value theorem.

L X=X = (X = Xq1) F' (g5)-
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Similarly
X — Xz = (X — Xq1) F' (g,).

X — X3 = (X — Xz2) F' (g;).

............................

----------------------------

X = Xn = (X = Xn1) F' (g,.4).

Multiplying all these equation & concelling the common factor on both sides.

(X = X4q) (X = X2) (X — X3)..... (X = Xn)
= [(X = Xo) (X = X1) (X = X2) «evc(X = Xn1)] F' (€0) F' (g4) F' (e2).....F' (,,4)

We get
X = Xp= (X = Xg) F’ (So) F’ (81) ----- F (En—1)

If the maximum value of | F' (x)| <|, then each of the quantities

IF'(SO)‘,iF'(81)l ....... IF'(S,,_1)|<|

(ie) less than a proper fraction A, then
|F'(e0) || F' (&4)]--..... |F (e,y) | < A
Hence |x —x,| <[x—x,| A"

Since A is a proper fraction

Lim |x —x,| A"=0
n—> a
.. The condition for the convergence of the errors in xo,X1,Xz ....... is |F' (x)] <]|.

Example: 1

Find the positive root of the equation
x® —x -1 =0.
Solution:
Given f(x) = x® - x — 1 =0,

The curve y = x® and y = x+1
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We shall find the values of f(x), whenx=0,1,2......
x=0; f0) = (0)®*-0-1=-1
x=1; f1) = (1) -1-1=-1
x=2; f(2)=(2P-2-1=8-2-1=5

Here f(1) is ‘~ve’ and f(2) is ‘+ve'.
Hence a root lies between 1 and 2.

To find a still closer approximation find the values of f(x) for intermediate
values between 1 and 2.

x=1.5 {x=1+2=§.=1.5}
f(1.5) = (1.5)*~ 1.5 -1 = 0.815 2 2

Hence the root lies between 1 and 1.5

To find still closer limits find f(x) forx = 1.1, 1.2 1.3, 1.4.
x=1.1; fx) = (1.1)*-1.1-1=1.331-1.1 -1

= - 0.769

(1.2 -1.2-1=1.728-1.2~1.

= -0.472

x=12 ; 1(1.2)

x=13 ,; f(1.3) (1.3 -1.3 -1 =2.197 ~1.3 - 1

= -0.103

x=14 ; f(1.4) = (1.4)°-1.4-1=2.744 -1.4 - 1

= -0.344
-. The root lies between 1.3 and 1.4

This equation can be put in the form

x=x*-1
Hence F (x) = x=x® -1
F’ (x) = 3x?

F’'(1.3) = 3(1.3)?
= 5.07

Hence | F’ (1.3)| is not less than one.

Hence this wayv of writing f(x), will not give any valid iteration process.
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Another way of writing the equation to apply the process is
x°= 1+ x = x%2x = 1+x

(ie) x = 1+2x
X
in this case F(x) = 1+2X
X
, _ 2 1
F)=-35-=
F'(1.3) = 2 L

Here |F' (1.3)] #|
Hence this iteration process is not valid.

A third way of writing the equation is
x3 =1+ x

x=(1+x)%

In this case F(x) = (1+ x)/5

F () = 5 (4x)%

x=1.3

Hence F’'(1.3) = 1

3(1+1.3)%

0.1913
~ |Fa.3)) <.

Hence this process can start with 1.3
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In general Xx.1 = F(X).

K=0;

X, = F(xo)=(1+1.3)% = (2.3)%
X, = 1.3200

x2= F(x) = (1+1.32) %= (2.32)%
= 1.3238

_ _ % - %
x3 = F(xz) = (1+1.3238)/3 = (2.3238)
= 1.3245

xs = F(xs) = (1+1.3245)% = (2.3245) %
= 1.3247

_  4ad % _ %
X5 = F(x4) = (1+1.3247)73 = (2.3247)
= 1.3247

Since x4 & x5 give the same value.
. Hence the root is 1.3247 (correct to 4 places of decimals).
Example: 2
Find the positive root of the equation x = cos x correct to 4 places of

decimals.

Solution:
In this case x = cos X.

- F(xX) = cos x

- F' (x) = =sin x
F(O)=cos0=0

F(1) = cos 1 = 0.54030

Hence the roots are 0 and 1
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This equation can be put in the form
F(x) = cos x

F'(x) = sin x
x = 0.5= |F'(0.5) =|0.5| = |sin(0.5)<|

Hence this process can be start with 0.5 Formula: Xg+q = F(Xx).
K=0, X=5 = x4 = F(Xg) = cos Xo = cos(0.5) = 0.8776

K=1, x,=0.8776; x, = F(X4) = cos x; = cos(0.8776) = 0.6390

K=2, x=0.6390 = x3 = F(x;) = cos Xz = cos(0.639) = 0.8027

K=3, x3=0.8027 = x4 = F(x3) = cos x3 = cos(0.8027) = 0.6948

K=4, x,=0.6948 = X5

F(x4) = cos x4 = c0s(0.6948) = 0.7682

K=5, x5=0.7682 = Xg

F{x4) = cos xs = c0s(0.7682) = 0.7192
K=6, x¢= 0.7192 = X7 = F(Xs) = cos xg = c0s(0.7192) = 0.7523

K=7, x,=0.7523 = Xg

F(x7) = cos X7 = cos(0.7523) = 0.7301
K=8, Xg=0.7301 = Xg = F(Xg) = cos Xg = c0s(0.7301) = 0.7451

K=9, X¢g=0.7451 = X40 = F(Xg) = cOs Xg = c0s(0.7451) = 0.7350
K=10, X10=0.7350 ; x1 = F(X40) = €0S X409 = €0s(0.7350) = 0.7418

K=11, x41=0.7418 ; X42 = F(X41) = cos X471 = ¢0s(0.7418) = 0.7373
K=12 %X12=0.7373 ; Xi3 = F(X42) = cos X42 = c0s(0.7373) = 0.7403
K=13, X13=0.7403 ; X414 = F(X43) = c0s X413 = c0s(10.7403) = 0.7383
K=14, x14=0.7383 ; X45 = F(X44) = cOs X414 = c0s(0.7383) = 0.7396
K=15, X15=0.7396; X4 = F(X15) = COS X5 = pos(0.7396) = 0.7367

K=16, x4=0.7387 ; X417 = F(X46) = CcOS X4 = c0s(0.7387) = 0.7393

133



K =17, x7=0.7393 ; x45 = F(X47) = COS X7 = c0s(0.7393) = 0.7389
K=18, x16= 0.7389 ; x49 = F(X8) = cOS X413 = c0s(0.7389) = 0.7392
K=19, X49=0.7392 ; X3 = F(X49) = COS X19 = c0s(0.7392) = 0.7390
K =20, Xz = 0.7390 ; x»; = F(X20) = cos(0.7390) = 0.7391
K=21, X21=0.7391 ; Xo2 = F(X21) = cos(0.7391) = 0.7391

Since x;; and x,, give the same value we take the root as 0.7391.
Correct to 4 places of decimals.

Example: 3
The equation 4x =e* has two roots one near 0.3 and the other near 2.1
Find them.

Solution:
Given the equation can be written in the form

Formula: xx.+q = F(Xxk)

1
F — — X
(%) 4e

Hence F'(x) = %e"

Given x, = 0.3

1 03 - 1.349858808

F' (%) = Ze 2 =0.3375

F'(0.3)=0.3375
Given x = 2.1

izt = Lot = 810017 _ oy
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F'(2.1) = 2.0415 ¢« 1

Hence this process can start with 0.3

03 _ 1.34986

X1 = F(Xo) = x¢ = -}e = 0.3375

1 03375 _ 1.40144

X2 = F(x X2 = —e = ——— =0.3504
2 (X1) = Xz 2° 2

X3 = F(X2) = X5 = —1-e°'35°“ - 141964 _ 0.3549
4 4

Xs = F(Xa) = x4 = 1 gosses 142604 0.3565
4 . 4

X5 = F(X4) = X5 = —1-80'3565 = 1_:4_'_?_8_33 = 0.3571
4 4

Xo = F(xs) = xp = 03571 = 142918 _ 5 554
4 . 4

X7 = F(Xg) = X7 = dgossrs . 142946 0.3574
4 4

Xg = F(Xa) = Xg = 160'3574 = 1-‘2?—6—1- = 0.3574

4 4
Here X7 = Xg

Hence the root is 0.3574 correct to 4 places of decimals.

Here 2.1 can not be the starting point for this form x = %e"

Since F'(2.1) ¢« 1.
The equation is €* = 4 x

Taking {og on both side.
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X = 10ge4x
Here, F(x) = 10g.(4x) = 1o0g4 + logx.

F'(x) =-)1-(-

L F2.1) = = 0.47619 |

i
2.1
~ F@.1) 4.

Hence we can start with 2.1 in this form for iteration process.
Let xo = 2.1.

X1 = F(Xo) = X4 = log4 (2.1) = 10g.(8.4) = 2.1282

X> = F(X;) = X, = log4 (2.1282) = 10g.(8.5128) = 2.1416

Xas = F(X2) = X3 = log4 (2.1416) = 10g.(8.5664) = 2.1478

Xs = F(x3) = X4 = log4 (2.1478) = 10g.(8.5912) = 2.1507

Xs = F(xs) = Xs = log4 (2.1507) = 10g.(8.6028) = 2.1521

Xs = F(Xs) = ;<6 = log4 (2.1521) = 109(8.6084) = 2.1527

x7 = F(Xs) = X7 =10g4 (2.1527) = 109.(8.6108) = 2.1530

Xg = F(x7) = xs = log4 (2.1530) = 109.(8.6120) = 2.1532

Xo = F(Xg) = Xo = log4 (2.1532) = 109.(8.6128) = 2.1532

Here X5 = Xo.

Hence we take 2.1532 as the root correct four places of decimals.
Example:4

Find a real root of the equation cos x = 3x — 1 correct to 4 decimal places
by iteration method.
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Solution:
Let f(x) = cos x — 3x+1=0

f{(0) =cos o — 3(0) +1 = 0 = +ve

f(%) = COS %—3 7'52+1 =0 _(_31:2—_2) = —ve

i 7T
a root lies between 0 and A

The given equation may be written as

X = %(1+cos X) = ¢ (X)
b’ (X) = —%sin X

—1-sin Xl <1 V x & in particular in (0,71'2) (ie) (0,1,5,708)

3

j0"(x) =

Hence the iteration method may be applied.

Let us take xqg = 0.6.

X1 %(1+cos Xq) = %(1+cos(0.6)2

x1 = 0.60845

Xp = —;—[1+(O.60845)]
x, = 0.60684

X3 = %[1+cos(0.60684)] = 0.60715
X4 = %—[1 +co0s(0.60715)] = 0.60709

X5 = %[1 +c0s(0.60709)] = 0.60710
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Xg = %[1+cos(0.60710)] = 0.80710

Due to repetition of xs and xs, we step our work here.

Hence the roots 0.6071 correct to 4 decimal places.

Example: 5
Solve the equation x3 +x, — 1 = 0 for the positive by iteration method.

Solution:
Let f(X) = X3+, — 1 =0,

]

f(0) -1 =~ve: f(1) =1 =+ve

The root lies between 1 and 1

The given equation as x***" = 1.
(i) X = —e = ¢ (X)
Vx+1 '
1 1
0 {X) = — ———r
2 (x+1)%

(ie) o' (O) =%<1 and o’ (1) | <]

(ie) o' (x)|<| vxe(0,1)
Hence, the iterative method can be applied.
Take xo = 0.75 as starting value.

1 1

1 N
X{ = e = et = 2 = 0.755093
"7 filrx, A+075 1.75
X ! =1 -0.75465

2" /11075503 +1.75503
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1 1

X3 = = = 0.75493
V1+0.75465  [1.754865

X, = L = =0.75487

4= = = 0.

V1+0.75493  [1.75493

X5 = L = ! = 0.75488
V1+0.75487 1.75487

1
Xs = 0.75488

~ J110.75488

Due to repetition of x5 and xs. We stop out work here.

Hence the root is 0.75488.
Exercise
1. Solve the following by iteration method

i) 3x—-cosx—-2=0

i) 3X = 6 + logox

iii) X+ x+1=0

iv) 2x — log10x =7

V) 3x + sin x = .

Vi) x® +x% =100

4.3 Newton — Raphson Method
When an approximate value of a root of an equation is known, a closer

approximation may be obtained by the following method commonly known as
“Newton Raphson Method”.

Let o be a root of the equationf(x) =0 &
Let x, be an approximation to o .

. a =X, +h where h is small, positive or negative.

f(x, +h)=0

(ie) f(xo) + h ' (x,) + %2- f'(x,)+ - =0 [By Taylor’s Theorm].

Neglecting higher powers of h.
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We get,
f(x,) + hf'(x,) =0 approximately

h= 1X) approximately
f'(x,) '
=% +h f(x,)

h=a—-x,] f(x,)

S0 = X approximately

Let this approximation be x;
f(x,)

f’(x,)
Repeating this process, We get

Then x4 = Xo —

o — . Fxq)

277 (%)

- F(x5)

X2 T2 T Fix,)
f(x,)

Xki1 = Xk — f’(xk
k)

This formula is known as Newton’s Raphson formula.

Geometrical Interpretation
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Let the curve y = f(x) cuts the x — axis atx= «.
Then a is a root of f(x) = 0
Let x, be an approximate root of f(x)=0
Then x = X, is a point nearto x = o .
If the ordinate at x = x,, meets the curve y = f(x) at P, then the tangent PT,

to the curve y = f(x) will in general meet the x— axis at the point x,, which is
nearer to the root a than the first approximation.

f(XO) :fI(XO)
X — X4
" Xo — Xq = o)
(%)
= x. - f(x,)
f'(x)

Repeating this process,

e

Then T, is the point x = x, continuing the process,
We get points

Ta(X = X3), T4 (X =X4) ovvnnna. TeX =) oo,
Which will approach the point which is x = «..

Error in Newton — Raphson Method:
By the Newton — Raphson Method

f(xy)
Xk+1 = Xk - f/(xk )
k

This is really an Iteration Method, where
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Xerr = F(xy ) & F(X,) = %, = ff((’:(k ))
k

Hence the equation is of the form

x = F(x) where F(x) = x — )
f(xy)

Xo, X1, X2 cnnn.. X k+1 converges to the true root

if | F"(x)| <1

R CY) M (ORI co |

(ie) 2
[F ()] |

_ . f(x) qon _ 4 F(X). F1(x) = f(x) £"(x)
{F(x) = X F(x) = F'(x)=1 [f'(X)ZJ jl

[ F ~[F0F + fx) i _
[ ooF |

) f(x)| _,
[f'(x)J?

(ie) Jf(x) f(x)| < [f'(x)?

This is the desired creteriam for convergence.

Order of Convergence of the error
Let Ex = xx — o wher E, is the error in the K" stage.

If the sequence {x} converges to a. Then the sequence {E,} converges to O.
If the error Ey is related to the error E,.,.

(ie) Xk+1 - o by the formula

E.1| <A |E(|” where A,p are constants and >0, P 3 0
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then we say that the convergence is of order p.
If P = 1, the convergence is said to be linear.

If P = 2, the convergence is said to be quadratic and so on.

Obviously the convergence is faster if p is larger & A is smaller.
Case i) Let a is a root of the equation f(x) = 0 of order one.

If the equation is expressed in the form
X = F(x), then X+ = F(Xk)
But F(x,) = F(a + E,) where Ey is the error in the k™ stage. (“E, =% ~a)

S Xkt & F(Q+Ek)

=F(a)+

2
S‘—"‘—F’(a) + (Ezku) F" () +....... By Taylor’s Theorem.

2
o + -f_kl_ F'(a) + Ezk—')— F" (@) + coveenne [- xF(x)]a =F(a)

—Eﬁ— F' (o) + Ei‘T)Z— F'(a) +

Xk+1 -

--------

2
(ie) Exer = —Eﬁ— F'(a) + (Ezkl) F'(a) +

in the Newton — Raphson formula

F(X)zx_ﬁz(_).

f(x)

F(x) = 1 - [F0aF =00 700

e

< [100F ZFGOF + 160 7700
| [ 0]
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, f(x) f"(x)
F'(x)= 24" \2]
(X) ¥ GOF
f(a) 7 ()
[f ()f

. Flla) = — 0 since f(a) =0

[F(x) £70x) + £0x) £00)] = F(x) F(x) 2F(x) £"(x)

N [f'()F
A = ~ 1
gain F"(x) [f,( 7

[F(o)] [fe) £"(cr) + £"(o) 7 ()] - F(r) F"(cr) 2" () £ (1)

S F'(a) = [f'(oc)]4

vy P@PF (o) ()
. F = - =
="l @

_ E)® (o)

Omitting higher powers of Ey.
21 11 (q) g nig P k

Hence Ey.q

.. The convergence is quadratic.
Case ii) If o is a multiple root of order p of f(x) = 0, then
f(x) = (x — o) Q(x) where Q(a.) = 0

f(x) = P(x— o)’ " Q(x) + (x —a)” Q(x)

F(x) _ (x - o) Q(x)
f'(x)  P(x—-o)P Q(x) + (x — )’ Q'(x)

(x — )" Q(x) )
(x—a)® P (x— o) + Q'(x)]

= Q(X) (X - (X,)
PQ (x) + (x — a) Q'(x)
Let us take F(x) = x — 7;’2:‘))

 — A (X — o) Q(x)
PQ (x)+ (x — o) Q'(x)
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Finding F’' (x) & than substituting o for x, we get

PQ(x) + (x ~ a) Q)] [AQ(X) + A(x — ) Q" (x)] + (X = o) Q(x)]
[PQ(x) + Q'(x) + (x ~ &) Q"(x)]

Fx)=1- PaG) +(x ~e) Q)

PQ(a.) AQ(x)

Fla) =1—
(o) PQ ()]

PA Q% (a) A
Flla)=1- = &) _4 A
@) =1 e @) p

As proved in case (i)

" (E )2 _
Biuy =F'(@) By + F" (o) o+ .. where E; = x¢ — a.

When A =1.

We get the Newton — Raphson formula.

In that case

Fla)=1- 1 and E,  , = (1 - 1) omitting higher powers of E,.
p E

. The convergence is linear.

Hence if f(x) = 0 has a multiple root, the convergence of the errors is linear. On
the otherland if L =P

Fla)=0
—_ ” (Ek )2 . .
Hence Ey .1 = F (a)——-—é— neglecting higher order terms.
This shows that the convergence is quadratic.
Hence in the case of multiple root of order A of an equation, it is better to
take the modified formula of Newton — Raphson.

F(X)=x~ };'((x)) and tabulate the iteration.
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Example: 1
Find the positive root of x>~ x — 1 = 0 correct to 4 places of decimals.

Solution:
Let f(x) = x® — x — 1
f(x) = 3x* — 1
Takex=1,2 .......
()=’ -1-1 =1-1-1= —1
f(2y=(2®-1-1 = 8-2-1=5

.. hence a root lies between 1 and 2.

1+ 2
2

~3.15
2

Xo &=

f(1.5) = (1.5)*-1.5-1=3.375-1.5-1
= 0.875
. Hence the root lies between 1 and 1.5 x = 1.3
f(1.3) = (1.3)°-1.3-1=2.197 - 1.3 -1
=-0.103
f(1.4)=(1.4)°-1.4-1=2.744-1.4 -1
= 0.344
Hence the first approximation to the root 1.3 & 1.4

Newton Raphson Formula:

f(x
XK+1=XK"‘ ’( k)
f(x, )
3
Xe — X, — 1
Xk+1 = Xk — K 2K

146



X, (3%Z = 1) —x2 +x, +1
3xZ -1

3Xg - x, — X2 x, —1

3x; -1
s = 2x2 +1
3x2 -1
k=0, x0=1.3
g = o1 _2013)° +1_ 2(2197)+1
3x2 -1 3(1.3)> -1 3(1.69) -1
= 5394/ - =1.3253
k=1, X, = 1.3253
X, = 2x3 + 1 _ 2(1.3253)° +1 _ 2(2.32778) + 1

©3x2 -1  3(1.3253)2 -1  3(1.7564) - 1

_ 5.65556

= —————=1.3247
4.26926

k=2, x, = 1.3247,
‘o = 2x3 +1_2(1.3247)° +1 _ (2.3246)2 + 1
3x3 -1 3(1.3247)2 -1 3(1.7548) -1
5.6492

" 1.26449
since X, = Xs

=1.3247

The root correct to 4 1 'aces of decimals 1.3247

The varies approximations converge to the true value if |f(x) f"(x)| < [f'(x)}

This can be verified by putting x = 1.3 in the formula. f"(x)=3x

(-0.103)(3.9) < [14.21]
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Example: 2
Find the positive root of the equation x = cos x. Correct to 4 places of

decimals.

Solution:
Let f(x) = x - Cos x

=0, f{0)=0-Cos0 =-1
x=1, f(1)=1-Cos 1=1- "5403 = *4597

Hence the root lies between o and 1
_0+1

1
X —=0.5
°T T2 T

Newton — Raphson Formula:

Here f(x) = x — Cos x
f'(x) =1+ Sin x

X, — COS X,
1+ sin x,

Xk+1 = Xx —

= X (1+sin x, ) - x, +cos X,
1+ sin x,

Xy Sin X, + €OS X,

1+ sin X,
k = 01 XO -~ 0 5
Hence x, = 2:9.8in (0.5) + cos (0.5)
1+ sin (0.5)
_ 0.5(47943) + 0.87758
1+ 0.47943
0.239172 + 0.87758
= =07
1.47943 0.7552
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X; = 0.7552, k=1

0.7552 sin (0.7552) + cos (0.7552)
1+ sin (0.7552)

X2

_ 0.7552 (0.68543) + 0.72813
1+ 0.68543

_ 0.51764 +0.72813

=0.7391
1.68543

X, =0.7391, k=2

_ 0.7391 sin (0.7391) + cos (0.7391)
1+ sin (0.7391)

X3

_ 0.7391(0.67362) + 0.73908 _ 0.49787 + 0.73908
1+ 0.67362 B 1.67362

X3 = 0.7391, .. X, =Xj3.
Further continuation is not necessary.

Hence the root is 0.7391 correct to 4 places of decimals.

Example: 3

The equatian 4x = €* has two roots one near 0.3 and the other near 2.1.
Find them correct to 4 places of decimals.

Solution:
Let f(x) =4x —e*;, f'(x) =4-¢€"
Given x = 0.3

Newton’ Raphson Formula is

Xks1 = Xk — ,f(xk)
(X
4x, — e
= Xy — __'i__;._
4-e’
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X, (4 —e™)—4x, +e™
4 - e

4x, — X, €%k —4x, + e’

4~ e
« _ e’ —x, e e (1-x,)
k+1 = =
4 — exk 4 — %

k=0, X =0.3
S e®® (1-0.3) _1.349859 (0.7) _ 0.9449012
YT 4_e%3 T 4-1.349859 2.650141

= 0.35655

k=1, x; =0. 35655

e%3%%%® (1-0.35655) 1.4284 (0.64345)

R 4 _ 035655 4 —-1.4284
= 09191 53574
2.5716

K=2, x2=0.3574

o o €% (1-0.3574) _ 1.42961(0.6426)
3 4 _ 03074 - 2.57039

= 0.3574
Xa = X3

Hence the root near 0.3 is 0.3574
Given xq = 2.1

e’ (1-2.1) _8.1662 (-1.1)

Xy =

4 — g2 —4.1662
— 8.98282
x| = 2202 _ 5 1562
"7 41662
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k=1, x{=2.1562
_ e?"%2 (1_2.1562) _ 8.6375 (-1.1562)
4 — 21562 —4.6375
X = 2.1535
k=2, X,=2.1535
e21%%% (1-2.1535) _ 8.61496 (-1.1535)
4 — 2153 — 4.61496

X3 = 2.1533
k=3, xg=2.1533

>
)
1

X3 =

e?'%% (1-2.1533) 8.6132(-1.1533)
4 — 21535 - 46132

Xq4 = 2.1533, X3 =X4

Xq =

Hence the root near 2.1 it is 2.1533

Example: 4
Find the double root of x* — 5.4x*> + 9.24x — 5.096 = 0. Correct to first
decimal place given that it is near 1.5.

Solution:
Let f(x) = x> — 5.4x2 + 9.24x — 5.096
f(x) = 3x* — 10.8x + 9.24

Formula:
A f(x)
F(x)= x-—
(%) 00
2f(x)
- F =y
00 =X Ty
= xo 2(x® -5.4x% +9.24 x —5.096)
3x? -10.8x + 9.24
_ 3x® -10.8 x2 +9.24 x - 2x® +10.8 x* —18.48 x + 10.192
3x% -10.8 x + 9.24
3
F(x) = x° —9.24 x +10.192

3x%2 -10.8x+9.24

Xk 7924 %, +10.192
T 32 ~10.8 x, +9.24
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Hence k =0, X0 = 1.5

. _(1.5)° —9.24 (1.6) +10.192
' 3(1.5)2 —10.8 (1.5) +9.24

_ 3.375 - 13.86 +10.192 -0.293
6.75-16.2+9.24 -0.21

=1.3952

k=1, xy=1.3952

. _ (1.3952)° 9.24(1.3952) +10.192
27 3(1.3952)% - 10.8 (1.3952) + 9.24

_ 2.7159 - 12.8916 +10.192 - 0.0163
5.8399 — 15.06816 + 9.24 —0.01154

=1.4125
k=2, x=1.4125

_ (1.4125)° —9.24 (1.4125) + 10.192
3(1.4125)? —10.8 (1.4125) + 9.24

x
&
l

2.81803 — 13.0515 +10.192 _ —0.04147
598547 — 15.255 + 9.24  —0.02953

1.4043

X3
k=3, x3=1.404

_Q 4043)% -~ 9.24 (1.4043) + 10.192

X
T3 (1.4043)2 —10.8 (1.4043) + 9.24
_ 276936 —12.9757 +10.192 _ ~0.01434 14603
501618 —15.166 + 9.24 ~0.00982
Example: 5

Find an iterative formula to find JN (where N is a positive number) and

hence find J§
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Solution:

Letx = VN
x*-~N=0
2_.
Let f(x) = x* =N = f(x)=2%; oy = @ = 25 N
oL

_ o N 1 N
O = O ~—+—=—|0; +—
2 20, 2 o;

o, = % (ai + —r\llj is the iterative formula to find N
o

To find ¥5, put N =5

Also x = \/5 lies between 2 and 3.

SOy =1(0c0 +—5-J=—1-(2+§)=2.25
2 Qg 2 2
_ 1 5
o, = —12.25 + — | =2.23611111
2 2.25
1 5
a; = —|2.23611111+ ——— | =2.23606798
2 2.3611111
Similarly, a4 = —1—((13 + S =1(2.23606798 + S )
2\ Oy 2 : 2.23606798

o, 2.23606798
Hence the approximate value of V5 is 2.23606798

Exercise:

1. Find the positive root of f(x) = 2x® — 3x — 6 = 0 by Newton — Raphson method
correct to five decimal places.

2. Using Newton Raphson method find the root between 0 and 1 of x® = 6x — 4
correct to 5 decimal places. _

3. Find an iterative formula to find the reciprocal of a given number N and hence
: 1
find the value of 19"

4. Using Newton’s method, find the root of the equation x* — 3x — 5 = 0

5. Find a real root of x> + 2x* + 50x + 7 = 0.
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4.4 Method of False Position or REGULA FALSI
Suppose we have to solve the equation
f(x)=0

Let f(a) and f(b) have different signs. Let M and N be respectively, the
points x= a x = b.

y
Q
f(b)
M
X 0O : N X
f(a){
Ao

Let ¢ be the point (x = a ) where the graph y = f(x) crosses the axis.
Then « is the true value of the root of the equation f(x) = 0.

Let P, Q be respectively the points whose abscissaarex=aandx=b

Let PQ intersect the x — axis at C;(x = x;) A® PMC, and ¢, NQ are similar.

PM _ MG,
NQ C,N

f(@) x,-a

(ie) f(b) b-x,

1®)]_ b-x,

(ie) |f(a)] x,-a
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fo)+|f@)| b-a
|f (2)] T x,—a

(b-a)|f(a)]
[T (B)[+[f(a)]

Hence the first approximation to the root is x;

(ie)y xy =a +

|f(a)||b-a
|f (@) +|f ()]

wherex;=a+h&h=

Find the sign of f(x4) and if has a sign different from f(b) continue the process.

f(x b-x

Then x, = x4 + hy where h,; = [F x| |
|f(x1)[ + |f (b)|

By continuing this process,

We get X3, X4 ........ which will converge to a.

This method is known as method of Regula Falsi or false position.

Example: 1
Solve the equation x3 — x — 1 = Q correct to 4 places of decimals

Solution:

- 3 _ v
Let f(x) = x X—1 [f(1)=~1,f(2)=5

Takex =1, = f(1)=(=1)°=(=1)-1=—1 ~-rootiand 2
_1+2 3
, = _3
v - 1.5 = f(1.5) = (1.5)° - (1.5) — 1 2 2
XO:1.5
- 0.875 f(1.5)=0.815
~1&1.5 |

Hence the root lies between 1 and 1.5

Formula:

=g (b —a)lf (a)
2 [f(0)|+|f(@)]

Xo=a=1, xs=b=1.5
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(1.5-D (D} _,, 45-D
[1]+10.875| 1+0.875

= 1.2667
f(xz) = (1.2667)° — 1.2667 — 1

= —-0.2142
X3 = 1.5, x, = 1.2667

0.2142(1.5-0.2142)
0.2142 +0.875

. Xz = 1.2667 +

= 1.3229
f (x3) = (1.3229)% — 1.3229 — 1

— 0.0077

Hence the root lies between 1.3229 & 1.5

0.0077 (1.5 -1.3229)

X4 = 1.3229 +
0.0077 + 0.875
= 1.3245
f (x4) = (1.3245)° — 1.3245 —1

= —-0.0009
x, =1.56=Db, x, =1.3245

0.0009 (1.5 —1.3229)
1.3245 + 0.875

X =1.3245 +

= 1.3247
f (xs) = (1.3247)% — 1.3247 - 1

= 2.32462342 — 1.3247 - 1
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= ~ 0.00007657978

The root lies between 1.3247 & 1.5
.00007657978 (1.5-1.3247)
00007657978 + 0.875

Xg = 1.3247 +

Xe = 1.3247 + 0000134242987

=1.324715
0.875076579 471534

Hence the root is 1.3247 correct to 4 places of decimals.

Example: 2
Find the positive root of the equation x = cos x correct to 4 places of
decimals.

Solution:
Let f (x) = x — cos x

Takex=0

f(O)= 0~cos0=-1

x
I

1,f(1)=1-cos 1=1-0.54030 = 0.4597

Xo = —— =0.5

Hence the root lies between 0.5 and 1
f (0.5) = + (0.5) - cos (0.5)
= - 0.3776
f (1) = 0.4597
Xo=a=05x1=b=1

0.3776 (1-0.5)
0.3776 + 0.4597

Xo = 05+

= 0.7255
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f (x,) = f (0.7255) = (0.7255) — cos (0.7255)

= - 0.0227
X, =a=0.7255,x,=b =1

0.0227 (1-0.7255)

Xz = 0.7255 +
0.0227 + 0.4597

= 0.738945

f (0.738945) =0.738945 — cos (0.738945)
= 0.000235

The root lies between 0.738945 and 1.

0.738945 x 0.459698 + 1x 0.000235

Xa = 0.459698 + 0.000235
= 0839927 _ 4 739079
0.450933

The root is 0.7391 correct to 4 decimal places.

Example: 3
Solve for a positive root of x* —~ 4x + 1 = 0 by regular Falsi method.

Solution:
letf (x)=x*—-4x+1=0

f(1)=-2=-ve,f(2)=1=+ve, f(0)=1=+ve
. A root lies between 0 and 1.
Another root lies between 1 and 2.
We shall find the root that lies between 0 and 1.
Herea=0,b = 1.

_af(@-b(H@ _Oxf()-1xf(0) -1

i PRI =T —— =0.333333
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1 1 4
foxn=f[1) =1 -4 1+9=_02963
(x1) (3) 27 3

Now f (0) and f (1/3) are opposite in sign.

Hence the root lies between 0 and 13.

. o.f(4)-1%f0  -l5 _
Hence x; = f(J4)-f0  -1.2963 =0.25714

Now f (x,) = f (0.25714) = - 0.011558 = —ve.
The root lies between 0 and 0.25714

o3 o 0xf(0.25714)-0.25714f(0) _ —0.25714 _ 55454
f (0.25714) —f (0) —1.011558

f (x3) = f (0.25420) = (0.25420)3 — 4 (0.25420) + 1 = 0.0003742
The root lies between 0 and 0.25420

_ 0xf(0.25420) - 0.25420 x f (0)
f(0.25420) — f (0)

X4

-0.25420

= =0.25410
-1.0003742

f (x4) = (0.25410) = (0.25410)3 -4 (0.25410) + 1
= —~ 0.000012936.
~. The root lies between 0 and 0.25410

_ 0xf(0.25410)~0.25410 x f (0)
£(0.25410) - f (0)

X5

_ -0.25410  _
~1000012936 02410

-. Hence root is 0.25410
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Example: 4
Find an approximate root of x log,, x — 1.2 = 0 by regula — False method

Solution:
Letf (x) =xlog,, x- 1.2
f(1)=1log1-1.2=-1.2=-ve.

f(2) =2 x0.30103 - 1.2 = - 0.597940
f(3)=3x047712 -1.2 =0.231364 = +ve.
Hence a root lies between 2 and 3.

_ 2(f(3))-3f(2) 2x0.23136 — 3 x(~0.59794)
1 f(3)-f(2) 0.23136 + 0.59794

= 2.721014
f(x4) =1(2.72104) = (2.721014) log (2.721014)
=-0.017104

The root lies between 2.721014 & 3
_ X: X F(3)-3 xf(xy) 2721014 x0.231364 - 3 x(-0.017104)

£(3)~f (x,) 0.23136 + 0.017104
, = 068084 24021
0.24846

f(x?) =f (2.7402) = 2.7402 x log (2.7402) - 1.2
= —~0.00038905
-. The root lies between 2.740211 and 3.

v = 2.7402xf(3)-3xf(2.7402) _2.7402x0.23136 + 3 x (0.00038905)
> f(3)—f (2.7402) N 0.23136 + 0.00038905

_ 063514

= ————— =2.740627
0.23175
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f (2.740627) = (2.740627) log 2.740627 — 1.2

0.00011998.
The root lies between 2.740211 & 2.740627

2.7402 x f (2.7406) — 2.7406 x f (2.7402)

x =
* f (2.7406) - f (2.7402)
_ 2.7402x0.00011998 + 2.7406 x 0.00038905
0.00011998 + 0.00038905
i = 0001 3950 _ 5405
0.00050903

Hence the root is 2.7405.

4.5 BISECTION METHOD
To solve the equation f (x) = 0,

First, we find two numbers a x b such that f (a) and f (b) have opposite
signs.

Then the root lies between a and b.

a+b a+b

First, we shall take as the first approximation, let x4 = 5

Find f (x4) and if it is not equal to zero. Then the root lies either between a
and x4 or between x, or between x, and b.

From the sign of f (x4),
We can locate the position of the root.
Suppose f (x,) and f (a) have different signs then the root lies between x, and a.

+a

: .. X
Hence the second approximation is —

Repeating the process, approximations Xq, X2, X3 . . . . . are obtained.
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. . . b
After k bisections, the length of the sub-interval which contains Xx IS o

b-a

Hence | xk — a | < K

Ask —»> o, X, —> a

If the error is to be made less than a small quantity (say) &, then

(i.e.) 2% >

)

log (———b ga)

Taking logarithms k >
log 2

This formula is useful in the determination of the number of Bisectors required to
achieve a desired accuracy.

Example: 1

Find the positive root of the equation x3 — x — 1 = 0. Correct to 4 places of
decimals.

Solution:
Letf (x)= x*-x-1

Takex=1=f(1)=(1)%-1-1=-1
x=2=f(2)=(2)-2-1=8-2-1=5

Hence the root lies between 1 and 2.

f(1.5)=(1.5)*-1.5 -1

= 0.875

162



Hence the root lies between 1 and 1.5

1+1.5 _ 125

X4 =

f(1.25) = (1.25)®* — 1.25 — 1 = — 0.2969

Hence the root lies between 1.25 & 1.5
1.25+1.5 275
2

=1.375

Xo =

£(1.375) = (1.375)° — 1.375 — 1
= 0.2246

Hence the root lies between 1.25 and 1.375

X5 = 1.25+1.375 _ 1.3125

2

f(1.3125) = (1.3125)% — 1.3125 — 1
= -~ 0.515

Hence the root lies between 1.3125 and 1.375
1.3125+1.375 _ 2.6875 —1.3438

2 2
f(1.3438) = (1.3438)%> — 1.3438 - 1

Xgq4 =

= 0.1838

Hence the root lies between 1.3125 and 1.3438
1.3125+1.3438 2.6564

=1.3282
2

X5 =

f(1.3287) = (1.3287)% — (1.3287) — 1
= 0.0170

Hence the root lies between 1.3125 & 1.3287
_ 1.3125+1.3282 2.6412

X = > =1.3204
f (1.3204) = (1.3206)° — 1.3206 — 1 = — 0.018340 — 1.3206 — 1
= 1.3206
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f(4)=4%-9(4)+1=64-36+1=28

A root lies between 2 & 4.
2+4. - 3

Let xg =

Now, f(3)=3°-9(3)+1=27-27+1=1

Hence the root lies between 2 and 3.
2+3 =25

X4 =

f (2.5) =(2.5)3 —-9(2.5) +1
= — ve.,
The root lies between 2.5 and 3.

X, = 2'52+3 =2.75

f (2.75) = (2.75)° — 9 (2.75) + 1
= — ve.
The root lies between 2.75 & 3

x3—-—(275+3)—5—27£—2875

f (x3) = f (2.875) = (2.875)°> — 9 (2.875) + 1
= —ve.
.. The root lies between 2.875 and 3

xe= > (2.875+3) = 2212 = 2.9375

f (2.9375) = (2.9375)% — 9 (2.9375) + 1

= —Vve.
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The roots lies between 2.9375 and 3

5.9375 _ 2 9688

X5 = -;- (2.9375 + 3) =

f (2.9688) = (2.9688)3 - 9 (2.9688) + 1
= + ve.
The roots lies between 2.9688 and 2.9375

5.9083 _ 2.9532

Xe = % (2.9375 + 2.9688) =

f (2.9532) = (2.9532)° — 9 (2.9532) + 1
=+ ve.

Hence the root lies between 1.3206 and 1.3287

=1.3243

1.3204 +1.3282 2.6486
T 2 2

f (1.3243) = (1.3243)° — 1.3243 + 1
= —Vve.
Hence the root 1.3243 & 1.3282
_1.3243+1.3282 26525

Xg >
=+ ve.

=1.3263

f (1.3263) = (1.3263)%> — 1.3263 + 1

= + ve.

Xg= yz (1.3243 + 1.3263) = 1.3253)

f (1.3253) = + ve.
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The root lies between 1.3243 & 1.3253

1 2.6496

X109 = > (1.3243 + 1.3263) = =1.3248
f (1.3248) = (1.3248)% - 1.3248 + 1
= + ve
The root lies between 1.3243 & 1.3248
X, = -;- (1.3243 + 1.3248) = 20991 _1 30455
f (1.32455) = (1.32455)% — 1.32455 + 1
= - ve.
The root lies between 1.3248 & 1.32455
X5 — (1 3248+ 1.32455) = -2$=1 3247
f(1.3247) = (1.3247)% - 1.3247 + 1
= - ve.
The root lies between 1.3247 & 1.3248
X453 = —;- (1.3247 + 1.3248) = 2'6495=1.32475

. The approximate root is 1.32475

Example: 2

Assuming that a root of x3 — 9x + 1 = 0 lies in the interval (2,4), find that
root by bisection method.

Solution:
Letf(x)=x®-9x+1

f(2)=2°-9(@2)+1=8-18+1=-11
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The root lies between 2.9735 and 2.9532

X, = 2.9375 -; 2.9532 _9.8907 _ 2 0454

f (2.9454) = (2.9454) — 9 (2.9454) + 1

= + ve.

The root lies between 2.9375 and 2.9454

Xq = 2.9375 42r 2.9454 _ 5.82829 _ 29415

f (2.9415) = (2.9415)% - 9 (2.9415) + 1

— ve.

The root lies between 2.9415 and 2.9454

Xq = 2.9415 —21— 2.9454 _ 5.8269 — 20435

f (2.9435) = (2.9435)% — 9 (2.9435) + 1

= +ve.

The root lies between 2.9415 & 2.9435

Xq = 2.9415+2.9435 _5.8850 _ 5 0405
2 2
f (2.9425) = (2.9425)° — 9 (2.9425) + 1

= —Ve.

The root lies between 2.9425 & 2.9435

Xqy = 2.9425 ;2.9435 _5.8860 _ 59430

f (2.9430) = (2.9430)° — 9 (2.9430) + 1
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= <+ ve.
The root lies between 2.9425 & 2.9430

X, = 2.9425 ; 2.9430 _ 5.8855 _ 294275

f (2.94275) = (2.94275)° — 9 (2.94275) + 1
= 25.48356042 — 26.48475 + 1
= .00118958
Approximate root is 2.9429

Example: 3
Find the positive root of x — cos x = 0 by bisection method.

Solution:
Letf (Xx) = x - cos X
f(O)=0-cos0=-1
f (0.5) = 0.5 — cos (0.5)
f(0.5)=-0.37758
f(1)=1 ~-cos 1
f (1) =0.45970

Hence, the root lies between 0.5 and 1.

_0.5+1 - 0.75

0 =

f (0.75) = 0.75 — cos (0.75)
f (0.75) = 0.018311
The root lies between 0.5 and 0.75

X, = 0.5 +20.75 < 0625

f (0.625) =0.625 ~ cos (0.625)
= 0.18596
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.. The root lies between 0.625 and 0.750

1
Xy = > (0.625 + 0.750) = _‘_1_327_5 = 0.6875

f (0.6875) = 0.6875 — cos (0.6875)
= - ve.
The root lies between 0.6875 and 0.75

_ 06875+0.75 1.4375
> =

=0.71875

X3

f (0.71875) = 0.71875 — cos (0.71875)
= - 0.033879

The root lies between 0.71875 and 0.75

=0.73438

Xa

_ 0.71875+0.75 _ 1.46875
2 T2

f (0.73438) = 0.734338 — cos (0.73438)
= - 0.0078664 = - ve.

~. The root lies between 0.73438 and 0.75
_ 0.73432 +0.75 _ 1.48438 _0.742190

Xs

f (0.742190) = 0.742190 — cos (0.742190)
= 0.0051999

=+ ve.

The root lies between 0.73438 & 0.742190

Xe = % (0.73438 + 0.742190)
= 0.73829

f (0.73829) = 0.73829 — cos (0.73829)
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= - 0.0013305

The root lies between 0.73829 and 0.74219

X7 = % (0.73829 + 0.74219) = 0.7402

f (0.7402) = 0.7402 — cos (0.7402)
= 0.0018663

The root lies between 0.73829 & 0.7402

_ 0.73829 + 0.7402
2

==0.73925

8

f (0.73925) = 0.00027593
The roots lies between 0.73829 & 0.73925
_ 0.73829 +0.73925

o7 2
= 0.7388

The root is 0.739.
Example:
Using bisection method, find the negative root of x3 — 4x + 9 = 0 by
bisection method.

Solution:

Letf(X) =Xz —-4x+ 9
f(—x)=x>+4x+9

The negative root of f (x) = 0 is the positive root of f (—x) = 0.
We will find, the positive root of f (-x) = 0

(ie)d (X)=x>—-4x+9 =0
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¢ (2)=—-veand ¢ (3)=+ve

-. The root lies between 2 and 3

Hence X = 2+3

=2.5

¢ (2.5) = (2.5)° — 4 (2.5) - 9

= —-Vve

The root lies between 2.5 and 3
Hence x; = % (2.5 +3) =275

o (2.75)

(2.75)° — 4 (2.75) + 9
= + ve.

The root lies between 2.5 & 2.75
1
Xo = N (2.5 + 2.75)
= 2.625

& (2.625)

(2.625)° — 4 (2.625) -9

1.4121 = — ve.

The root lies between 2.625 and 2.75
1
2
$ (2.68795) = (2.6875)3 — 4 (2.6875)

Xs= — (2.625 + 2.75) = 2.6875

= — Ve.

The root lies between 2.6875 & 2.71875

X5 = —;— (2.6875 + 2.71875)
= 2.703125
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¢ (2.703125) = (2.703125) — 4 (2.703125) — 9

= —ve.
The root lies between 2.703125 & 2.71875

1

Xg = > (2.703125 + 2.71875)

= 2.710938

¢ (2.703125 = (2.703125)% — 4 (2.703125) — 9

19.92318445 — 10.8437529
0.07943245

The root lies between 2.703125 and 2.710938

‘= 2.703125;2.710938 - 27070315

¢ (2.7070315) = (2.7070315)° — 4 (2.7070315) — 9

= 19.83717973 — 10.828126 — 9

= 0.00905373.
The root lies between 2.703125 and 2.7070315

xg = 2.703125 +22.707O315 = 2.70507825

¢ (2.70507825) = (2.70507825)% — (2.70507825) — 9

= 19.79427035 - 10.820313 + 9
= —0.02604265
The root lies between 2.70507825 & 2.7070315

2.70507825 + 2.7070315

Xg = 5 = 2.706054875
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o (2.706054875)

(2.706054875)% — 4 (2.706054875) ~ 9

19.8157173 — 10.8242195 — 9 = .0085022

The root lies between 2.7070315 and 2.706054875

Xqg = 2.707031 42—2.706054 — 2 70654

o (2.70654) = (2.70654)° — 4 (2.70654) — 9

19.82637653 — 10.826169

.00021653

The root lies between 2.706054 and 2.70654

_ 2.706054 +2.70654

= 2.706297
2

X190

¢ (2.706297) = (2.706297)° — 4 (2.706297) - 9

= 19.82103682 - 10.825188 - 9 = — .00415118
The root lies between 2.706297 and 2.70654

Xyp = 2.7062972+ 2.70654 _ 2 7064185

Y 12.7U64185) = (2.7064185)% — 4 (2.70654) — 9

= 19.82370656 — 10.82616 — 9
= —.00245344
The root lies between 2.7064185 and 2.70654

_ 2.7064185 +2.70654

> = 2.70647925

X13
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¢ (2.70647925) = (2.70647925)° — 4 (2.70647925 — 9)

= 19.82504151 - 10.825917 - 9
= .0008755
The root lies between 2.70647925 & 2.70654

X14 = 2.70647925 + 2.70654 _ 2 706509625

2

Hence the negative root of the given equation is — 2.7065

Exercise:
1. Find a positive root of the following equation by bisection method.
i) e* = 3x

i) x*+x2-1=0

iii) 3x = /1+sin x

ivix*+3x-1=0
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UNIT -V

SOLUTIONS OF SIMULTANEOUS LINEAR EQUATIONS

5.1 Let the system of n simultaneous linear equations be

A XqgFta XX+ ... + aq, Xn=b1
Az X1 +apXot+. .. .. + Az, Xn = b2
................................. (1)
Ani Xy +ameXot .. ... oo + ap, X, = b,
This system of equations can be put in the form ~
A X= B (2) where A is matrix (A @12 e a1n
dz1 A22 . . .. ... azn
an1 anz ......... ann
_ p
and X is the column matrix {x; X2 . ... X,}
and B is the column matrix {b; b, .. .. b,}

If A is a non-singular mairix, its inverse A™' can be found.
Multiplying equation (2) by A™’

WegetA"AX=A"'B
(ie) X=A"'B

A" B is a column matrix containing n elements. Equating the elements of A
with that of A™' B. We get the solution of the system.

Another method of solving the system of equations (1) of article 1 is by that
is known as Cramer’s Rule.
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Qi1 12 . - . . .. by..... din
andnz. ... .. by..... 1n where the kg column of |A] is
1 vee ceae e rep!aced by the CO'Umn
xk s RN (R £ o PR ¢ D DU b
A {b1| b2’ 'n}
An1 An2 bn ann
b1 a42. - . oo a1
b, - - N don
TRUS | .. . e
X, = ! =
g T e e
lAl bn dn2 ann
1 i 11 b1 d1z .. ... a1n
X,=— = (@21 b @ ...... azn
Al e e,
...................... and
An1 Pn an2 dnn
SO on.

In practice these methods are useful when the number of equations in the
system is at the most four.

For larger number of equations is practice these methods are laborious.
We shall give below some methods which are useful solutions of linear
simultaneous equations with larger number of equations.
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5.2 GAUSS’ METHOD
Let the system of n simultaneous linear equations be

Ay X tapeX+..... + 81n Xn = by ™\ (1)

Ay X tagXet. ..., + az, Xn = by (2)

------------------------------

an1 X1 + anz Xz +...... ann Xn = bn J ] (5.)

. a
Retain the first equation as it is Multiply equation (1) by + -a—zl and subtract
11

its from equation (2)
a a a a
2y, X=2L X, +—2L X @, Xp + et 8yy X—2 X, =b, x 2L (A)
a,, ay a4 ay

Subtract (A) from (2)

a,, a a
By —a, )X, +|| =2 XAy, [—ay | X2+ .. ... +|a, x 22 -a, | =bx=Z _p,
aq4 a4 11
O0.Xy +boaXo+baaxag+...... + b, Xn = Cy
a a
where b22 =22 Xa2—A22, - « « 2 v .. b2n =aunnX - _ a2n
11 a11
a
C1 =b;y X -2 _ b2
a4

Then the equation (2) will reduce to an equation with no x; term.’

Similarly reduce equation (3), (4) ..... (n) with no x4 term.
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These equation will reduce to

= PRED O > PEID ¢S + 34 Xp = b+ (a‘l)
0+boyXo ¥ ....oe.. + by Xy = Cy (az2)
O+bpXx+...... + bgy Xp = C. (33)

O + bnz Xz + ... bnn Xn = -e‘l (an)

Retaining the first two equations and Eliminating x, from the remaining

equations, Multiply equation a, by Eg-z—and substract it from equation as.

22
b
0A+bzzx-t3—3—2—x2+b23x-t2§—2-x3+....+b2nxl—3—33-=C1x——"?- (B)
22 b 22 b,
Substract (B) from (as)
b b
(baz — baa) X2 + (bza X-?iz——baa) Xz +....+ (b2n x——g’g-——b:,,n]x]h =(C1 x—3—2—-—c2J
b22 b22 b22
0X2+C33X3+ ....... +C3nxn—d1
b3, - b,
where Cz3 = bos X —= — b3a, .. ... Can = boy X —= — ban
D2 D2,
d, = Cix "b—32~ - C2
D2
Similarly
0+C43 X3+ ..... +C3n Xn=d2
0 +C,3 x5 +..... + Cpp Xy =

These equations will reduce to
anXistanpxat... .. + @1n Xn = by

-------------------------------------------------

-------------------------------------------------
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By continuing this process

Ay XqtapeXxX+... .. + aqn Xn—b1
bos Xo + ......... + bo, X, = C4
Cazxz + ...+ Cs, X, = d;

From the last equation x, can be found. Substituting the value of x, is the
last but one equation.

We get x4

Similarly by means of back substations Xy, Xz, X3 . . . . . Xnp-2 Can be
determined.

This method is known as Gauss' Elimination Method.

Example: 1
Solve the equations

4x — 3y = 11
3x+2y=4
Solution:

Eliminating x from the 2" equation by subtracting % of the equation (1)

Multiply equation (1) by %

3 3 3
4x —X-3x —y=11x —
><4X ><4y x4 , B B (A)
2+ 2
Subtract (A) from (2) 4
8+9 -17
3 3 4 4
Bx-3x)+2-(-3)x =)y=4-11x = — —
4 4
.16—33_2
0 +.1_.7..y=_1_7 4 4
4 4
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Hence the system of equations become

4x - 3y = 1
4 4
17 4
H = - — —_—
ence y 7 17
Ly =-1

Substituting this value in equation (1)

we get
4x - 3 (-1) = 11
4x + 3 =11

4x =11 -3

8
4x =8 > x = =
4

LX=2
Another Method,
4 -3 11
3 2 4
4 -3 11
0 7 |1z
4 4
1 -
Hencey = -1, x=1_::51(_12=

2
4

Example: 2

Soive the equations.
3x+4y + 5z = 18

2X -y + 8z =13

SXx -2y + 7z =20
Solution:
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The working can be exhibited as follows:

3 4 5| 18
= | 2 ) 8l 13
5 2 71 20
3 4 5| 18 a
__:‘_1 J_4_ 1 Rz-—)Rz—?R1
- 3 3
—26 _'__4_ -10 Rs - Ra—' g— R1
3 3
3 4 5| 18
= ~11 14 3
Rs » R3 - 13 R
204 | 204 > T
11 11
204 _ _ 204 _ 204 11
—_—ZF — > Z=
11 11 11 204
z=1
_ 3-14() - -1,
~11 ~11

- 18-5()-4 () _ 18-9

=?_=3
3 3 3

.. Hence the solution: x=3,y=1,z=1.
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a21R2—)2——§—x3=0

2 —11
822=—1—§X4=——3—

2 14

=8 - — 5= —

2= 8-3 %% o
C1=

5
a31=5—§-x3=0

5 -26
332——2—-§X4——§—

5 4
833—7—-:—3-X5=—3-

S

di=20- — x18=-10
3

as; = R3—> 13 +%—%—(—11)= )

Asg —> 2 + % (14)

204
—_)  —
11



Example: 3
Solve the equations

Xty+z+w=2
2Xx-y+2z-w=-5
3x +2y+3z+4w =7
X-2y-3z+2w=5

Solution: ,
The working is given below.

1 1 1 1 2

=12 -1 2 -1 -5

1 1 1 1 2
R2—2R1 —> R2
=1 2 -3 0 -3 -9
R3—3R1 - R3
0 -1 0 1 1
R4—R1 —> R4
0 -3 -4 1 3
1 1 1 1 2
=10 1 0 1 3 1
R2 —> — R2
0 -1 0 1 1 3
0 -3 -4 1 3
1 1 1 1 2
=10 1 0 1 3
R3 - R3+R2
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ay=2-2(1)=0

ax, =-1-2 (1)= -3

a3 =2 -2 (1)=O

Ay =-1-2 (1)=-—3
Ci=-5-2(2)=-9
a31=3—3(1)=0
332=2—3(1)=1
a33=3——3(1)=0

8 =4-3(1)=1
di=7-3(2)=1

as =1 -1=0, az =-2-1=-3
a43=—3'—1=—4, Ay = 2-1=1

azy =0
dzr = -1+ 1 =0
aszs =0, Az = 1+1 =2



1 1 1 1 2
=10 1 0 1 3
Interchanging Rz and R4
0 0 -4 -2 0
0 0 0 2 4
2w=4
w=2
S = 2(2) =1
-4
y=3-1(2)=1
x=2-2+1-1=0

.. The solutionisx=0,y=1,z=-1, w=2.

Example: 4
Solve the system by Gauss — Elimination method 2x + 3y— z = 5; 4x +4y — 3z =3
and 2x — 3y + 2z = 2.

Solution:
The system is equivalent to

2 3 -1

X 5
4 4 -3 y = 3
2 -3 2 z 2
A X = B
(A,B) = 2 3 -1 5

Taking a;; = 2 as the Pivot reduce all elements below that to zero.

_ R, > R, -2R
(A, B) ~ 2 3 1 5 2 2 1

0 -2 -1 -7 Ris »> R3 - Ry

0O -6 3 -3
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Taking the element -- 2 in the position (2, 2) as pivot, reduce all elements
below that to zero.

(A:B)~ R3—)R3—-3R2

0 0 -6 18

Hence 2x + 3y —z =5
-2y —-z=-7
6z=18 = z=3
-2y -3 =-7
2y = -7+3 = -2y=_4
y =2
2x+3y —-z=5
2x+3(2)-3=5
2x=5-6+3 = 2x=2
x =1
The solutionx=1,y=2, z =3,

Example: 5
Using Gauss — Elimination method, solve the system

3.15x — 1.96y + 3.85z = 12.95
2.13x + 5.12y — 2.89z = 8.61
5.92x + 3.05y + 2.15z = 6.68

Solution: ,
/3.15 -1.96 3.85 X 12.95
5.92 3.05 2.15 z 6.68
A X = B
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(A, B) =

3.15
213
5.92
3.15 -1.96
- 0 6.4453
0  6.7335
3.15 —1.96
- 0 6.4453
0 0

3.15x - 196y + 3.852=12.95

-1.96

5.12

3.05

3.85
-2.89

2.15

3.85
-5.4933

-5.0855

3.85
-5.4933

0.6534

12.95
-8.61

6.88

12.95

-17.3666

- 17.4578

12.95
-17.3666

0.6853

6.4453 y — 5.4933 z = — 17.3666

0.6534 z = 0.6853

, - 06853
0.6534

, = 54938 ( .0488) - 17.3666

= 1.0488

6.4453

=1.8005

- 12.95+1.96(1.8005) + 3.85 (1 .0488)

3.15
x = 1.7089
. The solution is
x =1.7089, y = 1.8005

z = 1.0488
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Exercise

1. Solve the following simultaneous equation using Gauss — Elimination method.

i) x+2y+5z=23
3x+y+4z=26
6x +y+7 z =47

ii) xX+y+3z=-6
2x +4y +z2=7
3x+ 2y + 9z = 14

i) x + 2y —z = -1
3Xx-y—-2z=-5
x-y-3z=0

iv}2x -y +3z+w=29
X+2y+z-2w =2
3x+y-4z+3w=3
5x -4y +3z-6w=2

v)4.12x-9.68y +2.01z=4.93
1.88x-4.62y +5.50z=3.11
1.10x-0.96y + 272z =4.02

Answer:

i) x=4, y =2, z=3
iyx=1, y =1, z=1

i) x = 2, y = -1, z=1

iv) X = 2, y = 2, z=2,w=1.
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5.3 Gauss Jordan Methods

This method is a modification of the above Gauss elimination method. In
this method, the coefficient matrix A of the system A x = B in brought to a
diagonal matrix or unit matrix by making the matrix A not only upper triangular but
also lower triangular by making all elements above the leading diagonal of A also
as zeros. By this way, the system Ax = B will reduce to the form.

a, 0 0 0 0]b;
0 bpO0 O 0 |c

(1)
............................... da
0 0 0 0 oa,d,
From (1)
X, = Kn Xp = cz,x,--&—
Lan bj, T
Note:
By this method, the values of x;, Xa,...... Xn are got immediately without

using the process of back substitutions.

Example:1
Solve the equations
4x - 3y = 11
3x+2y=4
Sofution:
The working in given below
1
a1 = — x4 =
:>4 —3‘11\ r:
in= — X{=3)= —3
3 2|4 a2 = 5 x(-3) 7
= 11
C = /
_ 1 4
1 B R > - R 1
— 41 4 4 Az = — Xx3=1
1 214 R L ? 2
313 2 > 7 e Q= — X2=—=
3 273 3
= 4
di= 44
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1 __3 1_1
- 4 4
= o 1Z _17 Rz -> R2 R1
12| 12
-3/ 11
1 .
= 4 4 R2 —)"E R2
o 1 7
-1
1 o 2 3
= R + -
ﬁ'o 1,—1 1 > R1 P Rz
TX=2,y=-—1
Hence the solution: x =2,y = — 1,

Example: 2
Solve the equation

3x + 4y +5z = 18
2x - y+ 8z=13
Sx -2y + 7z = 20

Solution:

3 4 518
2 -1 8/ 13
5 -2 71 20
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az =

Az =

azq

a22

Cq

C

3 +§ = z
3 4 12
4_1n1_ 17
3 4 12
=0
= E 11:1
17 12
=12, -17
17 12
=1+0=1
3 3
=-2 + 2(1)=0
2 4()
11 3
= —+—-(—1
2 4()
= E = +2
4



az1=2—§- (3)=O
4 18 2
j 11 12 Rz—)Rz—g Ri = —1 2 4-—11
=10 — 3 1 a22-—-'5( )—?—5—
' 2, .. +14
5 -2 ~4_10] Rs > Rs=2 R, 323’8_5(5)" 3
3 3 3 5
a31=5—§(3)=0
S — 26
Qs = —2— —(4)= —
3 4 5018 R, > -3R, %, 347 3
=0 11 -14-3 ‘ 5, .. —4
=7— —(5)= —
3 a3 _ 3( ) 3

5 13 2| 5 Rs— ERS
aa1 = OI a22 = +111 a23=14

as;; =0,as2= '*'1'3_, as3=2

4 o\
3 0 11| 210 a“=3—ﬁ (0)=3
1 | 11 4 4
R, - Ry——R _ _
S 1 ez T T 8z = 4- 7 (11)=0
204| 204 4 -111
o o 220 13 ms_ 4 (g4 -1
1] 11 Rs >R 7R 92 TR T
| 13
= 0- —2(0)=0
as4 11()
13
a;;=13—- — (1)=0
s2 = (1)
13 204
a3 = 2— — (—14)= ==
% 11 O
33 0 1112100 R, »>11R; a; = 11(3) = 33, a12 = 11(0) = 0
A B R » MR a13-.-='11(%1-)=111
0 0 111 3 504 3 . N
a;1= —(0)=0,a3,=—(0)=0
31 204() 32 204()
fo= 11204
¥7 204 7 1
133 0 0199 a;; =33—-11(0) =33
=0 1 ohq| R 2 R-1MRs ap=0-111(0) =0
R, +14 R, @1 =111-111(1)=0
0 o0 11| Re—>Re 3 ap =0+ 14(0) = 0

az =11+14(0) = 11
az3 = —-14+14(1) =0
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1
a; = _1.(33) = 1
"33

1 0 03| R, > LR, _ o
=0 1 0f 1 33 B2 =081 =0
0 0 111 R2—>—1—1R2 321=0322=ﬁ(11)=1
a23=0
- The solutionx =3,y =1,z= 1.
Example :3
X+y+z+w=2
2X —y 42z —w=-5
3Xx + 2y +3z +4w =7
X—-2y-3z+2w =25
Solution:
The working is given below:
1 1 1 2
:>2 -1 2 -1]-5
3 2 3 7
1 -2 -3 2|5 ax=2-2(1)=0
az=—-1-2(1)=-3
az3=2—2(1)=0
axq=—-1-2(1)=-3
1 1 1 112 R, » R,-2R, as, = 3-3(1)=0
0 -3 o0 -3lo 332 = 2-3(1)= —1
— R; —» R3 +3 R, aszs=3-3(1)=0
0 -1 0 M1 R, - R, +R, Azq = 4-3(1)=1
0 -3 -4 13 a1 =1-1=0
A42 = -2-1= -3
A43 = -3-1= —4,
a44=2—1=1,
az; =0
1 1 1 12 > 1
o -3 0o -3l R3—>R3—%R2 2= ~-12(-3)=0
o 0] 0 2 4 axz3= 0
0 0 -4 4z Re-oR-Re 130
3
az1 =0

Q42 =-3+3=0
Q43 = —4-0= —4,
A4 =1+3 =4
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1

1 1 1 1 2 R2 - - _‘RZ
0 1 0 13 3
=
0 0 1 -1]3 2
1
Rs —» "z Ra
1 1 1 1 2
) 1 0 13 i
Interchanging R; and R
= o 0 1 _1l—3 ging Ra 4
0 0 0 I 2
1
1 0 1 0"3 . a1=1, a:2=0
- 0 1 0 1 Rz - Ri-R; a13=1, a14=0
0 O T -13
0 0 0 12
1 ] , :) a1=1, a12=0, a,3=0, a4 =1
= 0 1 0 1 Ri—>Ri-Rs az21=0, @z2=1, @23=0, a24=0
0 0 1 o1 R: > R,—- R, a31=0, a32=0, as3=1, a3 =0
0 0 0 12 R,5>Rs+Rs
1 0 0 0 o
0 1 0 0 1 R1 - R1_ R4
=
0 C 1 o1
0 0 0 1] 2

The solution: x=0,y=1,x=-1, w =2.

Example: 4
Solve the following system by Gauss — Jordan method.

5X1 +X2+X3+X4=4; X1 +7X2+X3+X4=12.
X1 + X2 + 6X3 X4 = =5; Xi + Xo + Xz + 4X4 = -6
Solution:

Interchange the first and last equation, So that the coefficient of x1 in the
first equation is,1. Then we have
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(A,B) =

©Co0Oo-= aaa

oo -=

(1

o O

(1

o

oo -

©C OO =

- o m] -

O 0o =0

©C 0o -=0

O.—\

b

O a0 o

4.5
-0.5
-3
—- 21

4.5
—0.5
- 0.6
—21

5.1
—-0.5
-0.6
—23.4

12
-5
4
-6} R, » R,— R,
18
1 R3 —)R3—'R1
R: > R+ 5R
34 4 4 1

_6

3

1 ZAR%
34

Rs2 — Ras2(4)

R3—>R%

-92
3 J R — Raa(14)
0.2
46.8
-9.2
3 ., Ry
0.2 23.4
2
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1 0 o o] 1 Rs —’R?’(“g)

_ o 1 o o 2 S
0o o0 1 0 -1 R; > Ra(- %)
0 o o -1 2

Ri — R4(5.1)

. The solution is
Xq = 1,X2=2, Xz = =1, x4 = -2.

Example: 5

Apply Gauss — Jordan method to find the solution of the following system
10x +y +2z=12, 2x + 10y +z = 13, X+y+5z=7.

Solution:
Since the coefficient of x in the last equation is unity, we rewrite the
equations interchanging the first and last. Hence the argument matrix is

1 1 S 7
(A,B)y=1 2 10 1 13
10 1 1 12
115 7}  R: >R+ (-2)R,
"‘"' 0 8 -9 -1 Rs — Ra. (—-10)R1

1 1 5 7
_9
~ -9 -1 R
0 1= % R, — %
0 -9 -49 | -58
( 3
1 1 5 7 o
_ . Rs — Rs|—
~lo 1+ =2 | 27 3(473)
8 8
o o -—473 |-473
\ 8 8 )
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(1 o A s
8 8 R, »> Ri— R
~lo 41 =2
8
0 0 1 1
\ /
9
R2 —> R2 + §R1
1 0 0 1 — 49
—~ o 1 0 1 Ry —» R+ (T)Rg
0 0 1 1

.. The solution is
x=1y=1z=1.

Exercise
1.
i) X+ 2y + 5z = 23

3x+ y+4z =26

6Xx + y+ 7z =47

i) x+2y+3z=6
2X+4y + z=7
3x + 2y + 9z = 14

i) x+2y—- z=-1
3X—y —-2z=5
XxX—y —-3z=0

iv) 2x— y+3z+ w=9
X+ 2y + z-2w =2
3x+ y—4z+ 3w =3
5X ~4y + 3z —Bw = 2

V) BX—-y+z=13

X+y+z=0
10x+y—-z=19
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5.4 Iteration methods
Suppose we have to solve the system of equations

aixx+by+ciz=dy, ... (1)
ax +byy+cz=d, ... (2)
a3x +b3y+c3z=d; ... (3)

Express x from equation (1), in terms of the other two variables
aix + byy + ¢4z = d,
aix =dyy—-byz-—-oc42

1
= ~ (dy —byy—¢42)  oononnl (A1)

1

Express y from equation (2), in terms of the other two variables
ax + by + coz= d,
boy =d; — axx — ¢z
= 1 (dz—cz—ax) ........... (A2)
b,
Express z form equation (3), in terms of the other two variables
asX + bgy + c3z = dj
C3z = dz — asx — bay

1
Z= — (dz—asx—bay) ........... (Az)

Cs

If x9, y©  z9 are the initial values of X,y,z respectively then

1 1
x M= ———(d1 - by y(O) - C1Z(°)), y(1)) - —-—(dg - a x(O) - CzZ(o)),
a, b,
1 . .
z" = — (ds - a;s X = by y®). We take the iteration scheme as [ X1 = F(x)]

3
proceeding in this some way, If the r™ iterates x, y, 20 the iteration scheme
reduces to

1
Xk+1=: (di — b1y —c1z)
1

1
Yee1 = — (dz — €2 Z¢ — ayx ) -B
b5 J

1

Cs

Zk+1

(ds — c3 xx — bayy) J
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To start with, assume K =0 & xo = 0, Yo = 0, zo = 0 substituting these
values in the equations of (B). We get x4, Y1, Z; the first approximations. Then
put k = 1 and the values of x,, y;, 2, in the system of equations (B). And get X, y..

z, the second approximations continuing this process.
We can get subsequent approximations of x ,y, z.

This method is known as Jacobi method.

Convergence of the iteration:
System of the equations (A) are

X =F, (y, z) where F, = g—(d1 - by — ¢412)
1

y = F, (z, X) where F, =bl (d2 — c2z — azx)
2

z=F;3 (X, y) where F3 = ci (ds — asx — bay)
3

The conditions of convergence are
oF| ,|9F2| , |9Fs <]
ox| | ox|

oF,| |oF,| . |oF,
oy oy oy

<

oF, oF, OF,

<|
ANEIME:

These in equalities are satisfied if
a_FL +|aF1|+IaF1|<l
ox| |oy| |ez|

6F2]+|6F2|
ox| |oy| [ez]
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Here |1 = o, 'QF—‘= by OB G
ox By a, {oz a,
Fol o _ 82 || _ |OFe] o _c2
oX bz’ ay , oz bZ
OF;| __as |[oF|_ by [6F3|___0.
OX Cs l I Cs l@zl
_9.1_+C_1<l
a, a,

(ie) |a; | +|c, |<|b, |

_bs

bl

(e) |as | + | bq |<|cs |

This condition is satisfied if the absolute values of the diagonal elements of
a, b, c
the matrix @, b, c,| are greater than the sum of the absolute values of the
a; by c,
other two elements in the row. Since we can arrange the equations in such a way
that the elements along the diagonal are dominant, we can take the rule as if in
each equation the absolute value of the largest coefficient is greater than the sum

of the absolute values of all the remaining coefficients in that equation, the

approximations converge to the true values. This condition is sufficient but not
necessary.

Example:1
Solve the equation 14x — 5y = 5.5; 2x + 7y = 19.3 by Jacobi method.
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Solution:
14x — 5y = 5.5
14x = 5.5 + 5y

1
= — (5.5 +5
X 14( Y)

2x + 7y = 19.3
7y = 19.3 — 2x

y = l(19.3 — 2X).
7
Hence we shall take the iteration scheme as
1
Xe1 = — (5.5 +5
k+1 14 ( Yk)

Yket = ;(19.3 + 2Xy)

First Iteration:
Let the initial values be (0, 0)

x=0,y=0

1 1
= —(6.5+5 = — (5.5
X4 14( Yo) 14( )

x; = 0.3929, y1 = ;(19.3 — 2x0) = -;-(19.3) = 2.7571

Second iteration:
Using these values in x; = 0.3929, y, = 2.7571

X = 1—}(5.5 + 5(2.7571))
= 1.3758

y2 = ;(19.3 — 2(0.3929))

= 2.6449

Third iteration:
Using the value of x, = 1.3758, y, = 2.6449

Xy = %(5.5 + 5(2.6449))
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= 1.3374
ya = ; (19.3 — 2(1.3758))
= 2.3641

Fourth iteration:
Using the value of x3 = 1.3374, y3; = 2.3641

X4 1—1;-(5,.5 + 5(2.3641)) = 1.2372.

Ya -;-(19.3 — 2(1.3374))

2.3750

Fifth iteration:
Using the value of x4, = 1.2372, y, = 2.3750 -

X5 = ——1—(5.5 + 5(2.3750)) .
14
= 1.2410.
1
Ys = 7(19.3 — 2(1.2372))

= 2.4037

Sixth iteration:
Using the value of x5 = 1.2410, y5 = 2.4037

X = 712(5.5 + 5(2.4037))
= 1.2513
Yo = -;-(19.3 ~ 2(1.2410))

= 2.4026
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The iteration is shown below

X : 0.3929 1.3758 1.3374 1.2372
y: 2.7571 2.6449 2.3641 2.3750
x: 1.2513
y: 2.4026.

~. The actual value are x = 1.25,y = 2.4

Example: 2
Using the Jacobi method solve the equation.
3x+ y+ z=93,2x+5y—-z=10.5
X -~ 2y + 10z = 30.6.

Solution:

3x +y + z= 9.3

2x+ 5y —-z=10.5
y = % (10.5 + z — 2x)
X —2y + 10z = 30.6
1
z= — (306 —x + 2
10( Y)

Hence the iteration scheme is

1
Xke1 = = (9.3 — Yk — Zx)
3
1
Yk+1 = 5 (10.5 + z, — 2x¢)

1
Zio1 = 7o (30.6 — xx — 2yy)
Starting the process with x =0,y =0, z = 0,

1
X1 = 3 (9.3) = 3.1
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yi= 4 (10.5) = 2.1
5
2, = —- (30.6) = 3.06
"7 10 ' '

Hence x, = -;— (9.3 -2.1-3.06) = 1.38

y2 = % (10.5 + 3.06 —2(3.1)) = 1.472

1

2= o= (30.6 — 3.1+ 2(2.1)) = 3.17

X3 = % (9.3 — 1.472 — 3.17) = 1.5227

Vs =% (10.5 + 3.17 — 2(1.38)) = 2.182

25 = T16 (30.6 — 1.38 + 2(1.472) = 3.2168
1

= 3 (9.3 -2.182 — 3.2164) = 1.3005

Y4 = % (10.5 + 3.2164 — 2(1.5227)) = 2.1342

2, = % (30.6 — 1.3005 + 2(2.182)) = 3.3441

X5 = % (9.3 - 2.1342 — 3.3441) = 1.2739

ys = —% (10.5 + 3.3441 — 2(1.3005) = 2.2486

=1

25 = 0 (30.6 —.1.3005 + 2(2.1342) = 3.3568
Xg = % (9.3 — 2.2486 — 3.356) = 1.2315
Ye = % (10.5 + 3.3568 — 2(1.2739)) = 2.2618

Zg =

0 (30.6 — 1.2739 +2(2.486)) = 3.3823.

The iteration is given below:

X : 3.1 1.38 1.5227 1.3005
y: 2.1 1.472 2.182 2.1342
z: 3.06 3.17 3.2164 3.3441
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Hence x = 1.2315, y = 2.2618, z= 3.3823
-. The Actual values aer x = 1.2,y =2.3,z=3.4

Example: 3
Solve the following system by Gauss — Jacobi methods.

10x + 5y — 2z = 3; 4x — 10y + 3z = -3, x + 6y +10z = -3

Solution:
Here, we see that the diagonal elements are dominant.

Hence, the iteration process can be applied (ie) the coefficient matrix
10 -5 -2
4 -10 3 | is diagonally dominant, since
1 6 10

|10] < |-8| + |-2.]-10] > 4] + |3] & [10] > [1] + |6]

Solving for x , y, z,

We have

1

X= — (3+5y+ 2z 1
10( y ) (1)
1

= — (3+4x + 3z 2

y 10( X ) (2)
1

Z=ﬁ(—3—x—6)') | (3)

First iteration:
Let the initial values be (0, 0, 0) using these initial values in (1) (2) (3)

x(M = % [3+5(0) + 2(0)] = 0.3
y = % [3+4(0) + 3(0)] = 0.3

1
(1) = -
z ——1—0—[3—-0—6(0)]-0.3

Second lteration:
Using these values in (1), (2),(3) We get
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X = _16 [3+5(0.3) + 2(~0.3)] = 0.39
[3+4(0.3) + 3(~0.3)] = 0.33

=1 [-3 — (0.3) — 6(0.3)] = 0.51.

Third iteration:
Using the values of x?, y®, z®in (1), (2), (3) we get

x®) = % [3 + 5(0.33) + 2(~0.51)] = 0.363
y® = % [3 + 4(0.39) + 3(-0.51)] = 0.303

z?® = 716 [-3 — 4(0.39) —6(—0.33)] = —0.537

Fourth iteration:

x4 = % [3 + 5(0.303) + 2(-0.537)] = 0.3441
y@ = 716 [3 + 4(0.363) + 3(-0.537)] = 0.2841

2@ = T16 [-3 — 0.363) —6(0.303)] = —0.5181
Fifth iteration:

x®) = 1—10- [3 + 5(0.2841) + 2(-0.5181)] = 0.33843

y® = % [3 + 4(0.3441) + 3(- 0.5181)] = 0.2822

1

z® = 5 [- 3 —(0.3441) — 6(0.2841)] =-0.50487

Sixth iteration:

x©® = % [3 + 5(0.2822) + 2(- 0.50487)] = 0.340126
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y© = ;5 [3 + 4(0.33843) + 3(~ 0.50487)] = 0.283911

z® = -110- [-3 ~(0.33843) - 6(0.2822)] =-0.503163

Seventh iteration:

x7) = ?16 [3 + 5(0.283911) + 2(~ 0.503163)] = 0.3413229

y" = % [3 + 4(0.340126) + 3(~ 0.503163)] = 0.2851015

1

z = o [-3 -(0.340126) — 6(0.283911)] =—0.5043592

Eighth iteration:

x® = -1% [3 + 5(0.2851015) + 2(- 0.5043592)] = 0.34167891
x® = ?16 [3 + 5(0.2852214) + 2(~ 0.50519319)] = 0.341572062
y? = 1_16 [3 + 4(0.34167891) + 3(-0.50519319)] =0.285113607

z® = % [- 3 - (0.34167891) - 6(0.2852214)] =~0.505300731

Hence correct to 3 decimal places, the values are

x=0.342, y=0.285z=-0.505

X | 0.3 0.39 0.363 0.3441 0.33843 0.340126
y : 0.3 0.33 0.303 0.2841 0.2822 0.283911
z : -083 -051 -0537 -0.5181 - 0.50487 - 0.503163
x : 0.3413229 0.34167891 0.341572062
y : 0.2851015 0.2852214 0.281.1360 7
z : —0.5043592 — 0.50519319 - 0.505300731
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The solution is

x =0.342, y = 0.285, z=-0.505

Examples:
Solve the following system of equations by

Using Gauss Jacobi Method
8x— 3y+2z=20
4x + 11y — z =33
6x+ 3y + 12z =35

Solution:

Since the diagonal elements are dominant; the coefficient matrix,

x=—;—[20+3y—22] (1)
1

y=ﬁ[33—-4x+z] (2)
1

z= —|35-6x-3 3
| y] (3)

First iteration:
Let the initial values be x=0,y=0,z=0

Using the values, x =0,y =0, z=0in (1), (2), (3)

We get
x( = % [20 + 3(0) - 2(0)]= 2.5

=1
11

zM = 71?? [35 - 6(0) - 3 (0)] = 2.916666

[33 + 4(0)+ 0)}=3.0

Second iteration:
Using these values x\V, y('), z®" again in (1), (2), (3)

X® = -:; [20 + 3(3.0) — 2(2.916666)] = 2.895833

=1
11

Z@ = 1—12- [35 - 6(2.5) — 3(3.0)] = 0.916666

[33 - 4(2.5) + (2.916666)] = 2.356060

205



Third iteration:
x®) = % [20 + 3(2.356060) - 2(0.916666)] = 3.154356

y® = -% [33 - 4(2.895833) + 0.916666] = 2.030303

z® = 715 [35 — 6(2.895833) — 3 (2.356060)] = 0.879735

Fourth iteration:
x4 = % [20 +3(2.030303) -2 (0.879735)] =3.041430

y@ = % [33 —~ 4 (3.154356) + (0.879735)] =1.932937

z® = 715 [35 - 6 (3.154356) — 3 (2.030303)} = 0.831913
Fifth iteration:

x® = -; [20 + 3 (1.932937) - 2(0.831913)] = 3.016873

y's) = % [33 - 4(3.041430) + (0.831913)] = 1.969654

z® = % [35 — 6 (3.041430 + 3 (1.932937)] = 0.912717

Sixth iteration:
x® = -% [20 + 3(1.969654) — 2 (0.912717)] = 3.010441

y® = - [33 - 4(3.016873 + (0.912717)] = 1.985930

z2® = ;5 [35 — 6 (3.016873 — 3 (1.969654)] = 0.915817

Seventh iteration:

x\ = %- [20 + 3 (1.985930) - 2 (0.915817)] = 3.015770
y@ = 1 [33 — 4 (3.010441) + (0.915817)] = 1.988550

11

2® = % [35 - 6 (3.010441) — 3(1.985930)] = 0.914964
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Eighth iteration:
x®) = -;- [20 + 3 (1.988550) -- 2 (0.914964)] = 3.016946

y® = % [33 — 4 (3.015770 + (0.914964)] = 1.986535

z® = 1—12— [35 -6 (3.015770 - 3 (1 .988550)] =0.911644

Ninth iteration:

x®) = % [20 + 3 (1.986535) — 2 (0.911644)] = 3.017039

yi® = ;—1- [33 — 4 (3.016946 + (0.911644)] = 1.985805

z® = ?15 [35 - 6 (3.016946) — 3 (1.986535)] = 0.911560

Tenth iteration:

x(19) = % [20 + 3 (1.985805) — 2 (0.911560)] = 3.016786

1

(10) _
Y 11

[33 — 4 (3.017039) + (0.911560)] = 1.985764

200 = 1 [35 — 6 (3.017039) — 3 (1.985805)] = 0.911696

12
X 2.5 2.895833 3.154356 3.041436
y 3.0 2.356060 2.030303 1.932937
y4 2.916666 0.916666 0.879735 0.831913
X 3.010441 3.015770 3.016946 3.017039
y 1.985930 1.988550 1.986535 1.985805
p4 0.915817 0.914964 0.911644 0.911560
The actual values are
X =3.0168, y=1.9858, z=0.9117
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Exercise:
1. Solve the following system of equation by Jacobi.

i) 8x — 6y + z=13.67
3x + 11y -2z =17.59
2X — 6y + 9z =29.29

i)9x + 2y — z =21.1
4x + By + z =334

5x — 3y +11z=50.9
iif) 7.6x — 2.4y + 1.3z = 20.396

3.7x - 7.9y — 2.5z = 35. 866
1.9x - 4.3y + 8.2z = 32.514

iv) 9.862x — 5.821y + 1.231z =4.3135
2.431x — 6.375y — 3.042z = 24.8298
3.754x — 4.872y + 9.635z = 3.9959

5.5 GAUSS - SEIDAL METHOD OF ITERATION
This is only a refinement of Jacobi Method as before,

1
X = ‘a“‘(d1 -b,y -¢, z)

1

1
y=g—-(d2—azx—czz) (1)
2

z= i(d3 —a;x-b, z)
Cs
We start with the initial values y,, z, for y and z and get x; from the first

equation.

, 1
(ie) x4 = a—(d1 -b,ys —C42p)

1

While using the second equation, we use z, for z and x; for x instead of x
as in the Jacobi’'s Method.

1
We get vy, :E‘(dz —a; X4 —C; Zp)
2

208



Now, having known x; and y;
Use x; for x and y, for y in the third equation.

We get
1
z,=—1(d3 —a; x; —bs y,q)

Cs

In finding the values of the unknowns, we use the latest available values
on the R.H.S.

If X, Yk, Zx are the iterates, then the iteration scheme will be

1
Xee1 = — (dy =Dy Y —C4 Zy)
a,

1
Yie1t = — (dy —@5 Xy, 1 —Cy Zy)
b,

1
Zgs1 = _(d3 — a3 Xi 1 —b3 yk+1)
Ca

This process of iteration is continued until the convergence is assured. As
the current values of the unknowns at each stage of iteration are used in getting
the values of unknowns, the convergence in Gauss — Seidel method is very fast
when compared to Gauss—Jacobi method. The rate of convergence is Gauss-
Seidel method is roughly two times than that of Gauss—Jacobi method. As we saw
the sufficient conditions already, the sufficient condition for the convergence of
this method is also the same as we stated earlier. That is the method of iteration
will converge if in each equation of the given system, the absolute values of all

the remaining co—efficients. (The largest coefficients must be the coefficients for
different unknowns).

Note:

1. For all systems of equation, this method will not work. (Since convergence is
not assured). It converges only for special systems of equations.

2. lteration method is self-correcting method that is any error made in
computation is corrected in the subsequent iterations.

3. The iteration is stopped when the values of x, y, z start repeating with the
required degree of accuracy.
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Example:
Solve the equations.

14x — 5y = 5.5
2x + 7y = 19.3 by Gauss Seidel method

Solution:
14x = 5.5 + Sy

1
X=—(55+5
7 ( y)
7y = 19.3 — 2x
1
= —(19.3 - 2x
y 7( )

Puty =0, we get x = % = 0.3929

Putting x = 0.3929 in equation(2)

y = = {19.3 - 2(0.3929)} = 2.6445

1
7
The iteration scheme is

1
Xk+1 = ﬁ' (55 + 5yk)

Vet = ;(19.3 - 2X,.1)

Starting the iteration with the base
X1 =0.3929, vy, =2.6445

We get x, = % {6.5 + 5 (2.6445)} = 1.3373

Yz = ; {19.3 - 2(1.3373)} = 2.3751

X3 = % {6.5 + 5 (2.3751)} = 1.2411

ys = ; {19.3 - 2(1.2411)} = 2.4025
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X4 = 312 {5.5 + 5 (2.4025)} = 1.2509

= ; {19.3 -~ 2(1.2509)} = 2.3997

X5 = % {5.5 + 5 (2.3997)} = 1.2499

1

Ys = = {19.3 — 2 (1.2499)} = 2.4000

The iteration is shown below.
X: 0.3929 1.3373 1.2411
y: 2.6445 2.3751 2.4025
Hence x = 1.2499, vy = 2.4000.
The actual values are x = 1.25, y=2.4.

Example: 2

Using the Gauss— Seidel Method Solve the equation

Solution:
3x+y+z=93

3Xx =9.3-y-2z
X = l(9.3—y—z)
3

2x+5y+z=‘10.5

oy = 10.5 -2x + z
1
y = 5(10.5—2x+z)

X—2y + 10z = 30.6
10z = 30.6 — x + 2y

1
= —(30.6 - 2
y4 10( X + 2y)
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First iteration:
Puty = 0, z=0

1
X1 = 5(9-3—}’0 - Zp)

1 9.3
X1 = -3—(9.3—0—0):3)(1 =-—3—
X1 = 3.1

y1 = %(10.5—2(3.1)+ 0)=0.86

Zy = T!()— (30.6 + 2(0.86) — 3.1

=2.922
Hence the starting points for the iteration are
Xy = 31, Y1 = 0.86, Z, = 2.922

The iteration scheme is

1
3 (3 -yi-z)

Xk+1

1
yk+1 3(10.5—2Xk+1 +Zk)

1
Zke1 = 10 (30.6 + 2y,4 — Xy,1)

Ir: computing the successive approximation.
We use the latest approximate values.

Second iteration:
X, = % (9.3-0.86 — 2.922)=1.8159

Y2 = ::)-(10.5 - 2(1.8159) + 2.922) = 1.9580

z, = % (30.6 - 2(1.9580) - 1.8159) = 3.2694
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Third iteration:

Xy = % (9.3 - 1.9580 — 3.2694) = 1.3575
Ys = % (10.5 — 2(1.3575) + 3.2694) = 2.2109

25 = % (30.6 - 2(2.2109) - 1.3575) = 3.3664

Fourth lteration
X4 = % (9.3 —2.2109 — 3.3664) = 1.2409

Ya = % (10.5 — 2(1.2409) + 3.3664) = 2.2769

% (30.6 — 2(2.2769) - 1.2409) = 3.3913

Zy =

Fifth iteration:
Xs = % (9.3 -2.2769 - 3.3913) =1.2106

Ys = %(10.5—2(1.2106)+ 3.3913)=2.2940

Z5 = % (30.6 + 2(2.2940) + 1.2409)=3.3977

Sixth Iteration:

X = %(9.3 _2.2040 —1.2106) = 1.2028
Y = -:;(_10.5 _2(1.2028) + 3.3977)= 2.2984

Ze= 716 (30.6 + 2(2.2984) — 1.2028) = 3.3994

The iteration is shown below.

X: 3.1 1.8159 1.3575 1.2409 1.2106
y: 0.86 1.9580 2.2109 2.2769 2.2940
z 2.922 3.2694 3.3664 3.3913 3.3977

Hence the sixth approximation is
X =1.2028, y=2.2984, 2z=3.399

.. The actual valueare x=1.2,y=23,z=34

213

1.2028
2.2984

3.3994



Example: 3
Solve, by Gauss—Seidal method, the following system

28x + 4y —z = 32
x+ 3y + 10z = 24
2x + 17y + 4z = 35

Solution: ) .
Since the diagonal elements in the coefficient matrix are not dominant, we

rearrange the equation as follows, such that the elements in the coefficient matrix

are dominant.
28x + 4y — z = 32

2x + 17y + 4z = 35
x+ 3y + 10z =24

_ 1 3
Hence, x = 28 (32 -4y +z)
y = %(35—2x—4z)

1
= —(24-x-3
10( Y)
Settingy =0, z=0, we get

First iteration:

1
—[32-4(0 =1.1429
28 [32 - 4(0) + 0]

x(M =
y? = 71; [35 — 2(1.1429) — 4( 0)] = 1.9244
z = % [24 - 1.1429 — 3(1.9244)] = 1.8084

Second iteration:
x? = 515 [32 - 4(1.9244) + 1.8084]=0.9325

y® - % [35 — 2(0.9325) — 4(1.8084)] = 1.5236

z® = -1% [24 — 0.9325 — 3(1.5236)] = 1.8497

Third iteration:
x® = -2-15 [32 - 4(1.5236) + 1.8497]=0.9913

y@ = ?1_7. [35 - 2{0.9913) — 4(1.8497)] = 1.5070

20 = % [24 - 0.9913 - 3(1.5070)] = 1.8488
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Fourth iteration:

x4 = '215 [32 - 4(1.5070) + 1.8488] = 0.9936

y® = 1_17_ [35 — 2(0.9936) — 4(1.8488)] = 1.5069

AR -1% [24 — 0.9936 — 3(1.5069)] = 1.8486

Fifth iteration:

x®) = -?:15 [32 — 4(1.5069) + 1.8486] = 0.9936

y® = % [35 — 2(0.9936) — 4(1.8486)] = 1.5069

z® = % [24 — 0.9936 - 3(1.5069)] = 1.8486

since the values of x, y, z in the 4™ & 5" iterations are same, we stop the
process here
- x=10.9936, y=1.5069, z= 1.8486

Example:
Solve the following system of equations by using Gauss Seidel methods
8x — 3y + 2z =20; 4x + 11y —z = 33; 6x + 3y + 12z = 35

Solutions:
Since the diagonal elements are dominant in the coefficient matrix.
x=%[20+3y—22] (1)
1
y=ﬁ[33—4x+z] (2)
z= —1—[35—6x—3y] (3)
12

Take the initial valuesasy=0,z=0 & use

First iteration:

x( = % [20 + 3(0) - 2(0)]=2.5

Yy = l1 [33 - 4(2.5) + 0] = 2.090909

-—

-1

= [35 - 6(2.5) — 3(2.090909)] = 1.143939
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Second iteration:

x?) = % [20 + 3(2.090909) — 2(1 .143939)] = 2.998106

1

y® = T3 [33 — 4(2.998106) + (1.143939)] = 2.013774

= -1-15 [35 — 6(2.998106) — 3(2.013774)] = 0.914170

Third iteration:

x®) = -;- [20 + 3(2.013774) — 2(0.914170)] = 3.026623
1
11

% [35 - 6(3.026623) — 3(1.982516)] = 0.907726

y® = —[33 - 4(3.026623) + 0.914170] = 1.982516

>3 =

Fourth iteration:

x4 = -;— [20 + 3(1.982516) — 2(0.907726)] = 3.041430

y® = % [33 — 4(3.016512) + 0.907726] = 1.985607
1

zW = B [35 — 6(3.016512) — 3(1.985607)] = 0.912009

Fifth iteration:

x®) = % [20 + 3(1.985607) — 2(0.912009)] = 3.01660
y® = 1—11- [33 — 4(3.016600) + 0.912009] = 1.985964

z® = -1—12— [35 — 6(3.016600) — 3(1.985964)] = 0.911876

Sixth iteration:

x(®) = % [20 + 3(1.985964) — 2(0.91 1876)] = 3.016767

y® = ;1_1- [33 - 4(3.016767) + 0.911876] = 1.985892

z® = % (35 — 6(3.016767) — 3(1.985892)] = 0.911810
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Seventh iteration:

1

x = 3 [20 + 3(1.985892) — 2(0.911810)] = 3.016751
yt) = % [33 - 4(3.016757) + 0.911810] = 1.985889
z = % [35 — 6(3.016757) — 3(1.985889)1 = 0.911816

Since the sixth and seventh iterations give the same values for x, y, z

correct to 4 decimal places.

x=3.0168, y=1.9859, z=0.9118

X 2.5 2.998106 3.026623 3.016512 3.016600
y 2.090909 2.013774 1.982516 1.985607 1.985964
z 1.143939 0.914170 0.907726 0.912009 0.911876
X 3.016767 3.016757
y 1.985892 1.985889
z 0.911810 0.911816
Exercise:
Solve the following systems of equation Gauss—Seidal method.

i) 8x - 6y + z=13.67

3x + 11y — 2z = 17.59
2x — By + 9z =29.29

i) Ox + 2y — z=21.1
4x + 6y + z = 33.4
5x — 3y + 11z = 50.9

iii) 7.6x - 2.4y + 1.3z = 20.396
3.7x + 7.9y — 2.5z = 35.866
1.9x — 4.3y + 8.2z = 32.514

iv) 90.862x — 5.821y + 1.231z = 4.3135
2.431x + 6.375y — 3.042z = 24.8298
3.754x — 4.812y +9.635z = 3.9959

V) 8.7x —23y+4.1z+ 1.7w = 18.23
3.4x + 124y — 4.5z - 3.6w =-0.34
4.3x—-3.2y +5.6z-13.4w=-22
2.8x—-4.7y + 204z - 7.8w = 34.33
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UNIT - VI

INTERPOLATION

6.1 Introduction:

Interpolation has been described as the of reading between the line of a
table and in elementary mathematics, it mean the process of computing
intermediate value of a function from a given set of tabulator value of the function.
Suppose the following table represents a set of corresponding value of x andy

X Xpo X4 Xo X3oieerunnt. »Xn

Y: Yo Y1 Y2 V3eiiainnnannn ,VYn
Now, we require the value of y = y; corresponding to a value x =x, where Xg < X; < Xn.

Extrapolation is used to denote the process of finding the values out side
the interval (xo, Xn). But, in general the word interpolation is used in both
processes.

Let y = F (x) be the function taking the values yo, Y1, ...... yn corresponding
to X = Xg, X1 ...... X,. In other words, y; = F(x4) ,1 =0, 1,2,..... n. If f(x) is known the
value of y can be calculated for any x. But in many cases we have to find y = f(x)
such that y, = F(x;) from the given table. This is not easy because there are
infinity of function y = ¢ (x) such that y; = ¢(x). Hence, from the table we cannot

find a unique ¢(x) such that y = ¢(x) satisfier the set of table we cannot find a
unique ¢(x) such that y = ¢(x) satisfies the set of values given in the table above
of the sequences of function {¢(x)}, there is a unique n" degree polynomial p,(x)
such that y; = pa(x;), 1 = 0, 1, 2,..... n (Ref fig.1)

The function ¢(x) is called interpolating function or smoothing function or

interpolating formula.

The polynomial function p,(x) may be taken as an interpolating polynomial
or collocation polynomial where.

yi = F(x) = pn(xi), 1 = 0,1,2,...... ,n.
Other types or approximating function may be taken suitable for different

purpose. In this chapter, we will be mostly concerned with the polynomial
interpolation only.
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(X0,Yo0)

Polynomial interpolation is mostly function preferred because of the
following reasons:

1. They are simple forms of functions which can be easily manipulated.
2. Computations for define values of the argument, integration and
differentiation of such function, are easy.

3. Polynomials are free feam singularities whereas rational functions or other
types, do have singularities

The basis of finding such colfocation polynomial is the fact that there is
exactly only one collocation polynomial p,(x)of degree n such that the values of
Pn(x) at Xo,X1,X2,.....X, coincide with the given functionnal values Yo,Y1,Y2s----.. Yn-
Here, p.(x) is called polynomial approximation to f(x). We shali see below a few
of the method of finding such interpolating polynomials. The simplest of all
interpolations in which the interpolating polynomial is linear. Let us assume that

the set of values of x & y are given below. Linear interpolation or methods of
proportional parts.

X XO X1 x2 X3 .......... ,Xn
Y: Yo Y1 Y2 )£ T ,Yn

Now we require the value of y corresponding to x, which lies between x,
and Xp.q.

We will assume the polynomial to be linear (ie.st.line)

Y-V, — Y1t = Yr
X=X, X X

The line equation is

r+1 —

Yeir = Yr

r+1 = r

LY E Yt [ } (xx — X,) gives the value of y at x, xi, X, < Xk < X;41.
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This methods may be successful in the difference between succeeding
pairs of value of the variable are small and regular. But, if the intervals between
the two pairs of value are large, and irregular, this method of simple proportion
cannot be used without large error.

Yo+1

Yp Yk

Xp Xi Xp+1

Example:

The following are the measurements t made on a curve recorded by an
oscillograph representing a change of current | due to a change in the condition of
an electric current:

T: 1.2 2.0 2.5 3.0

I: 1.36 0.58 0.34 0.20.

Find the value ofiand t = 1.6.

Solution:
Let i¢1.6) be the required value

Then y, =y, + ———F— (Ype1 — YP)
Xoe1 — Xp
1.6-1.2
i1ey= 136+ ——— "% (0.58 — 1.36
'a.6) 20-12 ( )

=1.36 — %(0.78)
0.8

=0.97
Example:
Using the method of proportional parts, find. y at x =0.5, x = 0.75, given
the following table
X: 0 1 2 S

y: 2 3 12 147
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Solution:

Yr+1 B yr

r+1 — X

Yk=Yr+[ )(xk"‘xr)

Yosy =2+ ((‘:’:g)) (0.5- 0)

=25
Yiors = 2 + ((:1”: s)) (0.75- 0)
=275

6.2 Newton’s Interpolation Formula

Let y = f(x) denote a function which takes a set of corresponding values of
two quantities x and y.

X: Xo X4 X2 X3...... “Xn

Y. Yo Y4 y2 Y3...... »Yn

Let us suppose that the values of x viz . xo, X;.... ,X, are equidistant.

(ie) Xi—xi.1=h fori=1,2,....n

S Xk = Xo+ kh, X4 = X0 + 1h etc.

X2=Xo+2h, ..... i=1,2 ... n.

Let us assume that P,(x) be a polynomial of the n" degree in x, such that
Vi = f(Xi) = Pn(xi) i=0,1,....n.

Let us assume P,(x) in the form given below P, (x) =ag+a;x+ axx* + ...... apx"
satisfies the (n+1) pairs of tabulated values (Xo,Yo), (X1,¥1),(X2,¥2)...... (Xn,¥n)-
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Then Ay; where (i = 0,1....n)are constants and the subsequent differences

are zero. . . .
Finite Differences

We have AYk = Y1 — Yk
A%V = A Yier — A
= {1+4) * : r— r—
Yk ( + ) Yo Ay = A Wit — A 1Yk

AYo =Y1— Yo

- k(k=1) .2 k Y1 = Yo+ AYo = (1+A)yo
= yo+t kKAyo + ol AYot....... +A Yo Yo = Yo+ 2AY0 = AZYO
D= (1+A)Pyo

yi = (1+A)yo
Substituting the value of k in the above equation.

We have

(Xk —Xo](xk — Xp _1j
yk=yo+(Xk_X0)Ayo+ d " ’

h

If we assume that the value of y corresponding to an arbitrary x can be
obtained from the above formula by replacing x by x, then

We have
X—Xg [ X—Xq 1
X —Xq h h 2
Y=Yt Ayo * o AYot .......
put 2= Xo -y

Then we get

X{x —1
Y = Yo+ XAYo (2i )AZYO'*'

, X(x = 1)x —2n)l(x —n+1) AMyo

This is known as Newton’s forward differences Interpolation formula.

In this formula for the computation of y, we have to take (P+1) terms if the

P™" order of differences are constant or the P™ order of differences become very
small.
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Aliter:
Let the polynomial

y=ap + ax+ a)x® + ...... a,x" satisfies the (n+1) pairs of tabulated values
(Xo, yo)’ (X1,Y1), (X21y2) """" (Xn, yn)

Let us assume that the polynomial can be put in the form.

y = A + Aq(X=Xo) + Az (X — Xo) (X — X1) + Ag (X = Xp) (X — Xq) (X — X2)+ ......
+ An(X — Xo)(X — X4) ...... (X — Xp-1)

We have to determine the constants A, , A4, ...... A,

When X = Xo, Y = Yo.

When x = X1, Y = ¥4
s Y1 = Ag + A (X1 — Xo)
=yo + A; hsince Xy —Xo=h

. A1 - Y1 Yo

- —————

h

_ Ay,
h

(2)

When X = X3, Y = V..
5o Y2 = Ao + Ay (X2 — Xo) Az(Xz2 — Xo) (X2 — X1)
A
= Yo + =2 (2h) + A, (2h) (h)

~2h® Ay =y, —yo— 2AY,
but we have shown that

Y2 = Yo+ 2A Yo + AZy,

~2h2 A, = Ay, .
2
Hence A, = AYo
2h?

Continuing the calculation of the coefficients in this manner we shall find
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......

3h3 nh"
Hence
A AZ
Yy = Yo + (X = Xo) z" + (X = Xo) (X = X4) 2!:3
A3
+ (X — Xo) (X — X1) (X — X2) 3!:::‘; +
An
+ (X — Xg) (X = X1) oonen. (X — Xn-1) yr‘"
nh
1f X = 2720 then x = xo +xn
(X = X1) = (X — Xo) — (X1— Xo)
= Xh - h
= (X - 1)h
(X — X2) = (X — Xo) = (X2— Xo)
= Xh — 2h
= (X — 2)h
X —Xn1=(X=n-1h)
= (X — n+1)h.
- ~ X =2)...... 1
LY =Yoo+ XAyt —-——-————X(X' 1)A2y0+ ...... + X(X =X n?) (X, + )A”

2!

Newton’s Back ward Differences Interpolation

Formula:
Newton’s forward interpolation formula cannot be used for interpolating a

value of y nearer to the end of the table of values.

For this purpose, we get another backward interpolation formula,

Suppose y = f(x) takes the values yo, Yi...... ¥, corresponding to the values
Xo, X1+ven.. X, of X.
Let xx — Xk 1 = h for k = 1,2....n (equal intervals)

" Xk=Xo+kh,i=0,1,2 ......



Now, we want to find a collocation polynomial P,(x) of degree in x such that

P.(x) =y, 1=0,1,2,.....n

Let
Pa(x) = @0 + a4 (X = X5) +az (X = Xp)(X — Xp_1) +......
+a; (X — Xo)(X — Xp_1)...... (X — Xn_r+1) F......
+ ap (X — Xp) (X = Xp_1) -.... (X = Xq)
Since x,-1 =X, —h
Xn-2 = X — 2h...... Xn_re1 = Xn— (r— 1)
X1 = Xp—(n—-=1)h.
We have

Pn(x) =ap t+ a, (X - xn) +a; (X - Xn)(x = Xn +h)
+asz (X — Xp)(X — Xp+h) (X — Xa+2h) +......
+ a, (X — Xn) (X — X,+h) ... (X = X,+ (n =1)h)

We shall find ag a;..... a, such that p,(xi) = vy; V Ve = Vo Vah
Since V =E'A . :

V= V7ye— VT lyi

Yok = (1 - V)kYn Yn-1 = (1_ V)yn

- 2
=Y, —kVy, + k("z"1) R (1) Y2 (1= ¥y,
Yok = (1= V)'y,
If the quantities xo, X4, X2....... Xn are equally spaced, then
Xn—k = Xp— kh
-k = Xn —Xpk
h

Substituting this values k in (10)

((xn —xn—k)J((xn _xn-k)_-])
Q&%X_QQ Vya + h 5 h VoVn o

Yn-k = Yn -

If we assume that the value of y corresponding to an arbitrary x can be
obtained from the above formuia by replacing Xn—x by X, then we have

e
n—X vy, + h h '

h 2

X

Y= Yn—
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X, — X

Putting =-X
We have
Y=y, +X. Vy, + 5_(%1)_ Viynt......

This is known as Backward differences Newton’s Interpolation formula.

The number of terms taken on the left side is P + 1 if the p" order
differences are constants they are very smalil.

Note 1:
Newton’'s formulae with forward and backward differences are most

appropriate for calculation near the beginning and end respectively of a tabulation
and their use is mainly restricted to such situations.

Note 2:
The process of computing the value of a function outside the range of

given values is called extrapolation. It should be used with caution, but if the
function is known to run smoothly near the ends of the range of given values and
if h is taken as small as it should be, we are usually safe in extrapolating for a
distance h outside the range of given values.

Aliter:-
Let the polynomial be expressed as

Y = Bo +B4(X — X3) + Ba(X — X)) (X — Xn_1) + ....... +-Bn(x - Xp) (X — Xn=1) ....... (X — Xp)

When x =X,, Y = VYn,
~. Yn = Bo.
When X = Xn_1, Y = Yn1
Yn-1 = Bo + By (Xn-1— Xn)
= V¥n + B1(—h)
B1 - Yn = Ya- - Ayn
h h

When x = X2, ¥ = Yn-2,
Yn-2 = Bo + B1(Xn_2=Xn ) +B2 (Xn—2—Xn ) (Xn-2—Xn_1)
= Bo + By (=2h) + B3(-2h) (~h)
= Yn—Z(Yn - Yn—1) + 2h2-BZ
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-'-2h2BZ = )/n_2 (yn) - 2y n-1) + Y n-2
= Yn—2Y n-1 * Y2
= (Yo—Y 1) = (Yot —Y n—2)

= AYn"‘ AYn—-1
= A%y,
BZ= szn
2h?
- _ Vi _ V',
Similarly, we get B; = TR B, = <
V¥, Viya . N V'Ya
Ly = - - - X)) — + = Xn) eenen X — X
LY EYn (X = X) — +(X = Xn)(X = Xn-1) TS (X - Xn) ( 1) T
Put X = X0 (je) X = x, + hx
Xx~X,, _ (x=%u)+{X, =X, 4) _ hX+h _ h(X+1) X1
h h h
X=Xpp _ (x—x,)+ (X, = Xpp) _ hX+2h _ h(X+2) X 42
h h h
x=%; _ (x=x)+(X, =x) _ hX+@-1h _ h(X+{n-1) - X+ (n=1)
h h h h
(n -
Y=EYatX. Vy, + ___—X(XZTO Viyn + ... +x(x+1)...r(‘)'<+\n 1) vV "Yn

Example: 1
The following data given the melting point of an alloy of lead and zinc; 0 is
the temperature is degrees centigrade; x is percent of lead:-
X 40 50 60 70 80 90
0 : 184 204 226 250 276 304
Find 6 when x =43 and when x = 84.
Solution:

Since x = 43 is nearer to the beginning of the table. We use Newton’s
forward formula. '
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We from the differénce table.
Also h = constant =10.

X ) A® A%e A%

40 184
\
50 204 20— >

60 226 22 , >0

70 250 24 0
26 2 0

80 276 g —

90 304 28—

The topmost diagonal gives the forward differences of yp while the
lowermost diagonal gives the backward differences of yn.

By Newton’s Forward interpolation formula

y=y0+X . Ayo + X(X~1)/2! A2y0+ ...... + X(X—1)(X—§')....(X—-n+1) Anya

x(x'-1) A%6,

0 =0+ X. Ay t+ 5

Here 6, = 184, A 0,=20, A%0,=2

Let 8 43 be the value of x and x = 43

wo 43-40 _ +3 _ o4
10 10
B3 = 184+ (0.3) 20 + (0'3);°|'3'1) 2
=184 +6 + (- 0.105) (2) = 184 + 6 — 0.21
9(43) = 189.79

043 can also be calculated from the value of 6 = 204.

43 -50
10

In that case X = =-07
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(~U.7) (~0.7 = 1)

21 @)

9(43) = 204 + (— 07) 22 +

=204 -154+ 1.19
= 189.79

Since x = 84 is near the end of the table. We have to use Newton’s
Backwards Interpolation.

Formula:
1 -1
Y = Yo+ X Ay, Zi%i-l V2 Yy y0yim + X(X”)n(’x“““ )yoy.
v2e,

; X(X+1
Inthat case 6 = 8, +x Vo, + ( |+)

Xo —X _ 90 -84
h 10
= —0.6

~X = = 0.6

. Ogqs = 304 + (-0.8) 28 + 2

(-0.6)(-0.6 +1)
2

=304 - 16.8 — 0.24
= 286.96

654 can also be calculated from 8 = 276.

80-84 _ 4

10 10
nX=04

In this case —X =

O5s = 276 + (0.4) (26) + (0'4)(2'4”) 2

=276 + 10.4 + 0.56
0g4 = 286.96,

Suppose we have to determine the relation between x and 9.

X (X ~1)
21

We have 6 = 8, + X A9, + A% @,
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‘x—-40
10

(x—40j(x—40 _1)
x—40 2 10 10
A 9

Here 6, = 184, A8, =20, A0, =2,x =

(x — 40)(x - 50)
100

184 + 2x - 80 +

(x - 40)x - 50)

100
x?  50x _ 40x o+ 2000
100 100 100 100

= 184 +2x — 80 +

=184 + 2x - 80 +

=124 + 0.01x* - 0.9x + 2x
=124 + 1.1x + 0.01x?
Example:2 -
Calculate the value of y when x = 0.47 from following data:-
X: 0 0.1 0.2 0.3 0.4 0.5
y: 1.0000 1.1103 1.2428 1.3997 1.5836 1.7974
Solution:
Since we have to find the value of y corresponding to a value near the end
of the table.

Using Newton’s Backward formula.

The backward differences are calculated and tabulated below:-

X y Ay A%y Ady Aty
0 1.0000 0.1103
0.1 1.1103 0.0222
0.1325 0.0244 0.0022 0.0004

02 12428 1569 0'0270 0.0026 0'0003
0.3  1.3997 01839 O /0'0029/-
0.4  1.5836 _»0-029

502138
0.5 1.7974
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In thiscase h=0.1and — X = X, —x _ 0.03

h 0.1

S X =-=0.3.
Newton’'s Backward difference formula is

Y =Ya+ XAy, +

X(X+1) vy, + X(X+1)(X+2) v3y, +
2! 3! 4!

We shall take 5 terms in the left side.

X(X+ )X+ 2)(X+3) an

(-0.3)(-0.3+1(-0.3+2)

y =1.7974+(=.3)(0.2138)+ £ 0-3) (é"' 0.3+1) 9.0299) -
(0.0099) (-0.3)(-0.3+1{-0.3+2(-0.3+3) (0.0003)
4!
= 1.7974 — 0.06414 - .0031395 - .00058905 — 00001204875
y. = 1.7295
Example:3
From the following table find the value of tab 45°15".
X° 45 46 47 48 49 50
tan x° : 1.00000 1.03553 1.07237 1.11061 1.5037 1.19175
Solution:
We can use forward interpolation formula:
Also h = 1
_ X=X _ 45°15' —45°
h 1°
X y = tan x° Ay A%y A’y Aty A®y
45° 1.00000\0.03553\
o 0.00131
46 1.03553 ~
0.03684 0.00009\
470 1.07237 0.00140 0.00003
' 0.03824 0.00012 —0.00005
48° 111061 0.00152 —0.00002
' 0.03976 0.00010
o 0.00162
49 1.15037 0.04138
50° 1.19175
X(X -1
LY =Yoot Ayp t —(—2—)A2y0+ ......
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=1.0000+(0.25)(0.03553)+

(0.25)0.25-1) (0.00131)+ (0.25)(0.253;1)(0.25 ~2) (5.00009)
2 .

, (0.25)0.25 —1)(%'25 -2Y0.25-3) (0.00003)
, (0.25)0.25 - 1)0.25 ;2)(0.25 ~3)0.25-4) (0.00005)
1.0000 + .0088825 — .0001228125 + .000004921875 — 0.037597656
+0.000001409912109
y. = 1.00876.

Example: 4
The population of a town is as follows.

Year X : 1941 1951 1961 1971 1981 1991
Population
in lakhs : 20 24 29 36 46 51

Estimate the population increase during the period 1946 to 1976.

Solution:
Let us find the population at x = 1946 and x = 1976.

Since, six data are given p(x) is of degree 5.

1941 20—,

1951 24 TTI—
1961 29 . 1/9/
3
1971 36 10 -8
1981 46 5_—75
1991 51
wo X=Xo _1946-1941 _ 5 _ 1
h 10 10 2

Using forward Formula:-

------------

XX=1) 2y XX=DX=2) 0

y=Yo+ XAYo + > a3
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Y= 20+—(4)+ y(+y2"1)( /(/ 1X/ )(1)+

21

4010525 /V%/%/%/
_mﬁj/k/)/%/k uw/%yw (zx/k/k/k/xg)

243 120

=20+ 2-0.125 + 0.0625 — 0.24609375

y = 21.69.

Using Backward Formula:

_ 1976 -1991 _ -15 _ _4
X = =%

10 " 10

X_(x-+_1)vzy + x(x+1)(x+2) V3yn+ .........

Y=Y X Vyn *+ =5 " 3l

o1 - A o 0, A

S A A AN

120

‘ (-9)
=51-7.5-1.875-0.50.2109375 - 0.10546875

y = 40.8085938

-. Increase in population during the period.
=41.809 — 21.69

= 20.119 lakhs
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Exercise
1. Find an approximate value of 6 when t = 3.5 given
t: 0 1 2 3 4 5 6 7 8

0: 50 41.66 34.46 28.28 22,94 1832 1442 11.06 8.06

2. x: 1.0 1.1 1.2 1.3 1.4
f(x): 0.84147 0.89121 0.93204 0.96356 0.98545
x: 1.5 1.6 1.7 1.8

f(x): 0.99749 0.99957 0.99166 0.97358

Calculate f(1.02) and /f(1.75) correct to five decimal places.
3) From the following data determine an approximate value for y corresponding
to x = 2.2 correct to 3 places of decimals:

X: 1 2 3 4 5 6 7 8

y: 1.105 1.808 2.614 3.604 4.857 6.451 8.467 10.985

4. Given the data

X: 19 20 21 22 23 24 25

y: 91.00 100.25 110.00 120.25 131.00 142.25 154.00
find an approximate value of y when x = 23.6 & x = 25.5

5. The following table gives the value of the elliptic integral F(¢) =

_a
0 \/1 —yzsin2 o

o : 21° 22° 23° 24° 25° 26°
F¢: 0.3706 0.3887 0.4068 0.4250 0.4433 0.4616

for certain in equidistant values of ¢. Find the value F (23.5°).

6.3 Divided Differences
Let the function y = f(x)

Assume the values f(Xo), f(X1).....f(xn) corresponding to the arguments
Xo, X1, X2. . . . Xn respectively where the intervals X1 — Xo, X2 = X1,.... Xa— Xn-1 Need

not be equal.

The divided differences of y are defined as follows:
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First order divided difference:

fx,) - f(xo) - Y1 Yo
X, = Xg X, — X

=y (X1, Xo) = 4 f(xo)
X4

In the same notation

f(X1,%2) = )L(fsf(x1) = ;):_2_—-_3/_1 = y(Xz, Xq)

2 1
f(XaXa) = A f(xz) = Y2 7Y2 = yixy %)
Xs X5 — X,

f(Xn-1, Xn) = ﬁk f(Xni) = ﬁ‘:—}—’l‘ly(xn, X n-1)

n- “~npa

Second divided Difference:

The second divided difference of f(x) for three arguments X, X; ,X; is
defined as

f(Xo, X1 ,XZ) = éZX f(XO) - Y(XZ’X1)_ Y(x1’x0) = Y(Xz,xhxo)‘

1+

Xy — X4

f(X1, Xo ,XG) - )éZx f(X1) - Y(Xsixz): Y(XZ,X1) = Y(XS,XZ-X1)

X3 1

Third order Differences:

f(Xo, X4 ,XZ,X3) = ¢3 f(xo) = y(x3’X2’x1)—y(x27x1,xQ)
1-X2.X, X3 — X,

= y(X3,X2,X1,Xo)

f(Xo, X1 ,X2,X3 ,X4) = lg f(xy) = y(x4,x3,x2)—y(x3,x2,x1)___ Y(X3,X2,X1,Xo)
XyrX3Xy X4 — X4
And so on.

4{ Y« =4;_1YK+1"[£_1yk- S
1. Properties of Divided Differences:

The value of any divided difference is independent of the order of the
arguments.(ie) the divided differences are
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It is seen that y(x;,Xo) = Yi=¥o - Yo=¥1 - Y(Xo, X1)
X, —Xg  Xo— X

y
Also y(X:,Xo) = — 1 — — Yo - N1 e

y(Xz,%4)- y (X4, %)

Y(XZ,X1,X0) =
X2 —Xp
- 1 Y2 Y+ ¥ Yo
X, =Xy | Xy —X; Xp—X; Xq;—Xg Xg =Xy
o 1 {yz +y1(1 B 1}_ yo]
X, —Xg | Xp — Xy X, =Xy Xq—=Xo ) Xg—Xq
- 1 |: Y2 (x5 = Xo ) Yo }
Xp = Xo [ Xz =Xy (X3 =X2)(X; =Xo) X=X
- Yo + Y1 + Yo
(x5 — X X5 —X4) (X1 — %o XXz —Xo) (Xo — X4 XXo ~X;)
Similarly
b E Y2
y(X3,X2,X1,X0) = +
e (X3 —Xo XX3 — X X3 —X5) (x2 = %o XXp — X4 X2 —X3)
+ Y1 + Yo

(x1 —Xo)(x1 —X2XX1 “Xs) (Xo "X1)(Xo —X1XX0 —Xz)

Continuing this process,
We get
yn ) yn—1
V(Xn, Xn—1se--.-Xo) = + - S
" ° (X, —Xg Xx, - x1)""(xn ~Xn1) (Koo =X XX — Xq hoe{Xpg = X, )

Y1 + Yo
(s = Xo M1 = X JornlXg = Xp) (o = X4 )Xo = X,)

+.... +

This is symmetrical w.r. to any two arguments.

.. The divided differences are symmetrical w.r.t any two argument.
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2. The operator Ais linear

If f(x) and g(x) are two function and o and B are constant. Then

4& [of(x) + Bg(x) = [ocf(x1)+ Bg(X1)— O‘f(xo)+ Bg(xo)]

Xy — Xg

= o f(x4) — f(%o) + B g(x4) —9(Xo)
Xy = Xg Xy~ Xq

= ad f(x)+BA 9(x).

Remark:
i) Setting a=f=1

A [ (x),+ 900) ]=4 £(x) +A g(x)

ii) Setting p =0
Ao f)]=a b f(x)

3. The n" divided difference of a polynomial of degree n are constants.

Proof:
Taking f(x) = x" where n is a positive integer

f(x,)—f(x,) X! —xp »
f(Xo, X4) = 1 ol =1 O —Ix" — x" Mx, - X
(Xo, X4) —— X, ~ X, Y (L

= (x? - xg)lx;’ + X% Xg + X2 X2 4+ xg‘J

= x4 xo X724+ x3 X 4+ x]T

= a polynomial function of degree (n — 1) and symmetrical in Xq, X4
with leading coefficient 1.

Again,
f(x,,X,) = f(Xq,X
X2 = X
_ (x';‘1 + Xq X572 F e, + x?")-—(xg "Xy X§2 + x;‘“‘)
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- — - - 2
_ X x| x b - xg) X1 (X5 = Xo)
- - 4 n-3
(x32+xox33+ ...... +x32)+x1[x23+x0x2 H oo + X] ]
F e e + X[

= a polynomial of degree (n — 2) and symmetrical Xo, X1, X2 With
leading coefficient 1.

Proceeding in this way, the " divided differences of x" will be a polynomial

of degree (n — r) and symmetrical in Xo, X1, X2 ........ x, with leading coefficient 1.

Hence n'* order divided differences of x" will be a polynomial of degree

n—-n=0,

(ie) A" x" =1
A x" =0 forl=1,2......

A [ao x" +a,x"" +... +anJ
=ap A" x" +a, A" X" 4. +A" a,
=a,. 1+0+0+....... +0=ap

The converse is also true. (ie) if the n'" divided difference of a polynomial

is constant, the polynomial is of degree n.

Example: 1
Find the divided differences of y given the fol'lowing table:-
X . 2 3 5 8 13

y : 24 32 84 108 208
X y Ay _
2 24 A’y ANy A'y
3 39 32—34_8
3-2 26-8
84 — 32 - 5-2 _26_
5 84 =26 —i6—6=1.6
5-3 o 26 8-2
108 84 _ =—3.6 0-51+1.6 _ 1
8 108 ——=8 8-3 o2 %2
] 8_5 15 +3.6
—_— _0.51
20 -8 13-3
208 — 108 : =15
13 208 =20 13-5
13 -8
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Example: 2
Find the divided differences of y given the following table:-

x : 1 2 7 8
f(x) : 1 5 5 4
Solution:
X f(x) Af(x) A*(x) A’(x)
11 2
2-1 0-4 2
5-5 7-1 3 1,2
2 5 =0 6+ % _1
7= -1-0 1 8-1 14
4-5 . 8-2 6
7 5 e 7" _
8 4 -
Example: 3
Find the differences of y given the following table:
X 4 5 7 10 11 13
f(x) : 48 100 294 900 1210 2028
Solution:
x  f(x) AF(x) A*(x) 4°f(x)
100 - 48
4 48 = 52
5-4
97 — 52
294 — 100 ERVER
5 100 ——;——g—=97 - 27 - 21
500 - 204 202-97 1-5
7 294 — = 10-5
10-7 510 - 202 21—15_1
1210 - 900 —_ 27 10-4
10 900 —_—= 11-7
11-10 33 - 27
409 - 310 =
2028 - 1210 —— =33 13-7
11 1210 13 - 11 13-10
13 2028
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Exercise:
1. Find the divided differences of y given 1, following table.

i) X 3 4 6 9 10
y 50 102 296 902 1212
i)yx - 2 -1 1 2 5
f(x) -83 -3 -5 -15 351

6.4 NEWTONS DIVIDED DIFFERENCES FORMULA

Let y = f(x) take values f(xg), f(x1$, {620 I f(x,) corresponding to the
arguments Xo, Xn, eoe-.- Xn-
f(x, Xo) = y(X, %0) = 222
X — Xg

Y(X, Xo) (X —Xo) =Y — Yo
Y = Yo + Y(X1 Xo) (X — Xo) (1)

y(xh XO)-— Y(XOs x1)
X—X.I

(X, Xo, X1) (X = X1) = ¥(X, Xo) — ¥(Xo, X1)

Similarly y(X, Xq, X4) =

. Y(X, Xo) = Y(Xo, X1) + (X = X1) Y(X, Xo, X1) (2)

Similarly

Y(X, Xg, Xq) — Y(Xg, X4, X3)
X — X,

y(X, Xo, X1, X2) =

y(X, X0, X1, X2) (X — X2) = Y(X, Xo, X1) — Y(Xo, X1, X2)

o Y(X, Xo, X1) = Y(Xo, X1, X2) + (X — X2) Y( X, Xo, X1, X2) (3)

--------------------------------------------------

Y(X1, X0y X1y veueueeen Xn-1) = Y(Xoy X1y covveeens Xn) + (X = Xn) Y(X, Xo, +..-.. Xn)

Multiplying the equation (2) by X — Xo
y(X, Xo) (X = Xo) = Y(Xo, X1) (X = Xo} + (X = X1) (X — Xo) Y(X, Xo, X1)

240



Multiplying equation (3) by (x — Xo) (X — X4)
(X = Xo) (X — Xq) Y(X1, Xo, X1) = (X = Xo) (X — X1) Y(Xo, X1, X2) + (X — Xo) (X — X4)

(x - x2) Y(X’ XOl X1, x2)
and so on an

Adding, we get

Y = Yo + (X = Xo) Y(Xo, X1) + (X — Xo) (X = X1) ¥(Xo, X1, X2) <eevvveins + (X = Xo)
( X - X1) ........ (X - Xn_1) y(XQ, Xq, «oun-. Xn) + Rn
Where R, = (X — Xo) (X = X1) ..... S (X - Xn) Y(X, X0, X1, ... Xn)

If y is a polynomial of degree n is X,
We get y(x, Xo, X1 ...... Xn) = 0.

S Y = Yo + (X = Xo) Y(Xo, X1) + (X = Xo) (X — Xo) (X — X1} ¥(Xo, X1, X2) --vnne
+ ... + (X — Xo) (X —Xq) .ivenns ( X = Xn-1) Y(Xo, X1, ...... Xn)

This equation is known as Newtons divided differences formula.

This can be written as

Y = Yo + (X — Xo) Ay, + (;< ~ Xo) (X = x1) A%y, + ooenenee. + (X — Xo) (X — X4)
If y is polynomial of degree higher than n, |

Rn(x) = O
Hence the.error term is

Rn(X) = (X — X0} (X — Xq) «c........ (X — Xn) Y(X, X0, X1, ---.-. Xn).

Relation between Divided Differences and forward Differences:

If the arguments Xq, X4, X2 ........ are equalty spaced then
We have
X—=—Xo= = Xog—=Xq4 = ........ =xn-—xn_1——h
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Yi—Ye h
Y Ay, - — Ay,
- 1
b2y, - Ay, ¢Yoz/h 1 (ays — avo)
Xy — X4 2h
A%y
2, — 0
45 Yo SRz
3 *Yo
Similarly 4% y, = e
3
In general 4" y, = 2 Yo
nth"

Substituting these values in the divided difference formula, we get

3 Ayo  (X=Xp)(X—X%X4) 2
Y=Yo +(X—Xq) h + YT AYqo + eenenn F evenen
(X —Xq) (x— x1)n..... (X —X,_4) Ays
n'h
-
fx=X%+xh & X =Xg=Xo— X1 =Xz —X2= ........ = Xn— Xn-1 = h

Where n need not be an integer.

Ay, Xh(Xh-=h) ,
=y, + Xh A
Y =Yo h | 2in? Y

X(X -1
y =Yyo+ X Ayo+———(?——)-A2yo+ ........

If x is not an integer, it is an infinite series, whereas if x is an integer, it is a
finite series.

Example:

The value of f(x) for values of x are given as f(1) = 1, f(2) = 5, f(7) = 5,
f(8) = 4, Find f(x).
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Solution:
The divided difference table is given below:

X f(x) A (x) A2 £(x) A° £(x)
b 2—1=4 0-4 2
- 0-4 _ 4, __2
2 5 5-5 0 7-1 A 3 1 +g
9-9 _ A
7-2 3 __1
8-1 4
-1-0 4
7 S 4_5=1 8§_2 A
87
8 4

Newton Divided Formula is
Y=Yot (X—Xo)lt&Yo + (X = Xo) (X — X4) 4\2}/0 + (X — Xo) (X — X1) (X — X2) A’y, + .....
Inthiscasexgo=1,Xx1=2, X2=7

2 1
Yo =1, Ay, =4, My, =-= 4&3Yo=ﬁ

Sfx) =1+ (x=1)(4)+ (x=1) (x-2) (- 2A)+(x—-1)(x—2) (x =7) %

=1+4x——4—23x2+2x—4 + —X° ——X“ +—x -1

= 4i2 (3x® - 58x? + 321x — 224)

Example: 2

A certain biquadratic polynomial passes through the points (2,3) (4,43)
(5, 138) (7, 778) and (8, 1515). Find its equation.

Solution:

The given points are at unequal intervals and the table of divided
difference in

: 3 4
Xy A A2y Ay A’y
2 3 43-3 40
=—=20
42-2 2 95-20 75
4 43 =——=25
138 -43 95 5-2 3 75-25 50
5-4 1 320-95 225 7-2 5 16-10 6
5 138 _ 7-4 3 8-2 6
778 138=640=320 1390-75 64
7-5 2 PR =16
7 778 737 - 320 417 120
.1_51.5__ﬂ§.= 737 8-5 3
8 1515 8-7 _ - - -
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Newton’s Formula for divided differences is \

Y = Yo+ (X=X0) AYo + (X —Xo) (X = X1) 4&2}’0 + (X = Xo) (X = X1) (X — X2) AYo
+ (X = %) (x = x1) (X = X2) (x = %3) A%Yo

In thiscase X =2, X1 =4, X =5, X3 =7, X4 = 8.

Yo =3, Ay, = 20, A yo =25, Ky, =10, Ky, = 1

LY =34+ (x=2)(20) + (x — 2) (x — 4) (25) + (x — 2) (x — 4) (x—5) (10)
+(x=2) (x-4)(x=5) (x=7) (1)

= 3 + 20x — 40 + 25x% — 150x + 200 + 10x% — 10x? + 380x — 400 + x* — 18x® —
39x2 + 226x — 280

= x* — 10x® + 36x° — 36x — 5.

Example: 3

By means of divided differences, find the value of y, from the following
table:-
X : 12 18 22 24 3z

y : 146 836 1948 2796 -9236

Solution:
The divided difference table in this case
X Yx Ay Ny, Ay, Alyx
12 146
18 836 115 16.3
22 1948 278 24.33 0.59 02
04 o270 424 3810 0.98
32 9236 805

By Newton’s Formula for dividend differences

Y= Yo +{X=Xg)AYo + (X =Xo) (X = x; )4y + (X =Xo) (X =X }(X = X3)A Yo
+ (X=X ) (X =X4) (X = X)X =X3) 454 Yo
In this case x = 20, Xo = 12, X4 = 18, x5 = 32, x3 = 24

Yo = 146, Ay, = 115, Azyo = 16.3, Asyo =0.59, Af‘yo =02
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Y20=146+(20 —~12)115+(20 ~12)(20 — 18)(16.3)+(20 — 12)(20 — 18)(20 — 24) (0.59)
+ (20 - 12) (20 — 18) (20 — 32) (20 — 24) (0.02)

= 146 + 920 + 260.8 — 37.76 + 15.36
Y20 = 1305.36
Example: 4

Find y, given
y0=—91 y1 =01 YS=O,YS=‘124, Y6=O,YQ=6552

Sincey, =0,y3=0,ys =0, (x — 1) (x — 3) (x — 6) must be factor of y,.

Solution:
Since 6 entries are given, y, may be taken as a polynomial of second degree.

Hence y, = (x — 1) (x — 3) (x ~ 6) f(x)
Where f(x) is a polynomial of second degree.

- Y«
) -9 =8

Yo -9
f = = =0.5
O FHe s

{(5) = Y5 -124

= = =15.5
@)1 -8

foy= Yo 6552

= = =45.5
(8)(6)(3) 144

We can find f(x) from their divided differences.

X f(x) A f(x) A?f(x)
0 0.5
3
5 15.5 0.5
7.5
9 45.5
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Hence f(x) = f(0) + (x — 0) Af(x) + (x — 0) (x — 5)A° f(x)
= 0.5 + x(3) + x(x — 5) (0.5)
= 0.5 + 3x + 0.5x% — 2.5x

x2 + X +1

f(x) = 0.5+ 0.5x+ 0.5x> = >

Hence y, = %(x—1)(x—3) (x=6) (C+x+1)

Exercise:
1. Using the method of divided differences calculate
i) f(8) to the nearest integer from the following data:

x 1 2 4 7 12

f(x) * 23 31 83 107 207
i) f(3.1) from‘rthe following tabile:

x : -2 -1 1 2 5

f(x}y: -83 -3 -5 -15 351
i) yr and y.« from the following table:

x = 3 4 6 9 10 12
y : 50 102 296 902 1212 2030
iv) log(1.45) from the following table:
X 143 147 148 150
logx : 2.1553 2.1673 2.1703 2.1761
2. Using the method of divided differences find f(x) from the following table.
x = 0 1 4 5

f(x) : 9 12 69 124

246



3. Find the four the divided differences with arguments xo, X1, X2, Xa, X4 Of the

function l
X

4. 1f f(x) = x* — x* + 1, find A* f(x). [Divided Difference]

Answer:
1.i) 94 ii)23.896 iii) y; = 450, y.=3152 iv)2.1614

2.x3—x*+3x+9

1

3.

4. 19.

6.5 GAUSS’S FORMULA

Central Difference Interpolation Formula:

Newton’s forward and backward formulae are best suited for interpolation
near the beginning and end of a table of differences. For interpolation near the
middle of a difference table, a centre difference interpolation is required. For this
origin is shifted to some convenient point in the middle so that the arguments are

....... Xo — 3h, Xo — 2h, X — h, Xo + h, X0 + 2h, xo + 3h, .........and their
corresponding entires are
Y-3, Y-2, Y-1, Yo, ¥1. ¥3, -....

Newton’s Divided Differences Formula is
Y = Yo+ (X = Xo) ¥(Xo, X1) *+ (X = Xo) (X = X1) Y(Xo, X1,X2) + (X = Xo) (X — X;)
(X = X2) ¥(Xo, X1, X2, X3) +
(X = Xo) (X = X1) (X = X2) (X — X3) ¥ (X0, X1, X2, X3, Xa)} + .........

In this formula,
Put X1 = Xo + h, Xz = Xo — h, X3 = X + 2h, x4 = X - 2h, xs = x + 3h, X = X — 3h
and so on.

We get
Y = Yo+ (X = Xo) Y(Xo, Xo + h) + (X = Xo) (X — Xo — h) y(Xo, Xo + hq Xo — h) +
(X = Xo) (X = Xo = h) (X = Xo + h) y(Xo, Xo + h, Xo — h, Xo + 2h)
+ (X = Xo) (X = Xo — h) (X = Xo + h) (X — Xo — 2h)
Y(Xo, Xo + h, Xo — h, Xo + 2h, X0 — 2h) + .........
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Since in the divided difference, the arguments may be interchanged
provided their corresponding values of y are interchanged.

Put X = x—hxo, (ie) x — Xo = xh.

oY = Yo + Xh y(Xo, Xo + h) + Xh(xh — h) y(x0, Xo + h, Xo — h) + Xh (Xh — h) (Xh + h)
Y(Xo, Xo + h, Xo — h, Xg + 2h) + Xh (Xh — h) (Xh + h) (Xh — 2h)
Y(Xo, Xo + h, Xo — h, Xo + 2h, Xo — 2h) + ........

Y = Yo + Xhy(Xo, Xo + h) + X(X = 1)h? y(xo, X0 + h, Xo — h) +

X(X = 1) (X + 1) h® y(Xo, Xo + h, Xo — h, Xo + 2h)

+ X(X = 1) (X +1) (X = 2)h* y(xo, Xo + h, Xo — h, X0 + 2h, Xo — 2h)+...........
We have show that

Y(Xo, %o + h) = o
Y (Xo, Xo + h, X — h) =y (Xg — h, X, Xo + h)
- A2y-1
21 h?

Since the order of arguments can be changed
Y(Xo, Xo + h, Xo — h, Xo + 2h) = y(Xo — h, X0, Xo + h, Xo + 2h)
Ay 1

31h3
and Y(Xo, Xo + h, Xo — h, Xo + 2h, X2 — Zh) = Y(Xo - 2h, Xo — h, Xo, Xo + h, Xo T+ 2h)

A4}’2

= == and so on.
4!p*
Substituting these values in (1)
The equation becomes
X(X — 1 2 _ 2 2 42 _
y=Yyo+ X A)’o"‘*ﬁ——) Azy-1+______X(X L) Ady_q + XX -1)(X-2)
2! 3! 41
2 42 2 _»2
+ Ady, + X(X 153'()( 2°) ASy o+ ...

This is known as Gauss Forward Formula.
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Gauss’s Backward Formula:
In the Newton’s Divided differences formula

Putx1=xo—h,x2=xo+h,x3=x0—2h,x4=xo+2h,x5=xo—3h,x6=xo+3hand
SO on.

It will become

Y = Yo + (X = Xo) Y(Xo, Xo — h) + (X = Xo) (X — Xo + h) y(Xo, Xo — h, Xo + h)
+ (X — Xg) (X — Xo + h) (X = Xg — h) y(Xo, Xo — h, Xo + h, Xo — 2h)

+ (X — Xo) (X — Xo + h) (X = Xo — h) (X = Xo +2h)

Y (Xo, Xo — h, Xo +h, Xo — 2h, Xo + 2h) +.......

X — Xg
h

put X = (ie) x = xo + Xh

Then the equation reduces to
y = Yo + Xh(Xo, Xo — h) + Xh(Xh + h) y(Xo, Xo = h, Xo + 2h) + Xh(Xh + h)
(Xh = h) y(Xo, Xo — h, Xo + h, Xo — 2h) + Xh(Xh + h) (Xh = h) (Xh + 2h)
y(Xo, Xo — h, Xo — 2h, Xo + 2h) + ...........

y = yo + Xhy(Xo, Xo — h) + X(x+1) h%y (X0, Xo — h, Xo + h) + X (X + 1) (X = 1)
h3y(xo,xo—h,xo+h,x0—2h)+X(X+1)(X—1)(X+2)

h*y (X0, Xo = h, Xo + h, Xo —2h, X0 + 2h) + .......... (1)
We know that y(xo, Xo — h) = y(Xo — h, Xo) = Yy P
Y(Xo, Xo — h, Xo + h) = y(Xo — h, Xo, Xo + h) = Ay
' ’ T 2! h?
y(Xo, Xo — h, Xo — 2h, Xo — 2h) = y(Xo — 2h, Xo — h, Xo, Xo *+ h, Xo + 2h)
Aty
= and so on.
41 h'
Substituting these values in (1)

We get
2 2
X(X+1) AZy, + X(X*-1%)

y=yo+ XAy, + X . 3

Ay +

X (X2 - 12) (X + 2) Aty + X (X2 —12) (X2 - 22)
41 2 51

This is known as Gauss’s backwards formula.
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Note: 1

1. This formula is known as Gauss’s forward interpolation formula.

2. This formula involves odd differences below the central line (x = a) and even
differences on the line.

3. Taking the central line and the next line from the table, we have the
differences occurring in the formula.

Central line y ........ A%Y_q .. A o ... A®y_3
\ A Yo/ Ay / \ A®Y_;
Difference Table:
X y Ay A%y A3y Aty A®y
a - 3h Y_3 A
a-2h y-2 AY-s A%y_s
- 3
a—h Y1 A Y-2 A 2 A Y-3 4
A y-2 3 ATy_3
a..... Yo oneen Y1 Ay, A7Y-2 A4 A®y_s
_ y_
a+h Y1 AYo Ay, A%y Ady ° A%y,
A A CARE U
a+3h y; Az ,

I
4. The formula can be written easily with the help of the following table:

Coefficients 1 X X x+1 x+1 x+h

1 2 2 4 5
Differences Yo Ayo A?y, Ady_, Aty_, A%Y o ...
5. The formula is useful when u lies between 0 and 1.

Gauss’s Backward Formula

Note:

1. Gauss’s Backward formula involves odd differences above the central line
and even differences on the central line.

2. Taking the central line and the previous line of the Table 1, we have the
difference occurring in the formula.
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;
Previous line : ....... AY 4 ccoooo. Ay o ..., A%y 3

VAWAWA

Centralline : ...yo0 = A°Y_q4..cc.c.. A%Yy_2........ A°%y_3

3. This backward formula is useful when u lies between —1 and 0

4. The formula can be easily written with the help of the following table:

(x2+ 1] (X4+ 1] (X: 2) .......

Differences Yo AY. A%y, A’y AY_o ..

X
Coefficients 1 (1 J

Example: 1

Apply Gauss’s forward central difference formula and estimate f(32) from
the following table.

X: 25 30 35 40
y= f(x) 0.2707 0.3027 0.3386 0.3794
Solution:

Given x = 32 lies between 30 and 35

Let us take 30 as the origin; here h=5

X—-X, 32-30 2

X = - ===04
h 5 5
X y Ay Ay A’y

Y/ 25
1 0.2707 0320
vg 30 0.3027 0039

0 .0359 .0010
V 35 0.3386 .0049

1 .0408
V 40 0.3794

2

Since we apply forward formula of Gauss, we enclose differences
occurring in the terms by rectangle.
By Gauss’s Forward Formula,
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We have

_ X2__12
Y(X):y(x0+xh)=yo+x Ayo + -)(—()(5—3 A2y_1+ X( a5 ) A3y_1 +

4041
y(x = 32) = y(x = 0.4) = 0.3027 + 0.4(0.0359) + (02' ) (0.0039)

2 2
, 04 (O'ﬁ,’. ~1) (0.0010)

= 0.3027 + (0.4) (0.0359) + (0'4)2‘0'6) (0.0039)

s (1.4)(0.;)(—0.6) (0.0010)

= 0.3027 + 0.01436 — 0.000468 — 0.00006
y = 0.31653
Example: 2

Using Gauss’s backward interpolation formula, find the population for the year
1936 given that

Year x : 1901 1911 1921 1931 1941 1951
Population
In thousand y: 12 15 20 27 39 52
Solution:

Since we require at x = 1936

Take 1941 are the origin h = 10,
x —1941 1936 — 1941

X= -0.5
10 10
X y Ay A%y A3y Ady A3y
1901 y. 12 X
2
1911 y_; | 15 5 0
1921 y, = 20 7 2 3 3 ~10
5 ~7
1931y, 27 1 -~
1941 _ 39
Y-o 13

1951 y_, 52
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We enclose those values required in the formula by rectangles.

By Gauss’s backward formula,

We have
2 2
y(x) = y(Xo + uh) = y(x = 0.5) =y, + xAy_ + ZQ‘E_TJ_) Ay, + X(X3|—1 ) Ay,
2 2
PR gy L
2 2
y =39+ (0-.5) (12) + ‘0-5(;?'5”) 0— (1) + “0-5((—2-'5) ) (4

- 39_g+ (05)(-05)  (05)(-0.5)(-15)
2

5 (4)

=33 - = 32.625

1.1
8 4

.y =32.625

Example: 3
The following table gives the value of the probability integral

f(x) = -2—j e_xé dx for certain equidistant values of x. Using a) Gauss’s forward

Jro
formula. b) Gauss'’s backward formula. Find the value of the integral when x =
0.68.

X 0.50 0.55 0.60 0.65 0.70 0.75 0.80
f(x) :0.1915 0.2088 0.2258 0.24422 0.2580 0.2734 0.2881
Solution:

Since x = 0.68 lies between 0.65 and 0.70.

We shall take the origin (ie) x = x, at 0.65.

X—X. 068-065 .03
W h X = 0 = =
e have h 0.05 05

=0.6
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The difference table is given below:

X y f(x) (10%) Ay A2y Ady Aty A%y

0.50 _ 1915
y-3 173

055 y. 2088 -3
0.60 2258 170 6 -3 3
0.65 > 2422 164 6 0 2 1
0.70 " 2580 158 4 2 5 >

' 4 154 -3
0.75 vy, 2734 -7

147 :

0.80 Vi 2881

a) By Gauss’s forward formula:

2 42 _
Yo, + Aly_, + X(X*=1)(x-2) Ady

y=Yo+ X Ayo+ 31 41

X(X=1 . X(X2 - 12)
2

. X (X2 -1%)(X? -2%)

5
51 Ay 2+ ...

6(.6

252 o 2 ()

2
= 2422 + (0.6) (158) + -6(.6 =

6(.6% ~2)(6-2) 6(.62 —1) (62 - 4)
¥ 24 (2)* 120 )

= 2422 + 94.8 — 0.72 + 0 + 0.0448 + 0.034944

y = 2517.598
~ f(x) = 0.25176 [ f(x)10* = 2517.598 => f(x) = ___251176 -5598]

b) By Gauss’s Backward formula:

X 1 2 42
(X pa , XOE-T) o

Y=Y+ X Ay, + o1 3 Y

. X (X2 -1?) (X2 - 2%)
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o.eg.e) )+ BLE

= 2422 + (0.6) (164) + 5 =1 (o)

L 6(6%-1)(6+2) 2) + 6 (.6% —1)(.6% - 4) -
. 24 120

=2422 + 98.4 — 2.88 + 0 — 0.0832 — 0.011648

y =2517.7 0= 2517.7
104

f(x) = 0.25177
f(x)=.25177 |

Exercise:

1. Interpolate by Gauss’s formula the value of y when x = 17 from the
following table: '

X 5 10 15 20 25 30
y : 0.3797 2.4622 4.0939 5.3725 6.3742 7.1591
2. Apply Gauss’s forward formula to get ys, given that |
Y21 = 18.4708, ya5 = 17.8144, y, = 17.1070, yss = 16.3432, ya; = 15.5154
3. Use Gauss’s backward formula to obtain sin 45° given the table below:
x° 20 30 40 50 60 70

sin xX° : 0.34202 0.50200 0.64279 0.76604 0.86603 0.93969

4. Use Gauss forward formula. The value of e™ for various values of x are given
below. Find e™'-74%°

X 1.72 1.73 1.74 1.75 1.76
e—x 0.17907 0.17728 0.17552 0.17377 0.17204

6.6 STIRLINGS FORMULA
By Gauss’s forward formula,

We have
- X(X-1) 5 X(X?-1?) 4 X(X*-1*)(X-2) .
Y=Yo+ X Ayp+ ————= A‘y_+ ATy ¥ AY-2
21 3! 4!
X X2_12 X2_22
+ ( 5)'( ) Asy_z'l' ........ (1)
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By Gauss’s backward formula,

We have

2 42 2 42
X(X+1) | X(X-1) A%y o+ X (X2 =1?)(X+2) A%y
21 3! 4!
s X (X2 —1?)(X? -2%)
51

Yy=Yot X Ay_q #

ASy g+ oo, 2)

Adding (1) and (2) and finding the average, We get

2 _ 2 X (X% —1?
2y = 2yo + X(Ayo + Ay_4) + X X;X +X APy 4+ ——(—5——)

2 42
ﬁ(f_mi-l[x—2+X+2]A4y_2

(A:"y_1 +A3y_2)+

L, X 1) (X* -27) {As Yo + A y_s} .

5! 2

(+ 2) .

2 X< -1

v = yo + X Ay, + Ay 4 + X Azy_1 + X_(_____)_ [A3y_1 +A3y_2]
2 2! 3!
L XX Adyp+ XOE 1) (X =2%) [Ny, + A ),
41! 5! 2

Note:

The formation of even terms

w [ Ao + AV X (X2 =12y (A%, + A%,
2 31 2

X (X2 —12) (X2 —22) ( A%y _, + A%y,
5! 2

From this the next even term n
X (X? —12) (X2 —2%) (X* -3?) (Ny_a +A4y_4}

7! 2
2 2 (yw2 42
The odd terms are —);—'Azy_1 , X Oi“ 1) pe Y.,
From this the next odd term is
x2 X2 _12 X2 _22)
( ) ( Ay,

6!
Similarly we can form all the terms.
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Example: 1
Using Stirlings formula, find y(1.22) from the following table.

X 1.0 1.1 1.2 1.3 1.4 1.5 1.6

y 0.84147 0.89121 0.93204 0.96356 0.98545 0.99749 0.99957

X 1.7 1.8
y 0.99385 0.97385
Solution:

Since we require y at x = 1.22

Take the origin at x=1.2 and h = 0.1

x = X" Xo _ 1.22-12 0.02 ~0.2
h 0.1 0.1

We form the central difference table below.
Since x= 1.2 is the origin,
We take values on both sides of 1.2 to the required stage.

By Stirlings formula

We have
_ Ayo +Ay_ ] X2 5 XX =)y, + Ay, | X2 (X2-1?) ,
’ y°+x[ 2 ]+ 7 SVt 2 T AV
Difference Table
X y Ay A3y A%y Ay
1.0 Y-2 0.84147
0.04974
1.1 Y-1 0.89121 0.04083 —0.00891
. —0.00040
1.2 Yo 0.93204 0.03152 —0.00931 0.000 — 0.00008
. -0. 32
1.3 Y1 0.96356 —0.00963
0.02189

1.4 y; 0.98545

0.04083 + 0.03152
2

yi.2 = 0.93204 + (0.2) [ ]+ (0'22)2 (-0.00931)
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+ (0.2)(0.04 - 1) [-— 0.00040 - 0.00032J
6 2

, (0.04) (0.04 -

" (0.00008) + ..o,
24

= 0.93204 + 0.007235 — 0.0001862 + 0.00001152 — 0.000000128

yi2 = 0.939100192.

Example: 2

From the following table estimate €%°** correct to five decimals using
Stirling’s formula
Xx : 0.61 0.62 0.63 0.64 0.65 0.66 0.67

e* : 1.840431 1.858928 1.877610 1.896481 1.915541 1.934792 1.95421

Solution:
Take x = 0.64 as the origin

X—Xo .0.644 -0.64

X = 0.4
h 0.01
Formula:
_ Ay +Ay_, | X2 , X(X* =1 Ay, +A%y ,
y-y0+X[ 2 }“2“"“’ 31 2
N X2 (X2 -1%) Ay, +
a1 YooF ..ol
X y Ay A%y Ady Ay

061 ys 1.840431

0.62 Yo 1.858928 : 000004
0.63 Vo1 1.877610 0.000189 ' -0.000004

018497
0186
0.018871
0.64 [1.896481 ] 0.000189 [0.000002]
Yo 0.019060
0.019251
0.0194

.000002
0.65 Y1 1.915541 0.000191 .000002 ] 0.000001

0.000003
066 y,  1.934792
0.67 ys  1.954237
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\
-y =1.896481 + (0.4) (0.01887 +20.O19060 N 0.216 (0.000189)
/

—1) (0.000002)

, (0.4)(0.16 - 1) (0 + 0.000002) , (0.4)* (0.16
6 2 ) 4

= 1.896481 + 0.0075862 + 0.00001512 — 0.000000056 — 0.000000269
y = 1.904081996

Example: 3
The following table gives the value of the probability integral

——2—j e_xé dx for certain equidistant values of x. Using Stirling’s formula.

Jr o

Find the value of the integral when x = 0.68

f(x) =

X . 0.50 0.55 0.60 0.65 0.70 0.75 0.80
f(x) : 0.1915 0.2088 0.2258 0.2422 0.2580 0.2734 0.2881
Solution:

Since x = 0.68 lies between 0.65 and 0.70, We shall take the origin.
(ie) x = xo at 0.65.

X—X, 0.68-065
h 0.05

X= 0.6

The difference table is given below

X f (x)(10%) Ay A%y Aly Aty A’y
0.50 y-3 1915
0.55 y-2 2088 T — 3
0.60 y-1 2258 70— 6 —_ 0\3\;1
0.65 Yo 2422 16 6y o T2~
0.70 y; 2580 198—_ 1 4 2— .5 3

154 —-3

0.75 y» 2734 194 _
0.80 ys 2881

Stirling’s Formula:

Ay, +AY_, X2 , X(X2-1?) (By  +Ay
= yo + X A L =2
y=Yo ( > ) Tt YT 2

2 2
. X(X4‘~1 ) Aty x<x2-125)'(x2 - 2?) (AS Y o +A° y_a] .
| ! 2
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_ 0.6 (158 +164) (0.6)2(-4) (0-6)(0.6° -1 (2+0

= 2422 + 5 + 3 + 5 ( > )
(0.6)% (0.6% - 1)

* 24 @ 120

2 2 _ _
, 06((06)° ~1(6>-2) (321)

= 2422 + 96.6 ~ 0.72 — 0.064 — 0.0192 - .005248
y = 2517.8
f (x) (10% = 2517.8
~f (x) = 0.25178

Example: 4
Given the following table, find y (35), by using Stirling’s formula.
50

X ! 20 30 40
y: 512 439 346 243
Sofution:

We will take X, = 30 as the origin.
x = X=%o =35—30 -05
6 10

X X2
y(35)=yo *+ 3 (Ayo+ A y_q)+ Y A%y 4+

x(xz ~1) As;’/—1 + A3;’/—2 +
6 2

Difference Table

X y Ay A%y Aty
20 512
o gy —20 ]
30 439 g3 ¥ 5
. ° Ay 40
0 336 _i03 Yo
50 243

Y5 = 439 + %-5- (-93 ~ 73) + 9-'-225- (~20) + &) (%25«’ )

(10)

=439 - 41.50 - 2.50

yas = 395.
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Exercise:
1. Use Stirling’s formula to find Y,, given

X 10 20 30 40

y« . 51.2 43.9 34.6 24.3

2. Use Stirling’s formula, estimate f (1.22) from the following table:
x: 20 25 30 35 40

f{x): 49225 - 48316 47236 45926 44306

3. Estimate 4/1.12 using Stirling’s formula from the following table.
x: 1.0 1.05 1.10 1.15 1.20 1.25 1.30

f(x): 1.00000 1.02470 1.04881 1.07238 1.09544 1.11803 1.14017

4. Use Stirling’s formula to get tem 89° 26’ from the table.

X: 89° 21’ 89° 23’ 89° 25’ 89° 27’ 89° 29’
tan x : 88.14 92.91 98.22 104.17 110.90
5. Use Stirling formula to get the value of Y (45) given.

X: 40 44 48 52

y: 51.08 63.24 70.88 79.84

6.7 BESSEL’S FORMULA
In the Gauss’s Backward formula, instead of x, take x4 (ie.) we have to
advance the subscripts of x and y by one unit.

x=X"X (je)x=2%h
h
Ge)yx=2"%o _4
. Hence X is to be replaced by X - 1.

Similarly (X - k) is to be replaced by (X -k - 1)

Then the
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Gauss’s Backward Formula reduces to

X-1x X(X-1)(X-2)
y=YO+(X“1)AYO+(_"2"—)"_ A23/0"' ( 3'( A?y

L X -)(X=2) Aty | X -P)(X=2(X=3) s
4! 4 S!

Gauss's forward formula is

X (X% -1?) .,

X (X —1)
y=yorX Ayy D Ay T Ay
2 42 _ , 2 42 Y-
P X X-2) Aty + XX 15)'<x 2) oy 4

Finding the mean of (1) and (2), we get

2y _ Yo+V¥i , (X=NAYo+ XAy, (X=NXAys+ X(X-TAy,

-----

2 2 2 21

L XXX Ay + XX -P) Ay,
2 (3

X(X2=1)(x-2)A* y_,+x (x> -1?)(x-2)A* y, +
41 (2)

2 2
y= YoV, (x-lj Ayo+(><—1)x Ay 4 +A" Y,
2 2 21 2

X(X——1—)(X—-1)
2 ANy, +

+

3! 41

X(X—-%)(X2 —1%) (X% —1%) (X2 -1?)
5!

+

This is known as Bessel’'s formula of interpolation.
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Example: 1

1. Given the following table, find y (35) by using Bessel's formula.

X: 20 30 40 50
y: 512 439 346 243
Solution:

Take xo = 30 as the origin.

h 10
The difference table is
X y Ay N’y Ny
Ay_q A%y,
20 Y-1 512 -73 —20 A3y_1
30 yo 439 AYo , 10
_ A
40 y, 346 93 * {8

50 y, 243 —103
Using Bessel’s formula:

x(x—%) (X-1)

_'yo+Y1 1 X(X-1) AZy—1"'A2yo 3
y= __2_'+(X_§)Ay°+ 2! 2 * 3! Ao T
439 + 346 0.5(0.5-1) (—20_10)
= 2970 05— 14)(-93
+(0.5- 15) (-98) + ———, >
0.5)(0.5- 14) (0.5 -1
, ©905-)9)05-1
3!
_ 4394346 oL 005 (-—30)
2 2
= 392.5 + 1.875
y = 394.375
Example: 2

From the following table, estimate e ®®** correct to five decimals using
Bessel's formula.

X 0.61 0.62 0.63 0.64 0.65 0.66 0.67
e” 1.840431 1.858928 1.877610 1.896481 1.915541 1.934792 1.954237
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Solution:

Take x = 0.64 as the origin.

x o X=Xo _ 0644-064 _
h 0.01
Difference Table
X y=e” Ay Ny Ny Ny
0.61 ys 1.840431 .o/ 0
062 vy, 1.858928 0.000185
0.018682 0.000004
0.63 y, 1.877610 0.000189 ~0.000004
0.018871 0.0
0.64 vy, 1.896481 0.000189 0.000002
0.019060 0.000002
0.65 y»  1.915547 4 519251 0.000191 0.000001
’ 0.000002
0.66 y, 1.934792 0.000194
0.019445
0.67 ys 1.954237

Using Bessel's formula

_ 2 2
y=Yor¥s yo+Y1 ( /z)Ayo X()z(! 1)(A Yy +A YOJ

2

1
XX=p)x-D ~P)(X-2)) (A y,+ATy.),
4! 2

+ 3 +
3] A” Y1

[X(x2

We get

_ 1.896481+ 1.915541
2

(O 4 ——) (0.019060)

, (0.4)(-06) (0.000189 +o.ooo191]
2 2

, (0.4)(-06)(0.4-0.5)
6

(0.4)[(0.4)2 - 1) (0.4 - 2)
- 41
[o.oooooz + .000001)

(0.000002) +

2

1.906011 — 0.001906 — 0.0000228

1.904082
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Example: 3

The following table gives the value of the probability integral f (x) = -—j—:
4

X _X2
J' e 72 d x for certain equidistant values of x. Using Bessel’'s formula.
0

Find the value of the integral when x = 0.68.
X: 0.50 0.55 0.60 0.65 0.70 0.75 0.80

f(x): 0.1915 0.2088 0.2258 0.2422 0.2580 0.2734 0.2881

Solution:

Since x =0.68 lies between 0.65 and 0.70. We shall take the origin, (i.e.) X

= Xo at 0.65.

X—X, _ 0.648-0.65 _

h 0.05
By Bessel’s formula

X (X=1) (Az Yo +A2y_1J+ X(X‘yz)(x—ﬂ K
3|

We have X= 0.6

y = yO + X A yO + 2| 2 y._-1
1) w2 42y (y2 _92

X (X2 —12) (X=2) (A'y , + A%y, X(X 2)(X X -29

+ + A~ Y2+ ...
41 2 5!

X f(x) (10") Ay A’y Ady Aty ASy
0.50 y. 1915
0.55 y_, 2088 -
0.70 vy, 2580 154 - \_3
0.75 vy, 2734 -7

147
0.80 y; 2881

we get

y = 2422 + (0.6) (158) +

0.6(0.6-1) (— 4 6) , (06)(6-5)(6-1)
2 2 6
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6(0.62-1(06-2) (2+5) .8(6-.5)(-6°-1)(6°-4)
" 24 ( 2 )J“ 120 '- )

= 2422 + 94.8 + 0.6 — .008 + 0.00784 + .0034944
y = 2517.55
f(x) (10*) = 2517.55
. f(x) = 0.25176
Exercise:
1. From the following table using Bessel's formula find y (5).

X: 0 4 8 12

Y: 14.27 15.81 17.72 19.96

2. Apply Bessel's formula to obtain.

1) Y45 given

X : 40 44 48 52

y: 51.08 63.24 70.88 79.84

i) the value of y when x = 5 from the following table:
X: 0 4 8 12

y: 14.27 15.81 17.72 19.96

3. Using Bessel's formula obtain the value of y (5) given
X: 0 4 8 12

y: 14.27 15.81 17.72 19.96
6.8 LAPLACE — EVERETT FORMULA
Gause’s forward formula is

X (x - 1)
or ATVt T AT

Yoy =Y (Xo+ Xh)=yeo+ A yg+
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. X (x? =1?)(x~-2) Ay, + x (x2 —1%) (x* - 2%)

vy 3 APy, + ... (1)

we have A Yo=Y1—VYo; A’y 1=~ A%yo— A%y,
A%y ,= A*y., - Aty etc.

Substituting these in (1)
we have

X (X -1 X (X2 12
y(X9+Xh)=yo+X(y1—y0)+—£-2—l——) AZY-1+—-(—§'———) (A?yo - A%y 4)

2 42 2 _92 2_22
X0 0y L KOO 2 (0 ey )

41 51

2 42 2 42
X(X-1) A2y, + X (X< -1%) A2 yo — X (X =19) A2y,

y =Yo+ Xyi— Xyo+ 51 -1 31 31
2 a2 2 42 2 _ 2
L XX —L)(X—Z) Ay, + X(X —15)'(X 27) Aty

X(X2 =) (X*=2") gy
- -2

51!
X(X=1) { X(X2-1? X (X2 -1?
=(1—X)YO+XY1+( (2‘ )[ (3‘ ))AZYq"'-L-é-'——lAzyQ

A’y (2)

4! 5! 5!

. . X X X+1
Using this result + =
r r+1 r+1

Changing1—-X=v=YorX=1-vin equation (2)
we get

+(X(X2—12)(X—2)_X(X2—12)(X2—-22) )A4y_2+ X (X2 —12) (X% - 2?)

X} | X(X=N(X=2) _ (1= (V=) _(v+HMv=1_
3 3! 31 N B

Similarly,
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S (167

Hence, equation (2) reduces to

(v +1 V+2
Y(X)=[VYO+ JAZY_1 +(5 JA4y_2+....}

. 3
+ Xy1+(x+1j Ky, + (X+2] Aty + . } — Q)
] 3 5
N 2 2 2 2 2 2
y=|:VyO+V—(V—:_Q A2y_1 + V(V _1 )(V “‘2) A4y_2+-- :|
3! 5!
2 42 2 42 2 _ o2
+[Xy1+ XD gy, » XX 15),()( 2) Aty ] (4)

This formula is known as Laplace — Everett formula.

Note: 1. This formula involves even differences on and below the central
line.

2. It involves only even order differences.
3. Thiscanbeused if0O<u<1.

Example: 1
From the following table, estimate e °°** correct to five decimals using
Laplace — Everett's formula. Also find e*

X: 0.61 0.62 0.63 0.64 0.65 0.66 0.67
e”: 1.840431 1.858928 1.877610 1.896481 1.915541 1.934792 1.954237

Solution:
Take x = 0.64 as the origin

X—X, _0.644-0.64
h 0.01 N

X = 0.4
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Difference Table

X y=e' Ay A?y Ady Ay
0.61 y_3 1.840431
+
0.62 y_, 1.858928 0.018407 0.000185 000004
0.63 y.q 1.877610 0.018682 0.000189 0.0 ~0.000004
0.64 vy, 1.896481 0.018871 0.000189 0.000002 0.000002
0.019060 -
0.65 vy, 1.915541 0.000191 1 110003 0.000001
' 0.019251 :
0.66 vy, 1.934792 0.000194
0.019445
0.67 s 1.954237

Using Laplace Everett’'s Formula, we get

V (V2 -12) L V(VE-1%)(v? -2

Ay, A*Y L, H }

51
A4y_1+.....]

y = (0.644) = {v Y, +

2 _q2 2 42y y2 92
+[Xy1+ x(x3’1)A2y0x(x 15)t(x 22)

V=1-X =2V=1-04=06

-

(0.00018g) (0-8) (06 “:) (0.6%-2%) / o.ooooozﬂ/
!

Y = [(0.6) (1.896481) + 00 (%-36 -1

+ (0.4) (1.915541) +

(0'4)(%16“1) (0.000191)
, (06) (0.6% - 1) (0.62 - 22

51
= [1.1378886 — 0.000012096 + 0.00000002396] + [0.7662164

) (0.0000.01) }

- 0.00001069 + .000000011648]

1.137876527 + 0.766205722

1.904082.

<
"
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Example: 2
The following table gives the values of the probability integral

2
I

e”‘2 d x for certain values of x. Find the value of this integral
0
when x = 0.5437 using Laplace Everett’'s formula,

f(x)=
x:  0.51 0.52 0.53 0.54 0.55 0.56

Y=f(x) 0.5292437 0.5378987 0.5464641 0.5549392 0.5633233 0.5716157

X: 0.57
f(x): 0.5798158

Solution:
We take the origin xo = 0.54 and x = 0.5437, h = 0.01

X = X—Xo _ 0.5437 - 0.54 - 0.37
h 0.01

V=1-X=1 -0.37=0.63

Difference table:

X f(x) Ay A?y A3y Aty
0.51 y_; 0.5292437 0.0086550
052 y, 05378987 -0.0000896 _ 1500007
0.0084751 | ioia o 0.0
0.53 y_4 0.56464641 0.0084754 Y -0.0000007 0.0
0.54 yo  0.5549392 oo, ~0.0000910 5665447 0.0000001
0.55 ;s 0.5633232 0.0082924 —-0.0000917 —0.0000006
0.56 vy, 0.5716157 0.0082001 -0.0000923
0.57 vys3 0.5798158
By Laplace Everett’s Formula
— = _ X(X2-1) X(XZ-)(X?-4) , ’
y = (x =0.5437) = Xy1+——6———A Yo + 12 ATY 4 H

v(vi-1) o VvE-D (v (v -4)
+ |V YAT T U y
l: Yo + 6 Y+ 120 A Yot.....
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2
y = [ (0.37) (0.5633233) + (0:37)( (‘27) -1) (- 0.0000917)

L (37) (0.372 -1)(0.372 -4) 0)

} + [ (0.63) (0.5549392)

120
2 2 2 \
+(0.63) (063 6) -1) (£0.0000910) {(0'63)(0'63123)(0'63 4) [O J }

- [0.208429621 + 0.00000488 + 0 ] + [0.34961196
+ 0.00000576262 + 0]
y = 0.55805195.

Example: 3

From the following table,
X: 20 25 30 35 40
f(x) 11.4699 12.7834 13.7648 14.4982 15.0463

find f (34) using Laplace Everett's formula.

Solution:
Take the origin X, 25 30; h =5

X~Xo _ 34-30

X= = 0.8
h 5

V=1-X=-08=0.2

Difference Table
X f(x) Ay Ay A®y Aty
20 y.; 11.4699
1.3135 0.3321

25 y_4 12.7834 0.9814 . 0.0841 S om1a
30 vo 13.7648 0.7334 ~0.2480 0.0627 .
35 vy 14.4982 0.5481 —0.1853
40 vy, 15.0463

By Laplace Everett's Formula
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X (X2 =12 X (X2 =12} (X2 - 22
y (X) ={Xy1+ (3' )A2y0 ( 5)'( )A4y_+ .....
B 2 2 2 2 2 2
vi{vs -1 v(ve =17) (v 2
VT YT S U P

y(x=34=y(x=0.8)

(0.1853) |+[(0.2) (13.7648)

{(0.8) (14.4982) + &2 (0664 -1)

(0.2) (.04 — 1) (0.04 - 4)

(~0.2480) +
120

(-.0214)

, (0.2)(0.04-1)
6

11.59856 + 0.0088944 + 2.75296 + .007936 — .0001355904

Y = 14.368214

Example: 4

From the following the table, estimate f (337.5) by proper interpolation

formula.
X: 310 320 330 340 350 360

f(x) =y =log x 2.4913617 2.5051500 2.5185139 2.5314789 2.5440680 2.5563025

Solution:
Take xo =330 as the origin

X-Xs _ 337.5-330
h 10

h=10, X= = 0.75

Since X =0.75 > %

We can use Everett’'s formula for better result v=1 - x = 0.25.

X y Ay A%y A%y Aty

310 2.4913617 0 0137883

320 2.5051500 ' ~0.0004244
0.0133639 0.0000255

330 2.5185139 ~0.0003989 ~0.0000025
0.0129650 0.0000230

340 2.5314789 ~0.0003757 ~0.0000017

250 25440680 0.0125891 0.0000213

' 0.0122345 ~0:0003546

360 2.5563025
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By Everett’s formula,

X (X2 1) (X% -4)
51

X (X2 - 1)

y (0.75) = l'X Y

|

Ay, +

A Y _4 +}

v (vZ -1
3!

v(vi=1)(v:-4
e I

+ {Vy0+

(0.75) (0.5625 — 1)
6

= {(0.75) (2.5314789) + (-0.0003759)

, (0.75) (0.5625 1) (0.5625 - 4)
120

(— 0.0000017)

(0.25)(0.0625 —1)
6

+ [(0.25) (2.585139) + (—0.0003989)

. (0.25) (0.0625 1) (
120

0.0625-4) " 4.0000025)

Y (0.75) = 2.5282736

Exercise:
1. Using Everett's formula, find log 2375 given

X: 21 22 23 24 25 26

log x : 1.3222 1.3424 1.3617 1.3802 1.3979 1.4130

2. Find y (12) if y (0) = 0, y (10) = 43214, y (20) = 86002.

Y (30) = 128372 using Everett’s formula,

3. Using Everett’s formula, estimate y (30) given.
X: 20 28 36 44

y (x): 2854 3162 7088 7984

4. Apply Everett’s formula to evaluate y (26) and y (27) given.
X: 15 20 25 30 35 40

y(x):12.849 16.351 19.524 22.396 24.999 27.356
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6.9 LAGRANGE’S INTERPOLATION FORMULA [unequal intervals]

The forward and backward interpolation formula of Newton can be used
only when the values of independent variable x are equally spaced. Further, the
differences must become ultimately small. In cases, where the values of
independent variable are not equally spaced and in cases when the differences of
dependent variable are not small, ultimately, we will use Lagrange’s interpolation
formula.

Let y = f(x) be a function.

Let f(x) takes the values yo, VY1, Ya..... yn corresponding to X = Xo, X1, X2, ..... Xn,
(ile)y, =f(x)i=0,1, 2, ....n.

Let (Xo, Yo), (X1, V1), (X2, ¥2), (X3, VY3) ..... (Xn, Yn) denote (n + 1 )
corresponding pairs of values of any two variables x and y.

lety=apg+axax>+..... + a,x" be a polynomial fitting this data well.

Let the polynomial be written in the following from:-

Y = Ap (X = Xq) (X=X32) ....... (X=Xn) + Ay (X=X1) (X=X2) ..... (X—Xn)
+ Ay (X = Xg) (X=Xq) .unnn. (X=Xp) + ...
+ Ap (X = Xo) (X=X1) ceiiiininns (X—Xn_1) —_— (1)

When x = xq, ¥ = yo. Substituting the value in the equation (1).

We get yo = Ag (X=X1) (Xo=X1) ...... (Xo—Xn)
Ao =

(X = X4) (Xg = X5 )eennn. (Xo — X,

When x = x4, y = yy. Substituting the value in the equation (1).

We getys = A (X1—Xg) (X1—X2). . . .. (X1—Xn)

When x = x;, y = y,. Substituting the value in the equation (1).

Y2 = Az (Xa=Xo) (X2=X1) . . . .(Xz—Xn)
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A2 = y2

Similarly, . . .. .. ... ... ..
- Yn
(Xn - XO)(Xn —= Xq ) (Xq = Xn4q)
Substituting the values of Ag, A4, . . . . A, in the equation (1)
We have
X=X )(X=X,)..... X=X,
g XX (X=X5). o ( Ve
(Xo =X4) (Xg = X3)..e(Xo — X
+ (X —=Xg)(X=Xp)eweee (X=X, v,
(X4 =Xg) (X4 =Xz )Xy = X
.20
X —=Xg ) (X —=X,)..... X — X .
(X = X0) (X = Xe ) (X = Xp) - (2
(Xn _XO)(Xn - X1) """ (Xn —’xn—1)

This equation is known as Lagrange’s interpolation formula.
Cor: Dividing both sides of equation (2) by

(X — Xo) (X=X1) ....... (X—Xpn)
we get
f(x) _ Yo 1

(X =Xp) (X =Xq )X = X, (Xo = X1)(Xp =X2)-(Xg = X)X =Xg

+ Y1 ' 1
(X3 =X ) (Xq = Xz)e(Xq — X)X =X,

e
. Ya 1

(xn - XO)(xn - X1)'-"(Xn - xn-—1) . X=X,
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Example:1
Using Lagrange’s interpolation formula, find y (10) from the following table

Xo X4 Xo X3
x: 5 6 9 11

Yo Y Y2 Y3
y: 12 13 14 16

Solution:
By Lagrange’s interpolation formula, we have
y = f(x) = (X—=X3) (X =X5) (X = X3) - (X=Xo) (X —X3) (X —X3) Vi
(Xo = X9) (Xg = %X5) (Xg ~— X3) (X3 = Xp) (X4 = X5) (X4 — X3)
+ (X=X} (X =Xq) (X = X3) vy, + (X=Xo) (X =X4) (X = X,) Vs
(X2 =Xo) (Xz =X1) (X2 =X3) ~ % (X3 —Xo) (X3 = X1) (X = X;)
Xo = 5, X1 = 0, Xy = 4, X3 = 11
Yo =12 ys =13 yo = 14, yz = 16
D= (Xx=6)(x—-9)(x-11) 12 + (X=8)(x-9)(x-11)
B (5-6)(5-9)(55-11) (6-5)(6-9)(6-11)
L, (X=9)(x-6)(x~11) 14 + (X=58)(x—-6)(x-9) 16
(9-5)(9-6)(9-11) (11-5)(11-6)(11-9)

Put x =10

- (10-6)(10-9)(10-11) ., (10-5)(10-9)(10-11) i3
(=1 (-4)(-6) ' (N (=3)(-5) '

, (10-5)(10-6)(10-11) _  (10-5)(10-6)(10-9) 16

(4)(3)(-2) (8) (5) (2)

y

@O L, OO |,
—(24) +15

L OO L, EO@O
(—24) (60)

= 24.333333 + 11.666667 + 5.333

Y (10) = 14.666666
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Example: 2

The following are the measurements t made on a curve recorded by an
oscillograph representing a change of current i due to a change in the conditions
of an electric current.

t: 1.2 2.0 2.5 3.0

i: 1.36 0.58 0.34 0.20

Find the value of i when t = 1.6.

Solution:
Since there are only four corresponding pairs of values given.

The polynomial representing the data is

oot ot)tot) L (E=te) (- tp) (t-t)
YTt —t) (te —ta) (o —ts) T (t—to)(t —tp) (t, —t5)
(t-to)(t-t)(t~ts) . . (t-to)(t-t)(t-t5)
(t, —to) (t —t) (L —t5) 2 (ts —to)(ts —ty) (ts —t) =
Here t; = 1.2, t; = 2.0, t, = 2.5, t; = 3.0
ig = 1.36, iy = 0.58, i, = 0.34, i = 0.20.

L D-290-3) a0 (-t ot (t-t) e
(1.2-2)(1.2-25)(1.2-3) (2-1.2)(2-2.5)(2 - 3)

(t-12)(-2)(=3) oo, (-12)(-2)(t-25)

(0.20)
(2.5-1.2)(2.5-2) (2.5 - 3) (3-1.2)(3-2)(3-2.5)

Let i1 be the value correspondingtot=1.6

Then
i(m) _ (1.6-2)(1.6-2.5)(1.6 -3) (1.36) +(1.6—1.2)(1.6—2.5)(1.6—3) (.58)
(—.8)(-1.3)(-1.8) (—.8) (=5) (-1
. (1.6-1.2)(1.6-2)(1.6-3) (0.34) + (16-1.2)(1.6-2.5)(1.6 -3) (:20)
(1.3)(.5) (-0.5) (1.8) (1) (0.5)
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_ (-4 (9 (14 (-4 (=9)(-14) g
(—.8)(=1.3)(-1.8) (1.36) (—.8)(=.5) (1) (:58)

(4) (—4) (-1.4) (04)(-04)(-09) o
Y aa s 0s T agos O )
068544 , -0.29232 _ +.07616 _ .0288

“1872 — 40 ~0325 .9

= 0.366153846 + 0.7308 —.23434 + .032 = 0.8932

Example: 3
Using Lagrange’s interpolation formula, find polynomial y (9.5) given

X! 7 8 9 10
y: 3 1 1 9
Solution:

By Lagrange’s Formula.

(x-8)(x-9)(x-10) x3+(x—7)(x—9)(x—10) 1

y=f(x)=

(7 -8)(7—-9)(7 —-10) (8-7)(8-9)(8-10)
L X-7)(x-8)(x-10) () + (x-7)(x-8)(x—-9)
(9-7)(9-8)(9-10) (10-7)(10-8)(10-9)
Vos = f(9.5) = (1.5) (0.5) (-0.5) (3)+(2.5)(O.5)(—O.5)

(=1 (=2)(=3) M (=1(=2)

, (25(15)(-05)  (25(15)(05)
(2) (M) (1) (3) (2 ()

f(9.5) = 0.1875 — 0.3125 + 0.9375 + 2.8125
y = 3.625

Example: 4
' Use Lagrange’s formula to fit a polynomial to the data.

X: -1 0 2 3
y: -8 3 1 12 and hence find y (x = 1),
Solution:

By Lagrange’s Formula:
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(x-0)(x-2)(x-3) 8 +(x+1)(x—2)(x—3) 3

y=1(x)= (-8)
(-1-0)(-1-2) (-1-13) (0+1)(0-2)(0-3)
. (X+17)(x-0)(x-23) (1)+(x+1)(x—0)(x—2)
(2+1)(2-0)(2-3) B3+1)(3-0)(3-2)

_ x% -5x% 1+ 6x X% —4x% +x+6 x® —2x? -3x ., x® -—x*-3x

R 5 (3) + == + T (12)

= g (x> —5x% +6x) + % (x*-4x%+x+6) -% (x3-2x*-3x) + (x*-x>-3x)

4x% —20x? +24x +3x% —12x2% + 3x +18 = x® + 2x2 + 3x + 6x® —6x2 — 18X
6

-;- [12x® - 36x% +12x + 18 |

= 2x° -6x% + 3x +3
f1) =2-6+3+3=2
~f(1) = 2

6.10 INVERSE INTERPOLATION
So far, given a set of values of x and y we were finding the values of y

corresponding to some x = x, (which is not given in the table). Here we treat y as
a function of x. Now the problem is given some y = Yy, we should find the
corresponding Xx. This process of finding x given y is called Inverse interpolation.

In such a case, we will take y as independent variable and x as dependent
variable and use Lagrange’s interpolation formula.

Taking y as independent variable.
w= YY) -Y2)ly ~¥a) xo + YY)V =Ya) (Y 2 Vn)
(Y1=Yo) (Y1 =¥2)eee¥1 = ¥o)

(Yo = Y1) (Yo = ¥2)-ee-(Yo = ¥n) X

. + V=YY —¥Y1) el = Yiq) X

(Yn =Y0) (Yn =¥1) ees(¥Yn = ¥inot)
This formula is called formula of inverse interpolation.

Example: 1

From the data given below, find the value of x wheny = 13.5
X: 93.0 96.2 100.0 104.2 108.7
y: 11.38 12.80 14.70 17.07 19.91
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Solution:
By Lagrange’s formula for inverse interpolation.
(y—12.80)(y —14.70)(y —17.07) (y — 19.91) (93.0)

(11.38-12.80)(11.38 —14.70) (11.38 -17.07) (11.38 - 19.91)

(y~11.38) (y ~14.70) (y - 17.07) (y - 19.91) (96.2)

+
(12.80-11.38)(12.80 - 14.70) (12.80 - 17.07) (12.80 - 19.91)

(y—-11.38)(y-12.80)(y -17.07)(y - 19.91) « (100.0)

+
(14.70 —11.38) (14.70 —12.80) (14.70 - 17.07) (14.70 - 19.91)

(v —11.38) (y - 12.80) (y —14.70) (y - 19.91) (104.2)

-+
(17.07 -11.38)(17.07 —-12.80) (17.07 - 14.70) (17.07 - 19.91)

(y —11.38) (y —12.80) {y — 14.70) (y - 17.07)

x (108.7)
(19.91-11.38)(19.91-12.80) (19.91—14.70) (19.91— 17.07)

+

Putting y = 13.5.

« = (0.7) (-1.2)(—3.57) (-6.41) (93) + (2.12) (-1.2) (-3.57) (-6.4) (96.2)
(-1.42)(-3.32) (5.69) (-8.53) (1.42)(-1.9)(-4.27)(-7.11) '

, (212)(0.7) (3.57)(-6.4)(100) _ (2.12)(0.7) (~1.2)(-6.47)(~108.7)
(13.32) (1.9) (-2.37) (=2.84) (5.69) (4.27) (2.37) (2.84)

(2.12) (0.7) (~1.2)(-3.57) (96.2)
(18.53) (7.11) (5.21) (2.84)

7.8126929 + 68.3721132 + 43.595887 — 7.2733428 + 0.770048198
97.6557503.

X

Example: 2

The following table gives the values of the probability integral % je"‘z dx
LU

corresponding to certain values of x. For what value of x is the integral equal to 0.37.

X: 0.4 0.6 0.8
2 % 2
= £ je x“dx:  0.3683 0.3332 0.2897
Jr g
Solution:

Since Lagrange’s formula is merely a relation between two variables either
of which may be taken as the independent variable. It is evident trat by
considering y as the independent variable we can write a formula giving x as a
function of y.

Hence
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Y-y =y2) o, (Y-Yo)(¥Y—V¥>)

T Mo ¥ Wo-v2) % (V1-Yo) (V1 —V2)

(Y =Yo) (Y= Y1)
(Y2 —Yo)(Y2—Y1)

+

In this case
Xo = 0.4, X = 0.6 X2
yo = 0.3683 y1 = 0.3332 vy,

0.8
0.2897
Let x3y be the value corresponding toy = 0.3
(0.3 -0.3332) (.3 -0.2897)

(0.3683 — 0.3332)(0.3682 - 0.2897)

Then X@©.3) =

(0.4)

(0.3 —0.3683) (0.3 — 0.2897)
(0.3332 - 0.3683) (0.3 — 0.3332)

(0.6)

(0.3 —0.3683) (0.3 - 0.3332)
(0.28977 — 0.3683) (0.2897 — 0.3332)

(0.8)

- (-0.0332)(0.0103) (0.4) + (-0.0683) (0.0103) (0.6

(0.0351) (0.0785) (—0.0351) (0.0435) )

, (-00683)(-00332)

(-0.0786) (-0.0435) - )

(—.00034196) (0.4) + (—.00070349) (.6) + —.00226756
00275535 (—00152685) 0034191

(0.8)

- _0.049643958 + 0.276447588 + 0.530563013
X = 0.75739505

Example: 3
Using Lagrange’s formula, prove

y1=Yya— 0.3 (ys —ys) +0.2 (Y3 —Y_s) nearly.

Solution:
Y_s, Y_3, Y3, ¥s Occur in the answers. So we can have the table.
X: -5 -3 3 5

y: Y5 Y-3 Y3 Ys

By Lagrange’s Formula: xo = -5, X4 = =3, X2 = 3, X3 = 5
X+3)(x—=3)(x-5

o= XHDE=3-5)

(-5+3)(-5-3)(-5-9)
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(x+5)(x—-3)(x-5)
(-3+5)(-3-3)(-3-5)

-3

4 (x+5)(x+3)(x-95) . (x+5)(x+3)(x—3)
(3+5)(83+3)(3-95) 3 (5+5)(5+3)(5-3)

yoy = DA L O
(-2)(-8)(-10) ~ °  (2)(-6)(-8) "~

L OO (6)(4)(=2)
®©)(-2) "°  (10)(8)(2)

=(0.2) ys+(0.5) ys +y3—(0.3) Vs
y1 =Yz — 0.3 (Y5 — ¥-3) + (0.2) (Y-3 — Y-5)

Example: 4
The mode of a certain frequency curve y = f(x) is very nearer to x =9 and

the values of the frequency density f(x) for x = 8.9, 9, 9.3 are respectively 0.30,
0.35 and 0.25. Calculate the approximate value of the mode.

Solution:
Given that
X: 8.9 9.0 9.3

f(x): 0.30 0.35 0.25

By Lagrange's interpolation Formula,
F(x) = (x-9)(x—-9.3) (0.30) + (x—-8.9)(x-9.3)
(8.9-9)(8.9-9.3) (9-8.9)(9-9.3)

(03%)  (x-8.9)(x-9)
(93-8.9)(9.3-9)
| (x=9(x-93) (100, (X8 (X-93)  (x-89)(x=9) (g 5,
(~0.1)(~0.4) (0.1)(-0.3) (0.4) (0.3)

(0.25)

= (x2 -18.3x + 83.7) (7.5) — (x°-18.2x+82.77) (11.67) :
+ (x2=17.9x + 80.1) (2.083)

= 7.5x% — 137.25x + 627.75 — 11.67x° + 212.394x
— 965.9259 + 2.083x? — 37.2857x + 166.8483

f(x) = 2.087x°+7.8583 — 171.3276

To get the mode, f' (x) = 0 and f'' (x) = -ve.
~fx)=0>



f1(x) = -4.174x + 37.8583 = 0

« = +37.8583 - 907
+4.174

11 (x) = —4.174 = (-ve).
o f(x) is maximum at x = 9.07
.. Mode is 9.07

Exercise:

1. Use Lagrange’s interpolation formula to fit a polynomial to the data.
X: —1 0 2 3

y: -8 3 1 2

2. Given U, = 22. U, = 30, U, =82, U; = 106, Ug = 206 find Us. Using Lagrange’s
interpolation formula.

3. Using Lagrange’s formula find f (6) given
X: 2 5 7 10 12

f(x): 18 180 448 1210 2028
4. Ifyo=1,y3=19,y, =49 & ys = 181 find ys.
Inverse Interpolation:
1. Find x, giveny = 0.3 from the data

X: 0.4 0.6 0.8

y: 0.3683 0.3332 0.2897

2. Find the value of x when y(x) = 19 given .
X: 0 1 2

y: O 1 20

3. If cos hx = 1.285 find x given.
x: 0.735 0.736 0.737 0.738

cos hx:: 1.2824937 1.2832974 1.2841023 1.2849085
x: 0.739 0.740 0.741 0.742

cos hx:: 1.2857159 1.2865247 1.2873348 1.2881461

4. Given f (30) = -30, f(34) = =13, f(38) = 3 and f(42) = 18 find x so that f(x) = 0.
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UNIT - VII
FINITE DIFFERENCES

7.1: FORWARD DIFFERENCES
Let y = f(x) be a given function of x and let yo, Y1,Y2,....Yn b€ the values of y
corresponding to Xo,X1,X2,....X, the values of x.

The independent variable x is called the argument and the corresponding
dependent value y is called the entry.

In general, the difference between any two-consective values of need not
be same or equal.

We can write the arguments and entires as below.

X: Xo X4 X2tennnnn » Xn-1 Xn

Y: Yo Y1 Y2 e ,Yn-1 Yn

If we subtract from each value of y(except Yyo) the preceeding value of y,

We get
Y1-Yo, Y2— Y1, ¥3s— Y2 -...¥n — ¥Yn-1

These results are called the first differences of y.

The first differences of y are denoted by Ay.

(ie) Ayo =Y1—Yo

Ay1 =Y2—Y14
Ay, =Ys—Y2
Ay n-1 — Yn - Yn—1

SoAY K = Y+t — Yk

Here, the symbol A denotes an operation called forward differences
operator.
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Higher Differences:
The second and higher differences are defined as below:

A*yo= A(AYo) = A(yr~Yo) = Ayr1— AYq
A’y 1= A(AY1) = A(ya—Yy1) = Ays — Ay;
AZYn—1 = A(AYn—1) = A(Yn"yn—1) = AYn — ¥Yn-1

Here, A? is an operator called second order forward difference operator.

In the same way,
The third order forward difference operator A® is as follows:
Ay, = A’y — APy,
A'yr= Ay, — APy,

In general
Aryk = Ar—1yK+1 _ Ar—1yk

There differences are called forward differences and these differences are
usually represented in ta+bular form

X y Ay A2y A3y Aty A%y A°®y
Xo Yo A
X4 Y1 Yo A%y .
Ay A”Yo 4
X2 Y2 A%y A%Yo 5
A 1 A 3 A Yo
x Y2 5 Y1 A 4y1 . A 6y
3 Y3 ATy 3 A”Y4 0
A ATy 4
Ys 2 6
X4 Ya A%Ys 3 ATY, A SY2 A7Y4
AV A”Ys3 4
X5 y5 A 2y4 3 A y3
« y AYs A zy ATy,
6 6 5
Ay
X7 Y7 °

The quantities in each column represent the difference between the
quantities in the proceeding column. They are equally placed midway between
the quantities being subtracted.
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Result:
AYo=Y1—Yo
S Y1=Yo+ AYo (1
we have y, =ys + Ay,
but A%yo = Ay;— Ayp
. Ayr = Ayo+ Ay
Hence va = yo + AYo + Ayo + A%yo =yo + 2AYo + A%y
y2 = (1+2A + A%y, = (1+A) yo (2)
We have ya =y, + Ay
but A%y, = Ay, - Ay
L AY2 = Ayy+ APy,
Also A%y, = A%y, - Ay,
L A%y = Alyg + Ay
Hence ys = Yo + 2AYo + A%y + Ayo + A?ys + A?yo + A’y
=yo + 3AYyo+ 3A%y, + A’y (3)
=yo (1+3A +3A%2+A% =(1+A)%y,

The results (1), (2) and (3) can be written symbolically as

yr = (1+A)yo

y2 = (1+4)%yo

ys = (1+A)%;,

In which (1+A)" is an operator in y with the exponent on the A indicating
the order of the difference.

From the expressions for y+, Y2, Ya ........
We get y= (1+A) yo
=(1+keciA +key A2+ ... + A% yo
Vi = Vo tKC1 Ayo + kC2A%yo + ...... + ARy

This formula enables us to represent every value of yi in term of y, and the
forward differences Ayo, A%yo, A%yo,........

Example: 1
Find difference table of the numbers is given below:
X: -1 0 1 2 3 4 5
y: -17 -6 23 76 169 278 439
verified ys

286



Solution:
Difference table

X y Ay A2y Ady Aty
-1 —1 7yﬁ1
_ 11=AY_4

0 6y0 _ 18=A2y_1
1 23y,  29%AYe Z A3

‘ 24= A%, BFATY
2 76y 53= Ay1 .3

2 30=A2%, ©5=47Yo
3 159 83=AY2 .3

y3 36=A2y2 G—A Y1
4 278y, 119%4AYa A3

4 _ 42=A%, ©6=ATY2

5 439y, 161=AYa

yi= (1+ ) yo
k=5
ys =(1+ A)° yg
= yo+ 5AY, + 10A%0 + 10A %y, + 5A%yo+ A Yo
= _6 + 5(29) + 10(24) + 10(6) + 5(0) + O
ys = 439

Example:2
Find the 8" term and the general term of the series 3,3,5,9,15,23......

Solution:
Difference Table

y Ay A?y A’y
3 0 ,
3 2 5 0
) 4 , 0
9 6 3 0
15 8
23

Taking 3 as yo, the eight term of the series iny ;.
y7 = (14 A)"Yo
=(1+7A +7C2A2+ TcaA® + 7C A + TesA® + Tee A + A7) ¥
=(1+7A +21A2+35A%+35A%+21A°+7A°%+ AT)yo
Yo = 3,
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AVo=0, A%=2, A% =0

L Yr=Yo+TAyo+21A%2y, +35A°%,0 + .......
. yr =3 + 7(0) + 21(2) + 35(0)

o yr =45

Since the subsequent differences are zeros.
SYe = (1+A )kYO

k(k2— 1) 2 klk - 1€)>(k ~2) Aﬂ vo

=[1+kA+

Yk= Yo + KAyo + k_('ﬁé:ﬂAzyO + k(k—1f)5(k—2) A%y,

= 3 + k(0) +k—(k2_—1)(2) + k(k"‘g(k"z) (0)

Ve =3+k’~k+0
~yk=k*—k +3

Example: 3
Find the sixth term of the sequence 8, 12, 19, 29, 42

Solution:
Difference table
X y Ay A3y A3y
0 8
1 12\ d~3
7 T~
2 19 3 o
3 29 10 3
4 42 13
Yo = 8, Ayo= 4, A%y, = 3, A%yo=0

Taking 8 as yo, the sixth term of the series in ys
ve = (1 + A)s Yo
=yo+5AY0+ 10A%0 + 10A %, + 5A%, + A%y,
=8+ 5(4)+ 10(3) + 10(0) + O

Ye = 58
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Example: 4
Find the 7" term of the sequence 2,9,28,65,126,217 and also find the

general term.

Solution:
Difference Table
X y Ay A3y Ay Aty
0 2
\ 7
1 9 12—
19 > 6 0
2 28 18 5
3 65 37 24 ] 0
4 126 61 30
5 217 o1

Taking 2 as Yo, the 7" term of the series is ys

y7 = (1+ A)Pyo = Yo + 6C1 A2y + 6C3A %Yo + 6C4A *yo + 6C5A Pyo+ Ay
Vo=2, AYo =7, A%y =12, A%, =6, Ay = 0.

. y; =2+ 6(7) + 15 + 20 () + 15(0)
y; =2+ 42+ 180 + 120

L y7 = 344
Yo = (1+A)" yo

= Yo+ NC1AYo + NC2A%o + ncs A3 yo + ncsAtyo + ...

=2+ n(7) + ”—(”5‘-1) (12) + ”(”‘2(””2) (6) + 0

Ya=n>+3n°+3n+2
= (n+1)° + 1
~¥e = (B+1)° + 1 =7%+1 = 344,
Example: 5
Find f(x) from the ta::le below. Also find f(7)
X 0 1 2 3 4 5 6

f(x): -1 3 19 53 111 199 323
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Solution:
Difference Table

X fix)  Af(x)  AZEX) AX) A* f(x)
0 1
1 3 4 12 3
2 19 16 18 ) 0
3 53 34 24 ) 0
4 111 58 30 5
5 199 88 36
1
6 323 124
A% F(x), A°f(X) ...... are all zero

Yx = (1 * A)Xyo
= VYo + XC1AYy + XCoA %Yo + XCaA® + xCa A% Yo + .

= (1) + x (4) + 5%11—) (12) + X(X‘:)é"*z) (16) + 0

= _1 + 4x + 6x? — Bx + X — 3x% + 2x
f(x) = x° + 3x° — 1
f(7) = 7° + 3(49) - 1

= 489
Exercise
1. Compute the third difference of f(32) by the formula from the table of
entries.
X 32 33 34 35

f(x): 539 8568 8765 24364

2. Find y; given ys = 4, y¢ = 3, Y7 = 4, ys = 10, yg = 24 y,0 = 49, the third
differences being constant.

3. Show that A%y, = y3.— 3y2 + 3y, — Yo

4. For the function y = sinhx, write down the table by taking x
1.8......2.1.

5. Find the 5" term of the sequence 3, 611,18.

6. Obtain the 6" 7™ terms of the sequence 0,4,16,42,88.

7. If the third differences are constants, find ug if up = 9, u; = 18, u, = 20,
uz = 24.

8. Calculate A*ugifus=2.U7=-6,uU3=8, Uug =9 and u1t0 = 17.

il

1.5, 1.6, 1.7,
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Answer :
1. 23234
2.0
S. 27
6.160,264
7. 138
8. 55

7.2 Backward Differences
If Vo, V1, Y2.....yn denote a set of values of any functizn y = f(x) for
Xg,X1,X2.....Xn respectively then

Yi— Yo, Y2— Y1, Ya— Y2, -eeunn. yn — Yn_g are the first differences and they are
denoted by
\Y% 2y2! \Y 2y31 \% 2yn

p VZY2= Vys, — Vyj
V3= Vys— VY,

In general V'y, = V7 lyi— V "y 4

These differences when this notation is used are called backward
differences.

A table of backward differences is indicated in the following table where
the differences V*y, with fixed subscript i is along the diagonal starting up as
shown by arrows.

X y Vy V2y V3y vty  Vy
Xo Yo v
X1 Y1 Y v %y, 3

\Y%
X2 Y2 y2 V 2y, A Y

\% Y3 2 \% 3y4 \4 5Y5
X3 Y3 vV Va \V/ 4y

vy \V4 3y5/ 5 v 5y
Xe  Ya A A e v *Ys j

— Vi VS
X5 Ys V7ys A
7 Vy / 7V 3y7/ yr

Xo Ye 6/ \% ZY?'

X7 Y7 ~7 VY7
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Result:
VVn=Yn— Ynrt
S Yn1 = Ya— VYn = (1=V )¥n
Yn2 = Yn-1— V ¥Yn-1
but V2yn = ¥n— V Va1
S VYaq=Vyn—V ?Yn
Hence Yo2 = Y¥n = V¥ = (V¥a—V 2Yn)
= Yo —2VY¥a*+ ViYn
Yo = (1-V )? Yn
Similarly,
Yn-3= (1 -V )°Yn
In general ynx= (1-V )Yn
=(1-kcyV +Kke VZ2...)¥n
Yok = Yn — k ¢1 Vya + KeC2 szn ........

It shows that any value of y in the above table can expressed in terms of yn
and the back differences of yu.

Example:1
Find y(=1) if y(0) = 2, y(1) = 9, y(2) = 28, y(3) = 65 y(4) = 126, y(5) = 127

Solution:
Difference Table

X y Ay A3y A3y Aty

0

1 7 12 6

2 28 19 18 . 0
37

3 65 24 0
61 _~76 —

4 126 7 30

5 27—

Vys =91, V2ys=30, Vs=6, Vis=0

y(=1) =y-1=Y¥s5-6
y(=1) = ys — 6C1 V5 + 6C2V 2ys + BCaV iy + B Vi ys + .0
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=217 —546 + 450 — 120
y(-1) = 667 - 666 = 1

We can verify the vaiue of y(0)

y(0) =¥o=Ys5-5
Yo = Ys — 5C1AYs + 5C2A%ys — 5CsAdys + ......
= 217-5(91) + 10(30) — 10 (6)
= 217 — 455 + 300 — 60 =2

This is exactly the same given value yo = 2.

Example: 2

Find the first term of the series whose second and subsequent terms are

8,3,0,-1,0........

Solution:
Let yo, be the first term.

~ ¥1=8, ¥y2=3,y3=0, ys = -1

X y Ay A%y A’y
1 8 5 ,
2 3 3 0
3 0 2
1 ) 0
4 -1 1
5 0
The differences of y, are y; = 8, Ay, = -5,

o= (1+A) "y
=(1— A + AZ— A%+ A% .. ) ¥4
=y~ Ay + A%y — Ay+
=8-(-5)+(-2)-0+ ........
= 15
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Example: 3

Obtain backward difference table for y = f(x) f(x) = x3 — 3x% — 5x — 7 for

= _1 3 0:1 ,2’3!435'
Solution:
X -1
f(x): -6
X f(x)
-1 -6
0 -7
1 —14
2 —-21
3 —22
4 —11
5 18

Example: 4

Backward Difference table
A f(x) AZf(x)  A%E(x)  ATEX)

-6 5
-7 0 o
- 6
7 5 0

—1 6

12 0
11 6

18
29

Find first term of the series whose second and subsequent terms are
46, 66, 81, 93, 101

Solution:

Let yo be the first term.

yi = 46, y, = 66, y; =81, y, =93, ys =101

a b W N - O

yo
Y1
Y2
Ys
Ya
Ys

Difference Table

y VY V 2 f(x) v3if(x) V*{x)

% 50

66 15 2

81 -3 -3
12 » 1

93 8

101
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The difference of y, are y; = 46, Ay, =20 A%y, = =5, Aly, =2 Aty =-3

yi = (1+A)"
=(1—A+ A% A% - A% W1
=yi— Ay; + Ay — Aly i+
=46 - 20 + (-5) —(2) + (=3) ........
Yo = 16
Exercise

1. Obtain backward difference table y = f(x), f(x) = x*> + 3x*> — 5x + 8 for x = —
1,0,1,2,3,4,5,6. S

2. Constant a backward difference table, given Sin 30° = 0.5000, Sin 35° =

0.5736, Sin 40° = 0.6428 and Sin 45° = 0.7071, assuming third differences

are constants, find Sin 25°.

Find y(-1), if y(0) = 3, y(1) = 11, y(2) = 30, y(3) = 67, y(4) = 128, y(5) =217.

4. Find the first term of the series whose second & subsequent terms 3, 19,
53,111, 199,323.

@

7.3 Operators

We have already defined the forward and Backward difference operator
(ie) A and V.

Central Difference operator (3):
The central difference operator 6 is defined by

- hy ., h
8f(x)—f[x+5) f(x 2)

6yx= Y n—= VY n
X+E x——z—

(or)

Shifting or displacement or translation operator E.
We define the shifting operator E such that
Ef(x) = f(x+h)

(or)
EYx = Yx+h
Hence Ey, = y2, E(y2) = y3 etc.
E%yx = E(Yysn) = Yezn
E"Vy = EYxenn and Ef(x) = f(x+nh)
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Averaging operator p:
The averaging operator p is defined by

Result:
Yy = E'yy
= (1+A)'yx
= (1+rciA +rcA%+ ... W
= Yk rCiAYx + rca Ay, + ... A"y,
Relation:

Relation between E and A .
We know A (f(x)) = f(x + h) — f(x)

= Ef(x) —1. f(x)
A (f(x)) = (E = 1) f(x)
W A=(E-1)

This is called separation of symbols
A=E-1
~E =1+ A

Relation between E and V:
Vf(x) = f(x) — f(x - h)

= 1.f(x) — E7" f(x)
vV f(x) = (1- E™) f(x)
VvV =1-E™

E'=(1~v)"Since )" =E

Relation between E and 5.

3 f(x) = f[x+-rl) — f(x—nj
2 2

= E% f(x) - E7% f(x) ='(E% —E%) £(x)
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n6=E2 _EVEB (E_1)= EH A
Also § =E%2 (1 -E ") =E% v
L8 =E2A=E%V

Relation between E and p:
1 h h
f = — |f =)+ f] x——
pf(x) > {(X+2)+ (X 2]]

- -;: | E% 0+ E% f(x) |
0 f(x)=% | E2 +E72 | f(x)

u=1 | ES+E
1) rn=5 | EZ+EZ |

Relation between D and A:

Df(x)= Ed;f(x)

(2) By Taylor’s theorem:

2

LY h® o
1—!f(x)+§f (x) +

h h?
Ef)=f0)+ 5 DFe)+ o D2 f (x) +

f(x+ h)=f(x)+

hD (hD)? (hD)3
Ef(x) = [‘H— T +( 2!) +( 3!) +} f (x)

Ef(x)=eM f(x)
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Taking log on both side.
hD=logE=1log (1+ A).

2 3
hD= A - T
2! 3!
2 3
D= 1 A——A—— A,
h 2! 31
Example:
2 A2
Prove A Uy # Ux
E AEU,
Solution:

X

Now Ue = (AZ E‘1) u
E

= [E-12E"] U,

= [E-2+E7" | u

X
Uyrh — 2 Uy + Ux_n

A?u, _ (E-12u,
EU u

X x-+h
_ (E*-2E+1U,
u

X+h
Uy i2h _2ux+h +u,
U

X+h

From (1) and (2)

The R.H.S. of 1 and 2 are not equal.

2 2
A_ UX #* A Ux
E Eu,
Example: 1

Show that AV = V A

VA Yx = \% (yx+h_3/x)

=Vyx+h_vyx
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Also we have
AV Y= AYx— Yen)

= A yx_ A yx—h
= (yx+h _yx) - (yx _yx—h)
AV Y=Y —2Yx ¥ ¥Yxn

V Ayy= AV yy

V A=AV
Example:
Show that 8 = 2sinh (DZE)
Solution:

We have shown that

§=E% — E7 andE=¢e"P

5 = eyth _ e—j/zho

{'.'sinhe-:

=2sinh (EE)
2

Example:
1

Show that p* =1 + 2 52

Solution:

: 1
We have defined pny, =3 (VH% +yx_%)

LY, =% (Eyz y, +E 2 yx)
MY x =% (Eyz +E%) Y x
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(E%+E%)° |- (a+b)? =(a—b)? +4ab |

|52 + 4] [-.-8=Ey2 _E 2 ]

Example:
Use the method of separation of symbols to prove the identity
Yx = Yx1 * A Va2t + A"y, A" Vi

Solution:

We have learnt thaty, . =E~" vy,

Yy TET Y, Y =ET Y, Yxn =ET Yoo
Hence the R.H.S.

=E'y, + AEZy, —..... + A™ E"y, + AE "y,

(1 A AYOA"

= E+E—2—+ .......... ~+ En +En yx

+ Y x
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(An _E" A"

=L +E"J Yy Since A +1=E
=¥
Example:
Show that a, + a11!x + 322):2 o, =" (ao + xﬁ'ao +

hence sum the series to infinity

5_'_4x+5x2‘14x3 37x* 80x°
121 T T3r T4 sy

Solution:
Denoting a; by E"a,

We havea, =E"a, =(1+ A)" a,

a,x a,x?
a, + + S SRR
1! 2!

=a0+

x(1+4)a, (x2(1+A)2 ao)+

1! 21

_ [1 JX(+4)  x(1+a)?  (x(1+A)°

1! 21!
- [ex(1+A)J a,

- (ex+x A)ao

]
o
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The following table gives the difference table for the coefficients a4, a;,

the given series.

5
—1
4 2
1
S 8
9 6
14 o3 14 . 0
37 20
43
80

Hence the sum of the series is

. [ 2 x? 6x3J
e 5-x+ +

S TRRY = e* (5-x+x2+x°)

Example:

n
Prove that Yx=nC,y,+nC, Ay, +nCs A%y, +
1 1 1
x=1

and use it to determine.

Solution:
We have > yx =y, +Ya+ys+.... +Vn
x=1
=y, +Ey, +E*y; +..... + E"y,
[E ¥x = Yxst]
=(1+E+E*+..... E"™") v,
_E-1
E-1 '
n_
= a+4a) -1 y; sinceE=1+ A
(1+A)—1
nC,A+nC, A® + ... +A"
A
=(nNC,;+nCy A +..... + A"y,

ZYx=nC1y1+nC2Ay1+_,__+A"-1y1
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We have yx = x°

=1 A Y A2y1 A3Y1 A4Y1
Y1 = 7 "’
y2=8 19 6 0

_ 18
Y3 = 27 37 6 0
ys = 64 24 6

61 30

Y5 = 125 91

ye = 216
~yi=1, Ay =7, A%y1=12, A’y =6, A y;1=0

3

ZX3=nC1y1+nC2Ay1+nC3A2y1+nC4A3Y1

1

NC, (1)+nCy(7)+nC;3(12) + n C, (6)

L =@ nn-NH(n-2) nM-NH{n-2)(n-3) (6)
2 3! 4!

2 3 2
=n+7n _7n+n -3n° +2n (12) +

2 2 6

"n* —3n%-3n%+9n2 +2n% —6n
24

(6)

4n +14n? —-14n+4n° -24n? +16n+-n* —6n°® +11n% —6n
4

_ (O)n+n?+2n°+n*
4

n?(n*+2n+1) n?(n+1)?

3
3 .
Zx' 4 4

Example:
Prove the results.

)EV=A=VE

Proof:
(EV)y«=E(VVY)=E (Yx — ¥Yx-n)

=ny—EYX—h

= ¥Yx+h —Yx T A Yx
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LEV =A
Also (V E)y, = V (EYx) = V ¥Yxsn = Yxen — ¥x = & ¥x
. VE=A
HenceE V= A=V E
i) SE2 = A
Proof:
sE%y, =5y , =(E%-EM)y , [8=E%-E2]
2 2

) -1/
=E1/2 yx+E_E)2 yx+|—_‘. = Yx+h — Yx T Ayx
2 2

SE%2 = A
ijhD=log(1+ A)=—1log (1— V)=sinh™ (us)

Proof:

hD
E=e

~e"P=E=14+ A
Taking logarithm,
hD=log(1+ A)
Also V =1-E; ~E'=1-v

(iee"P =1-v
Taking logarithm,
—hD=log(1-V)

~hD=-log(1-V)

, _ e _e E_ET _(E2+E % =%
sin (h D) = 5 == _( J(EZ_E 2)
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sin (hD) = pd

~sinhD = ud

. hD= sinh™ (nd).

iv) 1+ u? 82 = (1+ 1, 8%)?

1+ p® 82

From (1) and (2)

1+“252

1 -1 )2
=1+ [———-—————-—E/z -;E /2] (Eyz —E—yz)z
1322 -4 Cm1N\2
c1s [E-ZE J _ 4+(E;E ) (E+2E ) . 1)

= r1+% E —E"VZ)z]z

— 1 2
=11+ (E+E"—2)}

> (2)

(E+E :lz

/] 1 2
=1+ =582
(+2 )

VEZ=p+ % 8

N|=

e E% EN-E% _EMie%.e¥ gk
2 2 2

2E%
2

=Ey2
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- 1
V)E72=p— = 8
i) K- 3
Proof:
1 -1
- A S = ____._—E/2+E/2 1 (EyZ—E—yz]
2 2 2
E% LEV2_ES LE _ 2E2
].L—l 5 = E /2
2
vii);.L6=l AET+ 1A
2 2
Proof:
dae+ X a=1aE"+1)
2 2 2
_ 1 -1 _1 -1 -1
= —_(E-ND(ET"+1)= = (EE"+E-E"'"-1)
2 2
dae + Xl a=1E-E"=01 &
2 2 2
2
viii)A=l %2+ § 1+§—
2 4
Proof:
2 ] 2
ls24s 122 =1 8 8+21/1+i—
2 4 2 i 4
=_;_ 5 |6+va+57|
-1 (E%-E-%]+\/4+(E%_E-Vz)z]

L
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N =

N =

5[ (%74 \KEmE-yz)z
(E%—E—yzj+ [E%_E‘Vz +EV2+E%]

x 2 (E%: —E"yz)+ E/%

2
%62+5J1+% gl EN_EV EL=E-1=A

iX) VA=A-V =352

Proof:

VA=(1-E")YE-1=E-1-E"' E+E"'"=E+E"-2=35"?

A-V =(E-1)-(1-E")=E-1-1+E7"=E+E™" -2=35?

x)(1+A)(1-V)=1

Proof:

(1+A)(1-V)=E.E"=1

Exercise:
1. Prove the results

i) ASY2= V3Y3

) 1
iy A = o + — &
) 2 5

i)V =-t 82+5 [141 52
> V2

V) S =A(1+A) 2=V (1-V)7"

V) A + V = _Y
A

4|

viyAZ=(1+A)38?2
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2. Prove that
Up Uy +Uy + et U, =(N+1) C, Uy +(N+1) Cy AU +eeeeee + (N+ 1) C,p 4 A" U
3. Prove A"e* =e*" -nC,e*" " +nC, e*"? +. ...+ (-N"e

4. Prove that

PROPERTIES

7.4 Properties of operators
The operators A,V,E,d,1 and D are all linear operators.

) A@f(x)+b ¢ (x)) =[af(x+h)+bo(x+h)]- [af(x)+bd ()]
= a [f(x+h)—f(x)]+b [o(x+h)-¢ ()]
=aAf(x)+b A ¢ (x)
Hence A is a linear operator.
Puttinga=b = 1.

A [f)+g)]=afx)+agx
and by putting b = 0,

A fafx)] =2a A f(x)
ii) The operators is distributive over addition.
AT AT =A™ EfFX)=A" A™ f(X)
AT AT f(X)=(A.A ... .mfactors) (A...A nfactors) f (x)
=A™ f(x)
i) Also A [f(x)+g(x)]= A [g(x)+f(x)]

We known that D, is differentiation operate obeys many laws of algebra,
such as

D(Ux+V,)=D (U) +D (V)

D (CUx)=CD (Ux)
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D™ (D" Ux) =D" (D™Uyx) = D™" Uy.
If y = X", when n is a positive integer

Ay=x+h" —x"

=nx"" h + D(—n—;ﬁ x"2 h24. ... +h"

= a polynomial of degree n — 1.
Similarly it can be show that
A%y = polynomial of degree n — 2 in x.
A%y = polynomial of degree n — 3 in x.
A" y = polynomial of degree n — n (i.e.) 0 in x.

Hence the n'™ difference of x" where n is a positive integers are constants
and so the n™ difference of any polynomial of n" degree.

where n is a positive integer, are constants. If in forming the difference of a
function, some order of differences (say n") becomes constant, the function is a
polynomial of degree n,

Even if the n'" order differences become approximately as a polynomial of
degree n,

A"y, =a,n! wherey, = px"+.... a,

Example: 1

Find the cubic polynomial in x which takes on the values -3, 3, 11, 27, 57,
107 when x = 0, 1, 2, 3, 4, 5 respectively.

Let the function be y,.

Since the function is cubic polynomial, the fourth order differences. (i.e)
A'y, should be zeros. '
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X y Ay A% A%y AYy

0 -3 6

13 s 2 &

8

2 11 16 > 6 0

3 27 30 o 6

4 57 50

5 107

We have yx = E* y,

=(1+ A)* vy,
=( Texa s XX ey X(X‘gfx“%s J .

=Yoo TXA Yy, t

X(x —1) 2 X(x =N(x—-2) 3
51 ATy, + 6 A7Yo

x(X —=1)(x-2)

5 (6)

=—3+x(6)+§(—xz;1—)-(2)+

3+ 6Xx+ X2 —x+x®-2x% - x*+ 2x
3+ 7x-2x>+x°

Y =X —2x2+ 7x -3
Example: 2
Find ye, if yo = 9, y1 = 18, y2 = 20, y3 = 24 given that the third
differences are constants.

Solution:
Since third differences are constants.

Ay, =0, A%y, =A°yo =0
ye =E°yo=(1+ A)° yo
=(1+6C; A+6C, A2+6C; A2+6C, A*+6Cs A°+ A%y,
=(1+6 A + 15 A%+ 20 A®) y, since other terms vanish

=[1+6(E—-1)+15(E -1)*+ 20 (E - 1)%y,
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=[1+6E-6+15E2-30E + 15 + 20 E> - 60 E*> + 60 E — 20] vo
=(-10 + 36 E — 45 E? + 20 E®) y,
=-10yo+ 36 Ey,—45E%y, + 20 E’y,
=-10yo + 36 y4 — 45y, + 20 ys

= — 10 (9) + 36 (18) — 45 (20) + 20 (24)

= —-90 + 648 — 900 + 480 = 1128 — 990 = 1384.

7.5 FINDING MMISSING TERMS
1. Find the missing term in the following table:

X : 7 9 11 13 15 17
y : 32 78 - 144 257 381
Solution:
Since 5 values of y are given, we assume that the 5™ differences zeros.
Ny, =0

(i.,e)(E-1)0° y,=0
(i.e)(ES-B5E*+10E*-—10E*+5E-1)y; =0
(ie)E°y, —5E*y, +10E®y, ~10E?y, +5Ey,-y: =0
(ie)ys—5ys+10y,—10ys + 5y, -y, =0

Substituting the values for yi, Y2, Ya, ¥s, Ye
We get

381 -5 (257) + 10 (144) - 10y3 + 5(78)-32=0

(i.e.) 894 - 10y3 =0

y3=89.4
Alites:
X y Ay Ay A3y Ay A%y
7 32 46
9 78 a-124
a-78 346 — 3a
11 a 222 - 2a -193 + 6a
144 - a -253 + 3a 98 - 10 a
13 144 -31+a -95 -4 2
113 +42 - a
15 257 11
124
17 381
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Example: 2
Find the missing terms in the following table:

X : 10 15 20 25 30 35 40
y : 270 - 222 200 - 164 148
Solution:

Since 5 values of y are given, we assume that the fifth differences are
zeros. Hence A%y, = 0.

(i.,e)(E-1)°yx=0 = (E°-5E*+5C,E3-5C;E2+5C,E+ 1)y =0.
(i.,e)yk -5 E*y, +10E3y, —10E?y, +5Ey, —yx =0

(i.€) Yiis =5 Yksiq +10Yyk,3 —10 Yks2 +OYky1 — Yk =0
K=1and 2,

Wegetys—5 y;,+10 y, — 1Oy_3 +5y, -y, =0
Yy;—9 Y+ 10 y; - 10y, + 5y, -y, =0

Substituting the values.

y1 =270, y3 = 222, y, =200, ys = 164, y; = 145

In these equations, we get

164 -5 y;+ 2000 - 2220 +5y,-270=0
148 - 820 + 10 y,— 2000 + 1100 -y, =0
(ie)5y; -5y, =—326
10 y; -y, = 1562
Solving these equations,
(1)x2 =10 y; - 10y, =—-652
(2) x1 =10 y; —y, = 1562
) ) (=)
-9y, = -2214
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10 y, - 246 = 1562

10 y,

1562 + 246

_ 1808
10

s = 180.8

Hence the missing terms are 246 and 180.8

Example: 3
From the following table, find the missing value.

X 2 3 4 5 6
f(x): 45.0 49.2 541 - 67.4
Solution:

Since only four values of f (x) are given we assume that the polynomial
which fits the data, (i.e) collection polynomial is of degree three.

Hence fourth polynomial differences are zeros.
(i.e) Ay, =0
E-1)*y=0
(ie) (E*-4E*+6E2-4E+1)y,=0
E'Yo-4E%yo+ 6 E?y, - 4 E y, + yo= O where y, = 45.0
Ya—4ys+6y,—4y+y,=0,
67.4 -4y;+6(54.1)-4(49.2) +45.0=0
240.2-4y;=0

o = 2402
® 4
~ys = 60.05

Missing term is 60.05
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Example: _
Estimate the production for 1964 and 1966 from the following data.

Year: 1961 1962 1963 1964 1965 1966 1967

Production: 200 220 260 — 350 - 430

Solution:
Since five values are given, Collaction polynomial is of degree four.

Hence Ay, =0
(ie) (E=1)°yx=0

(ie) (E° -~ 5E* + 10E* = 10E2+5E - 1)y, = 0
E°yo — 5E* yo + 10E%, — 10E3%, + 5Ey, — Yo = 0 (Take k = 0)

Ys — Sys + 10y3 — 10y, + 5y; —yo =0
ys — 5(350) + 10y; — 10(260) + 5(220) — 200 = 0

ys + 10y; = 3450 (1)
Taking k = 1

Ye — SYys + 10y, — 10y + Sy, —y, =0
430 — 5ys + 10(350) — 10y; + 5(260) — 220 = 0
Sys + 10y3 = 5010 (2)

Solving for y3, ys from (1) and (2)
(1) x5 = 5ys + 50y; = 17250

2)x1 = S5ys + 10y; = 5010

40y; = 12240

_ 12240
ST
Substituting in(1) ys + 10(306) = 3450
ys + 3060 = 3450
Y5 = 390
Hence missing values are 306 and 390.

= 306
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Exercise:
1. Find the cubic polynomial from the data

X : 0 1 2 3 4

y -5 -10 -9 4 35
2.x 4 6 8 10 12

f(x) : —43 15 185 515 1053

3. From the following data, find the missing term.
X 2 3 4 5 6

f(x) : 45.0 49.2 54.1 - 67.4

4. From the following data, find the value of f(31)
X 30 32 33 34

f(x) : 8.84 33.56 45.13 56.20

5. From the following data, find the missing term
X 2 3 4 5 6

f(x) : 45.0 490.2 94 .1 - 67.4

6. Estimate the production in the year 1966 from the following data:—

Year : 1962 1964 1968 1970
Production : 100 112 136 180
9. The following table gives the quantity of cement in thousands of tons

manufactured in India in the year x. Find the probable production in the year
1970:—
yearx : 1966 1968 1970 1972 1974 1976

Quantity y : 39 85 - 151 264 388
8. Estimate the production for 1974 and 1976 from the following data:
Year : 1971 1972 1973 1974 1975 1976 1977

Production
In 1000tons : 200 220 260 - 350 - 430
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9. If y. is a polynomial of fifth degree in x & y; + y; = =786, y» + ys = 686,
y3 + ys = 1088 find y,.

10. Find the cubic polynomial y(x) such that
y(0) = -5, y(1) = 1, y(2) = 9, y(3) = 25, y(4) = 55, y(3) = 105

The generality of the results will not be affected by taking the interval of
difference in the independent variable as unity.

AYx = Yx+h— Yx
Suppose we change the independent variable x to t such that x = th, then
AYin = Yn(x+ 1)~ ¥xh
ie, AY{=VYi+1— Y, Where yy, =y
Hence we have successive difference whose common difference is unity.

In this case Ayy = yx+1 — Yo With this notation,

We get
) A"(xX")=n!
i) A"yy=asnlwherey,=apx"+ ...... + a,
iii) (a + bx)" is defined as
(@ + bx) (a+ bx+1) (a + bx+2) ..... (@ + bx+n-1) and (a + bx)™ is
defined as

(a+bx)(a+ bx-1)(a+bx-2)..... (a+ bx—-n+1)

Hence x" = x(x + 1) (x + 2) ....... (x+n-1)
xXM=x(x-1)(x-2) ....... (x—n+1)
A (a+tbx)™M=(a+bx-1)(@a+bx)....... (@a+ bx—n+2)
— (@a+bx)(a+bx-1)..... (@a+ bx-n+1)
=(a+bx)...... (a+bx-n+2)x{a+bx+a—-a—-bx-n+1}
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= bn(a + bx)""~ "

Hence A x™ = px"-"

A" xW =t
V) A — 1 =_ __ Pa
(a + bx )" (a + bx)im™
i 1 _ n
I )

Note: The corresponding results in differential calculate are
D(a + bx)" = n6(a + bx)" ™"

1 _=nb
(a+bx)" (a+bx)™

Example: 1
Prove that y, = 2(A + Bx) where A and B are constants satisfy the
equation yu.2 — 4yx+1 + 4y, = 0
yx = 2" (A + Bx)
Yae1 = 22TV {A + B (x+1) }
=2"{2A + 2B (x + 1)}
Yxe2 = 272 {A + B(x + 2)}
= 2* {4A + 4B (x + 2)}
S Yxe2 — 4Yxe 1 + 4y,

= 2"{4A + 4B(x + 2)} — 4.2 {2A + 2B(x + 1)} + 4.2* (A + Bx)

= 0 on simplifications.
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7.6 INVERSE OPERATORS

If Ay« = u, Theny, = A™" u, Here A~ is called finite integration operator
or inverse of operator A .

If C(x) is a periodic function of period h which is equal to the interval of
differencing,

A C(x) = C(x + h) — C(x) by definition of A
= C(x) — C(x). ~+ C(x) is periodic

=0

This shows that, if C(x) is periodic function whose period and interval of
differencing is same h, then A C(x) = 0.

Hence if Ay(x) = u(x)
then A (y (x) + C(x)) = Ay(x) + AC(x)

Ay(x) + 0 = u(x)

o AT u(x) = y(x) + C(x)

Where c(x) is the periodic function of period h (similar to constant of integration in
integration).

The following inverse operator results can be remembered from the
corresponding forward operator results.

ax+b

e

e.':1h—1

1. A—1 (eax+h)=

e

Hence, A7'e* = -
e’ —1

X

,a = 1
a" —1

2. A7 (@9 =

3.AT U+ v )= AT e+ ATy,
4. A7 (cuy) = cAu,
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(a+bx)""

547" (a+bx)™ =
(n+1)hb

,n = —1

(n+1)

6. A7 x M= .n=-1 andh=1.

n+1

Summation of series
An important application of finite calculus is finding the sum of series. Let
us find the sum of the series

Let the x" term u, be such that u, = Ay,
SoUg = Ayx = Yx+1 — Yx (here h= 1)

Hence u, =y, - vy,

Uz =Yy3 Y2
Us =Ya—Ys3
Uy = Yn+1 - Yn

Sh=uptux+ ..., Kn=VYne1 — Y1 = (yx):m = [A_1 {-ux)]:+1
n +

Hence ¥ u, = [A" ux]: 1
X =1

Example: 1
Find A™ x (x + 1) (x + 2)

Solution:
Here (x+2) (x+1)x = (x+2)®, if h = 1

Hence, A™ (x+2) (x+1)x = A™" (x +2) @
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_ (x+2)®

) + ¢(X)

_ (x+2)(x+ ) (x) 4 (%)
4

Where c(x) is a periodic function of period 1.

Example: 2
1
X(X +1) (X +2)

Find A™

Solution:
1

= (x = 1)
X(X+ 1) (x+2)

-1 1 _ A1 _ (-3)
A ik 8 (o]

__\(=2)
= 9‘—(-_12)7—+c(x)
_1 1

2 X(x+ 1)

Example: 3
Sum the series to n terms of
1.23+2.34+345+ ...

Solution:
nterm = p, = n(n+1) (n+2)

n
Sum of series ton terms = 3’ u,
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_ (x+2)(4) n+1
4 1

%kn+mm—§m]

%kn+3ﬂn+2ﬂn+ﬂn—32jﬂ]

[(n+3)(n+2)(n+1)n]

1
4

Example: 4
Sum to n terms of the series
1 1 1
+ + +
123 234 345

Solution:
Ux = L = (x -1
X(x+1) (x +2) .

n
Sum tonterms = X u,

x=1

n+1
()
1
n+1

= [A-1 (x —(=3)
a7 (x-) }

_(x—1)(_2) }nn

-2

L 1

-2 _ 0(-2)]

Nj= N|=

1 A1
(n+N(h+2) 1.2

=1[1_ 1
2|2 (n+1)(n+2)
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Example: 5
Find A7 {x(x+1)}

X{(x+1) = (x+1)®

bx)n+1
1 + b (@) — (a+
We have A7 (a X) ———————b Y
1)°
AT (x+ = XD
{(x+1) 3

_ (X+1) x(x-1)

3

Example: 6
" Sum the series

23+3.4+45+ ...+ (n+t1) (n+2)

This series = 3 (x+1) (x + 2)
x=1

LU ={x+1)(x+2)

n n+1
Hence > u, =|iA"1 ux]

x =1 1

- [A_1 {(x+1) (x+2)}] "

_ (x+2)(3) n+1
3

1

3

1

_ [(x +2) (x+1) x}“*‘

(n+3)(n+2)(n+1) 3.2.1

3

n(n® +6n+11)
3

3
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Exercise:
1. Sum the series of n terms.
o 1 1 1

i) + + +
23 34 45

i1)3.537 + 5.7.9 +7.9.11 + ........

. . B . -1 1
2. Find i) A7 [(x+1) (x+2) (x+3)] ii) A [(2,(_1) (2x + 1) (2x+3)i\

3. Find the sum to n terms of the series
iyn(n—-1) (n—2) ii) (n+1) (n+2) (n+3) (n+4) iii) n*

7.7 FACTORIAL NOTATION

Factorial Polynomial
A factorial polynomial x™ is defined as

x™ = x(x — h) (x=2h) ........ (x —(n — 1)h)
where n is a positive integer.

(Read x™ = as x raised to the power n factorial. Thus xM = x,
x? = x(x - h), x® = x(x = h) (x—-2h) ....... etc.

Differences of x".
) Ax™ = (x + h)™ - x®

= (x + h) (X) (x=h) ....... [X - (n-2) ] = x(x = h) (x = 2) ........ [x — (n = 1)h]
= x(x = h) (x = 2h) ....... [x — (n — 2) h] {(x+h) — (x — (n = 1) h}

= x"~".nh

= nhx" Y

Similarly A2x™ = A[nhx®~ "] = (nh) (n = 1) hx®~? = n(n - 1)h? x"2
Proceeding like this,

ATX=nn-=1)(n=2) ....... (n—r+1)hx""
Where r is a positive integerand r <n
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Note:

i) In particular A"x™ = n! h".

ii) If h = 1 (ie) the interval of differencing is units, then A" x™ =n(n-1)
(n-2) ... (n—r+1)x" 7 whichis analogus to the differentiation of x"

iii) Hh=1 A™=n & AXM=0ifr>n.

iv) Whenever we require A'x", it is difficult to find A'x™ and hence we

express x" in terms of factorial polynomial and hence we calculate

A "x™,

Reciprocal factorial:
The reciprocal factorial function x©" is defined as
1
(x +h) (x+2h)..... (x+n)

x & = where n is a ‘+ve’ integer.

Differences of a reciprocal factorial function
i) AxC™ = (x +h)™W — xC"

"~ (x+2h) (x+3h)..... [x+(n+Dh] (x+h)(x+2h)...(x+nh)
1 (— n)h x“"*")

® Xah e 2. x+@m+Dh]

i) A" = A(AXT")
= A (-nh X"+
= (-nh)[=(n+ Dhx~*2
= (=1)2hZn(n+ 1) x "2
Similarly
A "=(=1)n(n+)(n+2)........ (n+r—1)x""n

Polynomial in factorial notation:
Any polynomial f(x) = ao X" + a;x" g+ . + a, can be expressed
in the factorial polynomiai form as.
Ap XV + AxOD + A, xO 7B+ L+ A
Since, f(x) = Ao X + Ax" "+ L + Ap.
= AgX (x—=h) ...... (x—(n=1h) + Ay x(x=h)..... (x = (n---2h) +
Agx(x = h) ... (X = (n = 3)h) + ...+ Apax + A, (1)
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Dividing the R.H.S of (1) by x, the remainder is A, & dividing the quotient
again by x — h, the remainder is A,_; and then dividing the quotient again by
x — 2h, the remainder is A, _, etc.

Thus, dividing f(x) successively by x, x — h, x — 2h, ....... The coefficients

An, Ay, Ans, el are got which are nothing but the remainders of f(x) in that
order.

Note: If h = 1, divide f(x) successively by x, x -1, x -2, ..... to get An, Ap—q......

Example:

Express x* + 3x® — 5x2 + 6x — 7 in factorial polynomials and get their
successive forward differences taking h = 1.

Solution:
First divide x* + 3x® — 5x? + 6x — 7 successively by x, x — 1, x — 2...... by
synthetic division method.

0 3 -5 6 -7

0 0 0 0 0

1 3 -5 +6 | -7
0 4 -1

211 4 -1 |5
0 2 12

31 6 |11
0 3
119

. Factorial polynomial is
f(x) = 1.x* + 9x® + 11x@ + 5xV — 7
Af(x) = 4x® + 27x® + 22 + 5

A% f(x) = 12x0? + 54xM + 22
A% f(x) = 24x") + 54

A* f(x) = 24

A f(x) =0 if r>4
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Aliter:
y = x* + 3x® - 5x" + 6x — 7 can be written as

y=x4+3x3—5x2+6x—7=Ax(x—1)(x—2)(x—3)+Bx(x—1)(x——2)+Cx(x-—1)+Dx+E.
= Ax“ + Bx® + cx® + Dx" + E.

Put x = 0; E=-7
=1; D+E=-2 .-.D=5
= 2; 2C+2D+2E=16+24-20+12-7; .. C =11

Put x = 3; 68+6C+3D+E=81+81—45+18—'7
6B = 54; B=0.

Equate coefficient of x’on both sides;
A=1.
oy = x4+ 9x® + 11x® + 5xV -7
Example: 2
Express 3x® — 2x® + 7x - 6. In factorial polynomials and get their
successive forward differences taking h =!
Solution:

Now, express 3x® — 2x* + 7x — 6 is factorial polynomial,
Using synthetic division process,

of 3 -2 7 -8
113 -2 7 |-=86
3
23 118
6
s L

Hence ¢(x) = 3x® + 7x'? +8x") — 6 (here h = 1)
Ad(x)=9x? +14x"M + 8
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AZo(x) = 18x™V + 14
A%d(x) =18
AT$(x) =0 forr> 3.
Example: 3
Express x® + x? + x + 1 is factorial polynomials and get their successive

forward differences, taking h = 1.

Solution:
Now, express ¢(x) =x3 + x% + x + 1

ol 1+ 1 1 1
0o 0 o
0 I I T B I
1 2
2t 2 |3
3
1 4

d(x) = x® + 4x@ + 3xM + 1
Ad(x)=3x?D+8x"+3
AZ¢(x)=6x"+8
Add(x) =6
A"d(x)=0forr> 3.

Example: 4
Represent the function f(x) = 2x®> — 3x® + 4x — 8 and its differences in the
factorial notation.

Solution:
Let2x® —3x* +4x -8 = 2x(x — 1) (x — 2) + ax(x — 1) + bx + ¢

putx=0,thenc=-8 [+-8=0+0+0+c]
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putx=1,then-5=Db-8
S b=3[.2-3+4-8=0+0+b+c—-5=b-28]
putx=2,then4 =2a+2b -8
.4=2a +6-8[16-12+8-8=0+2a+2b+cC
4 =2a +2(3) — 8]

La=3

Hence 2x® — 3x* + 4x — 8 = 2(x — 1) (x — 2) + 3x(x — 1) + 3x
— 8 — 2x® + 3x® + 3x" - 8

SAf(X)= 2AX® + 3AXD+ 3AXx~ A(8)
= 6x® + 6x" +3(1)
=6X(x—1)+6x+ 3
= B6x% —6x + 6x + 3
=6x>+ 3

A(x)=6 A(XD)+6A (xV)+ A(3)

=12x" + 6
A%(x) = 12
A%(x) =0

Example: 5
Find the function whose first difference is 5x? — 6x + 7.

Solution:
A {f(x)} =5x°—6x+7

=5x(x—-— 1)+ ax + b.

puttingx=0,b =7 [~ 5x?—6x +7 =5x(x~ 1)+ ax + b]
7=Db
puttingx=1,6 =a+ 7 [ - 5(1)—-6(1)+7=0+a + D]
6=a+7
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LA {fX) )} =S X (X—-1)=x+7
= 5x(2)'_ X(1) +7
fx)=5 A" x - A" X" + A~ [7]

x® @

5 >~ 5 * 7x" + k (where k i$ an arbitrary constant).

_ X (X=N(Xx=2) x(x-1)

7X + K
3 2++

5(x®-3x% +2x) x*-x

+7X +k
3

oOf =

10x® — 30x2 + 20x — 3x? + 3x + 42x + 6K]

r

10x°® — 33x2 + 65x + 6k]

D=

Exercise:

1. Obtain the function whose first differences in 8x? + 5.

2. Represent the function.

f(x) = x* — 12x® + 24x® — 30x + 14 & its successive differences in factorial

notation.

Find second difference of f(x) = 7x* + 12x® - 6x? + 5x — 3, if h = 2.

4. Express the following functions in terms of factorial polynomials and find their
differences:
i)3x* + 8x® + 3x% — 27x +9 i) 2x*> - 3x% + 3x + 10.

w
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UNIT - Vil
NUMERICAL DIFFERENTIATION

8.1 Introduction:

So far, we were finding the polynomial curve y = f(x) passing through the
(n+1) ordered pairs (x;, y;) i = 0,1,....n now we are trying to find the derivative
value of such curves at a given x = x, (say)whose X, < Xk < X, (or even outside the
range but closer to starting or end values). To get the derivative, we first find the
curve y = f(x) through the points and then differentiate and get its value at the
required point.

If the values of x are equally spaced, we get the interpolating polynomial
due to Newton’s — Gregory. If the derivate is required at a point nearer to the
starting value in the table.

We use Newton's forward interpolation formula. If we require the
derivative at the end of the table, we use Newton's backward interpolation
formula. If the value of derivative is required near the middle of the table value
we use of the central difference interpolation formulae. In the case of unequal
intervals, we can use Newton’s divided difference formula or Lagrange’s
interpolation formula to get the derivative value.

8.2 First and Second Derivative:
Newton’s forward difference formula to get the derivative:

We are given (n+1) ordered pairs (x;; yi;) i = 0 to n.

We went to find the derivative of y = f(x) passing through the (n+1)points,
at a point nearer to the starting value x = Xo.

Newton's forward difference interpolation formula is

Y(Xo + Xn) = Yo = Yo ¥X Ayo +

........

where y(x) is a polynomial of degree nis x & X =

Differentiating y(x) with respect to x,

dy 2(x-1) > 3x? -6x+2 , 5
2 = A + 2 A + A +........
PP 2 Yo 3l Yo
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but

dy _ dy dx dy dX

=Y %X o Y gince X oh,

dX  dx | dX ax 5" gx TN

dy _ 1 2x-1 , 3x2 —6X+2

™ h{Ay0+ S Ao + 3 APy + ... (2)

The series on the right side gives the value of dy at any x,
X

If we put X =0, then x = xq,
If we put X= 0, then x = X,

dy

Hence in the series on the right if we put x = 0, it gives the values of d—at X = Xop.

X

[&)X% “h {Ayo + EAZVO + gAayo —ZA“y0 F o }

If we differentiate equation (2)

We get

2 2 _—
dy_1{2Ayo+6x 6A3yo+ ....... j| d_X

dx2 h| 2 31

d’y d (dy] dX d (dy)l
dx? dX\dx/)dx dX\dx/h

1 6x% —-18x +11
=5z {Az}’o +(x = DA%y, + = Ao+ }

Putting x = 0, X = Xo.

d’y 1 11
Then il {Azy0 — A%y, +EA“y0 ...... }

d?y
This gives the value of — at x = X,,

dx?

3
Hence, dy _ 1 {A3y0+1-2—)—(—:—1—§-z3“y0+ ...... }

Aliter:

dx® h® 12
We have shown that 1 + A = e"P
1 . 2,1 .3
hD = log.(1+A)= A — — A+ — A~ .......
ge( ) 5 3
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Applying this identity to yo,

We get
1 1 1
D(yO) = —I:'- [A——AZ +-§A3 ..... i|y5
dy 1 1
—d_)—(_ at xo = F]- (Ayo AZyO +§A3y0 )

Again &y at xo = D%y = —L[iog(1+A]2yo
dx? h?

17 1, 14
= —|A-=—A"+—=A"....
hZ | > 3 ]YO
1 2 s 11 4
= —[A°-A —A".
h? 12 }yﬁ

Newton’s Backward Difference Formula to compute the derivative.

Now, Consider Newton's Backward difference interpolation formula:

y(X) = Yy(Xo+Vh) = yo + XV y, + 2(—(>—;,—+—1—) V 2ya + X(X+g(x+2) Vint ...
X(X +1)(X +j)...(X+n—1) VY )
where
_x = Xa—X
h

Differentiate with respect to x

ﬂ:.qxgi:_q.y_h Xn = X = -X; 1: g)i

dx dx dx dx h h X

dy _ 2x+1 > 3x? +6X+2 _ 3
a_)Z_Vyn+ > V Sy, + 3 VoY, +......
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dy 1 2X + 1
—d—)—(‘——l:vyn-i- '

2
Vi, + 2 Yo F e :I (@)

- Putting x = 0, (ie) when x= Xx,,

—— atx' = — |V =V —

If we differentiating equation (2) once again with respect to x.

We get

dx? h

-----

d? 1 6X+6 12X2 + 36X + 22 dx
y {szn+ 3 Viy + >a Viy, + }

which on simplication gives,

d? 1 6X% +18X +11
dxg =z [szn +(X+1)WV3y, + = VA, A+ j‘

Putting X = O,when x = x,,

d? 1
dx)ZI at x, = e [szn +V3y . +—Viy, +..... ]
d3y - 1 3 3 4
O at x, s {V Yn +—2—V Yo+
Aliter:
We can easily show that v =1 - E™
L
E

~eP=E=(1-vVv)"’
Hence hD = —loge(1 -V ).

Applying this identity to y,,
We get

D(y.) = —%log (1 =V )ya
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Example:

Find the first and second derivative of \/; at x = 15 and x = 23 from the

table.

Solution:

1

1

5 17 19

21 23 25

3.873 4.123 4.359 4.583 4.796 5.000

The forward differences are tabulated below:

X

15
17
19
21
23
25

y=f(x) Ay Aty Ay
3.873~
4123 9250~ 0014 -
0.236 0.002
4.359 ~0.012 1
. 0.0
a583 0% 0011 OO
. 0.002
4796 2213 6009
5000  0-204
wo X=X _15-15 _ o
h 2
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(%)

Il
oo g RN
— 1
&
<
o
|
|
>
N
<
1)
+
l
Dm
-
o
!
| =
DA
~
Q
L___:_.l

1 [ 1 1 |
2 10.250 —=(~0.014)+—=(0.002
2L0250 2( )+3( )J

2576667
-;- [0.250 +.007 +.0006667] = 0.25 5

f (x) = 0.1289

6x2 -~18x + 11
f"(x)=k_11?[A2yo+(x—1)A3yo+ X A A4yo+...}

12
£ (x) = -2-1-2- [[-0.014 + (0 — 1(0.002)]

-0.016

= % [-0.014 -0.002] = = ~0.004

£ (x) = —0.004

The Back Differences table in the same table with a different notation.
X = X, —X
h

25-23 _
2

In this case -X =

g=1
2

o X==-1&h=2
Hence ' (x) at x = 23,

We have to substitute X = —-1. In the formula

2
dy _ 1 Vyn+2X+1V2yn+3X +6X+2V3yn+
h 2! 3!

1 1 1
L atX=-1==|Vy ——V?y V3
” > |: Yn > Yn yn]

6
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_;. {o 204 - —(— 0.009)- *(0 002)]

= 1 [0.204 + 0045 - .000333]

2

2
DY atx =23 (ie) x= 223 -

: 11
—Z atx=23= % [szn +(X+ )V, + oX +11§X+ VY, e, }

— atx = 23 =% [szn....J

%[—0.009] = ~0.0023.

The correct values to four decimal places are

1
f(15) = —— = 0.1291
19 = 27
~1
f"(15) = ——— = -0.0043
15) 4(15)%
1
f(23) = —= =0.1042
@)= 7
Example:2

Find the first two derivatives of (x)% at x = 50 and x = 56 given the table
below:

x : 50 51 52 53 o4 55 o6

.
y= XAI3.6840 3.7084 3.7325 3.7563 3.7798 3.8030 3.8259

336



Solution:
Since we require f'(x) at x = 50.

We use Newton’s forward formula and to get f'(x) at x= 56, we use
Newton’s Backward formula.

Difference Table

X y = f(x) Ay A%y Aly
50  3.6840

51 37084 29%% 40003

52 37325 9% 40003 0
53 37563 °0%% 00003 0
54 37798 °9%° 00003 0
55 3.8030 ©9%%% 00003 0
56 3.8259 ©'0%2°

By Newton;s forward Formula.

(o, (&
dx X=Xg dx x=0

1 1 1 1
= - [Ayo --2-A2yo +§A3y0 —ZA4y0 ....... jl

1 1 1
=— {0.0244 — —(-0. —
1 [ 2( 00003)+3(o)}

d_y at x = xo=0.024 55
dx

szJ 1 [ 2 3
— =A% ~A'Yo +..... ]
[dxz s h?

= %[-0.0003] = -0.0003.

By Newton’s backward difference formula
dy) (dy) 1 [ 1.2 103
hat = =L =—|V -V —Voy, +....
(dx - dx - h Yot 2 Yn + 3V Yot ]
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(ﬂj :1[0.0229+1(— 0.0003)+ o} = 0.02275
x=56 1 2

dx
n I
dx? ) . h?

= %[_0.0003] = -0.0003

Example:3
The population of a certain town is given below. Find the rate of growth of

the population in 1931, 1941, 1961 and 1971.

Year x: 1931 1941 19561 1961 1971
Population

in thousands y: 40.62 60.80 79.95 103.56 132.65

Solution:
We from the difference table
X y Ay A?y Ady Aty

1931 40.62 ~

1941  60.80 20'18\—1.03\ 5 40

1951 79.95 1915 446 1'02> —4.47

1961 103.56 23.61 548 —7 ‘
29.09—

1971 132.65 _-~7

We use the same table for backward and Forward differences
i) Toget f'(1931)and f'(1941)

We use forward formula,
Xo = 1931, x4= 1941.....

h

X = , Xo = 1931corresponds x = 0.

dyj ( j 1[ 1.2 1 .3 1 4
— = — = — A ——A +"""A '——A .....
(dx x=1931 \OXJyo h Yo 2 Yo 3 Vo 4 Yot
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_ 716 [20 18__(_1 03)+ —(5.49)——}(— 4-47)]

=%[20.18 + 0.515 + 1.83 + 1.1179]

= 2.36425. (1)
i) If x = 1941, X = 2=%X0 = 1941;1931 = 1

%:%IZAVO . 2x2_1A2y0 +3x2 —66x+2A3yo . 4x3 —18x224+ 22x~6A4yo ..... }
We get

dy 1 1 1 1 ]
2] =—|20.18+—(-1.03)-=(5.49) + —(- 4.47
(dx)m 10[2018+2( 1.03) 6(55 )+12( )

_ %[20.18 ~0.515-0.915 —0.3725]

= 1.83775 (2)

Note: If we neglect the data against and take 1941 as x,, we have Ay, = 19.51,
A%y, = 4.46, A3y, = 1.02.

Now using,

- 1 [1815-La.40)+ L1.02)

1.7260 (3)

Evidently the values given by (2) and (3) are not same. In getting the
answer given by (2), we have assumed a polynomial of degree 4 whereas in

getting the answer given by (3), we have assumed the interpolating polynomials
assumed are different. Hence we see the difference in answers,

339



iii) To get f'(1971) use the formula,

dy 1 1, 13 14 ]
=) —|Vy, ——=V +=V3y, +=V7y, +..
(dx h[ Yo =5V ¥a 3V ¥ty y

il

1 1 1 1
=1 : 1. —(-4.47
5 [29.09 + (5.48)+ 3 (1.02)+ 4( )}

Ld_y) - -1 [31.0525]=3.10525
dX /1971

x-X, _ 1961-1971 _
h 10

2
(E-X) =(d_yj =1 Vyn+2X+1V2yn+3X +6X+2V3yn+ ...... X =-1
dX /1661 \AX /x4 D 2 6

-1

iv) To get f'(1961), we use X =

=1 A A L
= 10{29.09 2(5.48) 6(1.02) 12( 4.471)]

-1-16[29.09—2.74—0.17+0.3725] = 2.65525.76

Example: 4
Find the first and second derivative of the function tabulated below at

x = 0.6.

x: 0.4 0.5 0.6 0.7 0.8
y . 1.5836 1.7974 2.0442 2.3275 2.6511
Solution:

Since x = 0.6 is in the middle of the table, we will use stirling’s formula
Difference table

X y Ay A%y Aty Aty
04 15836 (.35
0.5  1.7974 (458 00330 .o
0.6  2.0442 Ay-1  0.0365 Ay 0.Q003
Yo 0.2833 A’y 2 ATy,
\ 0.0038
0.7  2.3275 Yo 0.0403 Ay

2
0.8 26511 03236 A %Yo
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By stirling’s, formula

dy) 11 1 (4 \
(deX=Xn - h[z(Ayo + Ay_1)_E(A y 4+ A y_2)+....j|
=11 _ 1
01 [ 5 [0.2833 - 0.2468] 5 (0.0038 + o.oo35)}

= 10[0.26505 — 0.0006083]

= 2.64442

(gizfl _ (_0%55[0.0365 - %(0-0003)]

= 3.6475
Exercise:
1. Obtain the derivative at x = 7 of the function tabulated below:
X S 6 7 8 9 10

f(x) : 196 394 686 1090 1624 2306

2. Determine at x = 2.5 from the following data1
X 2.3 2.5 2.7 2.9 3.1 3.3
y 3617 3979 4317 4633 4929 5206

5. The following table gives corresponding values of pressure and specific value

of superheated steam:-
v 2 4 6 8 10
p :105 427 25.3 16.7 13

4. The specific heat of silica glass at various temperature are as follows:
C° : 100 200 300 400 500
Specific heat Y :

in calories per
degree » 1 0.2372 0.2416  (.2460 0.2504 0.2545
centigrade
per gram y
Find the rate of change of specific heat with respect to temperature at 100°c.
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5. The amount A of a substance remaining in a reaching system after an interval
of time t in a certain chemical experiment is given below.
t 2 5 8 11 14
A : 948 879 813 75.1 68.7

Find EA- when t = 8.
dt

8.3 MAXIMUM AND MINIMUM VALUE OF A FUNCTION FOR THE GIVEN

DATA:

Given the ordered pairs (x;, yi) i =0, 1,2,...... n, we can get the interpolating
polynomial of degree n, Now we went to find the value of x at which the curve is
maximum of minimum.

Now, using Newton’s forward interpolation formula and getting its
derivative and equating it to zero, we get an equation from which the extremum
values of y can be got.

From equation (EY—J ,

dx
We get
d 1 2X -1 3X% -6X+2
(§j=F[Ayo+ oy, K2 ]
- 2_6X+2
(_d_y =0 = AYo + 2X -1 AZyo + 3X" -6X+ Alyo + ... =0 (A)
dx 2 6

If higher differences are small, we can take only the first three terms of (A)
and solving it for x,5 (since it is a quadratic in x). We get x.

Using x = xo + Xxh,
We can get the values x at which y is an extremum.

Note:
If the interval of differencing is not constant (ie) x’s are not equally spaced)

We get Newton’s divided difference formula or Lagranges interpolation
formula for general x, and then differenting it w.r. to x. we can get the differenting

at any x in the range.

Setting the particular value for x, say xx we get the derivating value at x.
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Example:
Find approximately the minimum value of f(x) from the following table:—

X : 0 1 2 3 4 5 6 7 8 o
f(x) : 890 844 769 668 541 389 401 462 495 530
Solution:

The minimum value appears to be in the neighbourhood of x = 5

-. Tabulate the differences of f(x) in the neighbourhood of x = 5.

X f(x) Af A% A3f A
5 389
12
6 401 49
61 77
7 462 -28 107
33 30
8 495 2
35
9 530

For the values of x between x = 5 and x = 6, we have

3X%-6X+2
5 Ay, +..... }

Inthiscase h =1, Ayo =12, A%y =49, Ay, =-77

X% —6X+2

df {x) (49) +> : (=77)

dx

=12 +

(2X-1)
2

_ 72+294X —147 231X? + 462X - 154
6
(231X? - 756 X + 229)
6

For a minimum g_f_ =0
dx
Hence 231X?> - 756X +229=0

Solving we get x = 3 or 0.3 approximately.
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Since the function attains a minimum at a value between 5 and 6, X must be
necessarily a fraction

Hence X = 0.3
X=Xt Xh

X=565+(03)(1)=5.3
We find the value of f(x)
When x = 5.3 by Newton’s interpolation formula
- . 3- 3-2
(0.3)(0.3-1) (49) + (0.3) (0.3-1)(0 )

21 31 (=7.7)

£(5.3) = 389 + (0.3) (12) +

=389 + 36 — 5145 — 45815

f(5.3) = 386.99685

Example:
Given the following data, find y'(6) and the maximum value of y.
X : 0 2 3 4 7 9
y X 4 26 58 112 466 922
Solution:

Since the arguments are not equally spaced, we will use Newton’s divided
difference formula (or even Lagrange’s formula)

Divided Difference Table

X y=1fx)  4f(x) Hf(x) A% (x) £(x)
0 4
11
2 26 7 1
32 0
3 58 11 1
4 112 >4 16 0
7 466 118 22 1
228
9 922

By Newton’s Divided difference formula
y = f(x) = f(xo) + (X — Xo) f(Xo, X1) + (X = Xo) (X — Xq) f(Xg, X1, X2} + ......

=4+ (x-0)(11)+ (xX=0) (x=2)(7) + (x~0) (x—=2) (x = 3).
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=4 + 11x + 7x% — 14x + x® — 5x% + 6X
=x>+2x* + 3x + 4
Ly (x)=3x2+4x + 3

y'(6) = 3(6)% + 4(6) + 3 = 135
y(x) is maximum if y'(x) =0

L33 +4x+3=0
But the roots are imaginary

. There is no extremum value in the range. In fact, it is an increasing curve.

Example:
From the following table, find the value of x for which f(x) is a maximum.
Also find the maximum value of f(x) from the table of values given below.

X : 60 75 90 105 120
f(x) : 28.2 38.2 43.2 409 37.7
Solution:

The maximum value appears to be in the neighbourhood of x = 90°

Hence, we will use Stirling’s formula. h = 15 (X’s are equally spaced)

X y = f(x) A f(x) A %f(x) A 3f(x) A *(x)
60 28.2
Y- 2

75 38.2 LAYz .

90 43y2 8Yo __A72}31 _Az'y31 8.7
105 40.9 _23 e
120 37.7 A0 .

' - 3.2

By Stirling’s formula.
X X2
Y(X) = y(xo + Xh) = yo + T (Ayo +Ay4) + = A%y +

X(X2 —1?)
12

. X2£X2 _ 12)

@y, + &y ,) >
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Here x¢ = 90, yo = 43.2, Ayo=— 2.3, A%, =—0.9, Ay.1 =35,
A%y, =73, A% ,=-5

2 X% - X
L y=432+ g (= 2.3 +5) + X? (- 7.3) + £_12__) (- 2.3 + 6.4)

=43.2 + 1.35X — 3.65X% + 0.3417(X® - X)

= 0.3417x> — 3.65x% + 1.0083x + 43.2

If y is maximum, 9y - 0
dx

53 x 0.3417X%2-2 x 3.65X +1.0083=0

1.0251X% — 7.30X + 1.0083 = 0

7.30 % /(7.30)? — 4(1.0251) (1.0083)

X =
2x1.0251

_ 7.3x7.0111
2.0502
X = 6.9803 goes beyond the range.

= 6.9803 or or 0.1409

. Take x = 0.1409
X=Xo+ Xh=90+15(0.1409) = 92.1135
Maximumy = 0.3417 (- O .1409)3 - 3.65 (0.1409)2 + 1.0083 (0.1409) + 43.2

= 43.27
f(x) is maximum at x = 92.1135 & the maximum value is 43.27

Example:

The following table gives the results of an observation; 06 is the observed
temperature in degrees centigrade of a vessel of cooling water, t is the time in
minutes from the beginning of observation: -

t : 1 3 5 7 9

0 : 856.3 745 67.0 60.5 54.3

Find the approximate rate of cooling whent=3 & t = 3.5
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Solution:

The rate of cooling is given by the expression %% Hence we have to find

its valuet=3 andt= 3.5

T a1
h 2

1
+__.

3

9_(.)_ = Aze
dt

The table of differences is calculated

t 0 AO A%0 A%0 A%O
1 85.3

-10.8
3 74.5 75 3.3 23 e
5 67.0 . 1.0 0.7
7 60.5 0.3

-6.2
9 54.3 .

At t = 3, the value of %Eti is given

A%0 startingatt=3

. Att = 3,
a0 _ 1 _7_5_1(1.0)+1(—0-7)
da 2 2 3

=—4.12

Using the equation (2) t = 3.5

2x -1 A20 +

by substituting the value of A 0, AZ%0,

We nave 99 = 1 AQ +
dt h

WhereX=x—r—;§& h=2

We have to find the value of 9£ att=3.5

X = 95 0.25

Att=3.5

21 6
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- 25)° -6 (0.25) + 2
0 _ 1) ;5,2025-1,,  3(025) (0.25) (_0_7)}
dt 2 2 6
= = [-7:5-0.25 - 0.080208]
do _ —7.83028 _ . o.ci04
dt 2
Exercise:

1. The following table gives the values of x and f(x). Find the maximum value of
f(x).
X 9 10 11 12 13 14 15
f(x) : 1330 1340 1320 1250 1120 930 725

2. Find approximately the minimum value of f(x) from the following table
X 0 1 2 3 4 5 6 7 8 9

f(x) : 890 844 769 668 541 389 401 462 495 530

3. Find the minimum value of the polynomial f(x) which has the values
X : 0 2 4 6
f(x) : 3 3 11 27

4. Find maximum and minimum values of y from the table
X : 0 1 2 3 4 5
y - 0 0.25 O 2.25 16 56.25

5. Find the maximum value of f(x) given the table

X : 1.2 1.3 1.4 1.5 1.6
f(x) : 0.9320 0.9636 0.9855 0.9975 0.9996
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Unit - IX
NUMERICAL INTEGRATION

9.1 Introduction:

b
We know that [ f(x)dx represents the area between y = f(x), x — axis and

a

the ordinates x = a and x = b.

This integration is possible only if the f(x) is explicitly given and if it is
integrable. The problem of numerical integration can be stated as follows:

Given a set of (n+1) paired values (x;,y;) | = 0,1,2,..... n of the function y = f(x)

is not known explicity, it is required to compute j ydx.

Xo
As we did in the case of interpolation or numerical differentiation, we

Xpn
replace f(x) by an interpolating polynomial pa(x) and obtain [ p,(x)dx which is

X0

approximately taken as the value for j f(x)dx.

Xg

9.2 Newton’s Cote’s Formuia:
A General Quadrature Formula:

b
Suppose we have to evaluate the define integral | f(x)dx. Let the range
a

(a,b) be divided into n equal parts (say) at xq, Xz ...... X,—1 and ‘a’ be xo and ‘b’ be
Xa.

Let the values of f(x) at X, X1, X2.....X, D€ Yo, Y1, Y2.-.-.o.. Yn-

Sunrcse a curve passes through these points (Xo, Yo). (X1, Y1), (X2,Y¥2)
(Xn, ¥n), then

b
| f(x)dx = area between the curve y = f(x), the x — axis and the ordinates

at x = Xo & X = X,.

Xg +Nh
= |y, dx wherey =f(x) and h = length of the subinterval

Xo
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n
= J- yxo+kh hdk Puttlng X =Xg+ kh
0

dx = hdk.
X = Xq, kK=0;
=h [ y,dk
0
=h [ Ey, dk v Yy b = EYx
0
=h | (1+A) y, dk E=1+A
(o}

= h j(y0 +KCy Ay, + KC, A%y, + ... )dk

0

b A k(k -1 k(k-1) (k-2
[ f(x)dx =h j(yo + Kkec, Ay, + (2' )A2y0 + ( ?2'( )A3y0 ......... ) dk
a 0 : :

This is a basis integration formula and it is known as Newton’'s Cote’s

formula.

9.3 Trapezoidal Rule
Putting n = 1, in the quadrature formula (ie) there are only two paired

values and interpolating polynomial is linear)

Xg +h

;
[ f(x)dx =h [ (y, +k Ay, )dk neglecting higher differences
0

Xg
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= %(Zy0 +Yqy = Yo)—"(yo +¥3)

%o + 2h
Similarly | ydx = — (y, +Y,)
Xg+h
Xg + nh
[ydx = = (y,,_1> +Yn)
%o + (n~1h

Adding these n integrals, we obtain

Xg +nh Xo+h Xo + 2h Xg + nh
[ f(x)dx = [ f(x)dx + [ f(x)dx +...... + | f(x)dx
Xg X Xg + h Xg +{n-1h

h h h
-— + + — + + ,..... 4+ — f— + n
> (Yo *+ Y1) 2()/1 y2) 2(y 1% ¥n)

h
[(Yo +Ya)+2AY + Y2t Ya e+ Y )]
2 -

[ (sum of the first and the last orcinates)
+ 2(sum of the remaining ordinates) ]

h
2
~. This is known as Trapezoidal Rule.

Truncation error in Trapezoidal Rule:

In the neighbourhood of x =x,, we can expand y =f(x) by Taylor series in
powers of X — Xg,

(X=X ro(X=X%Xp)2 "
v I ™

(ie) y(x) = yo +
Where yo = [y’ (0},
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11 21
_ (X=%g)? ' (x=%0)® " A
= [YOX+ Y 0 3] Yo +----e- )
Xe=Xg)2 1 (X, =X%Xg)®
=YO(X1-X0)+(12!°) Yo (13!0 Yo * ......
h2 ] h3 "
=hYo+ o0 Yo * 2 Yot (2)
If h is the equal interval length
X4 h
Also | ydx = 5 (Yo + y1) (3)
= area of the first trapezoium = A
putting X = x4 in (1)
2
X; — X ' X, — X "
y(x1)=y1=y0+ £_1_L) Yo T .(_JﬁL) Yo * -oo...
1! 21
. h ' h2 "
(le)Y1=YO+;ﬁ Yo +E!— Yo *+ .oou (4)
Po= D lygryo s By sy, using (4) in (3)
0 2 0 0 1! 0 2! O T eeveasn
h2 ’ h3 "
= hyo + — oy, *....
Yoo 5 Yo T o Yo

Substracting Aq value from (2)
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12
.. The error in the first interval (xo, X4) is —1—12- h3 yO' (neglect other terms)
.. . :th - 1 .3 "
Similarly the error in the i interval = “T3 h°y,,
.. The total cumulative error (approx)
1 3 " ” ” ”
E=_T2_h(yo+y1+y2+ ........ + Yo )
nh?® . .
E| < 5 .M where M is the maximum value of
o | iy
2 —
< 93-2132-)—"—.1\/1 if the interval is (a,b) & h = ET\E

Hence, the error in the trapezoidal rule is of the order hZ.

Example: 1
1
Calculate | . using Trapezoidal Rule.
o 1+Xx i

Solution:

For trapezoidal rule, the range is to be divided into any number of equal
parts. All these are satisfied if the range is divided into six equal parts

Hence h = —1-
6
We shall find the value of 1—1—; at the points of division. The table given below,
<+
, 1 1 6
iven those values x = —; | —=—
; 6 {1+% 7}
x 0 1 i1 2 S 1
6 3 2 3 6
L 1 \J 3 z2 3 6 1
1+x 7 4 3 5 11 2
y 1 0.8571 0.75 0.6667 0.6 0.5455 0.5

353



By Trapezoidal Rule:

b
jf(x)dx=% (Yo = Yu) + 2Yq + Y + oo+ Yo
a
1
P 1 dx = L [(1+0.5)+2(0.8571+0.7500 + 0.6667 0.6000)]
0 1+ X 12
1 7.2476
= 1 1.545.7476] =
g8+ 57 I= =15
1
[ 1 dx = 0.60397.
0 1+ X

. The Error in this case is i’i_{ii‘l-)- h2f (&)

1 1% 2
7z -0 (5) aref  [f0-

1+ X
' - -2
1 (1 , £ (x)=—(1+ X) 3
T 12 (36) (1+¢)? o) =+2 (%)
f"(e) = = ]
= 0.0046 (£ =0) (1+¢)
= 0.0005 (e =1)

Hence the error lies between 0.0005 to 0.0046

Example: 2

3
Evaluate | x* dx by using Trapezoidal Rule.
-3

Solution:
Here y(x) = x*. Interval length (b — a) = 6 so, we divide 6 equal intervals
with h = 6.
6
X : -3 -2 -1 0 1 2 3
y ; 81 16 1 0 1 16 81
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By Trapezoidal Rule

3 h
[ yox = 2 (o +¥a) + 2001 + ¥z + e Yol
3

N —

3
[ x*dx [(81+81)+2(16 +1+0 +16)]
-3

[162 + 66]

N =

3
[ x*dx =115
3

Example: 3
using Trapezoidal rule with h = 0.2. Hence obtain an

1
Evaluate |
o 1+ X

approximate value of n. Can you use other formulae in this case.

Solution:

1
Let y(x) =
v 1+ x2

Interval is (1 —0) = 1

. The value of y are calculated as points taking h = 0.2
x: 0 0.2 0.4 0.6 0.8

= ” 1x2 : 1 0.96154 0.86207 0.73529 0.60976 0.50000
+ X

1.0

By trapezoidal Rule,

T dx h
J =S o + v+ 2yi 4z 4 ry.)l

o 1+ x2

= 953 [(1+0.5) + 2(0.96154 + 0.86207 + 0.73529 + 0.60976]

= (0.1) [1.5 + 6.33732]
= 0.783732

By actual integration,

1 dx 10T

=ltan' x}, = —
cIJ 1+ %2 ( )o 4
. T, ~0.783732
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n =~ 3.13493 (approximately)

Example: 4

5.2 .
Evaluate the integral | = [ log, x dx using Trapezoidal rule.
4

Solution:
Hereb-a=52-4=12

We shall divided the interval into 6 equal parts.
1.2

Hence, h = —6— =0.2
X 4 4.2 4.4 4.6

f(x) = logex 1.3862944  1.4350845 1.4816045 1.5260563
X : 4.8 5.0 5.2

f(x) : 1.5686159 1.6094379 1.6486586

By Trapezoidal Rule,

5.2
| log xdx = 9'23 E1 3862944 + 1.6486586) + 2 (1.4350845 + 1.4816045 + 1.5260563
4

+1.5686159 + 1.6094379)|
= 952- [3.034953 + 15.2415982]

5.2
f log x dx = 1.82765512
4

Example: 5
From the following table find the area bounded by the course and the x -

axis fromx =7.47 tox = 7.52
X 7.47 7.48 7.49 7.50 7.51 7.52
y=f(x): 1.93 1.95 1.08 2.01 2.03 2.06

Solution:
Since only 6 ordinates (n = 5) are given we wil! use Trapezoidal Rule.

7.52

h
Area = [ f(x)dx = = [(yo +¥u)+ 2(¥1 + Yz + o + Yoy)]

7.47
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= % [(1.93 + 2.06) + 2(1.95 + 1.98 + 2.01 + 2.03)]

= 9—'291[3.99 +15.94]

7.52
[ f(x)dx =0.09965

7 47

Exercise:

10
1. Evaluate | —9}— by trapezoidal rule, dividing the range into nine equal parts.
1 X

.
2. Evaluate | > with h =

l. Using Trapezoidal Rule.
o 1+ X 6

1.8
3. Find | f(x)dx from the data:
0.6

x @ 0.6 0.8 1.0 1.2 - 1.4 1.6 1.8

f(x) : 4.95 6.05 7.39 9.02 11.02 13.46 16.42
by Trapezoidal rule

11
4 Find [ f(x)dx from the data.
5

X 5 6 7 8 9 10 11

f(x) : 95.90 96.85 97.77 98.68 99.56 100.41 101.24
using Trapezoidal rule.

2
5. Evaluate | —z—dx-—— to three decimals, dividing the range of integration into 8

0o X° +XxX+1
equal parts. Using Trapezoidal rule. Answer: 0.8145

14
6. Compute the value of | (Sinx —logx + e*)dx taking h = 0.2 & using Trapezoidal
0.2

rule. Answer: 4.0715.

T

2
7. Calculate | Sinxdx by dividing the interval into ten equal parts. Using
0]

Trapezoidal rule.

9.4 SIMPSON’S ONE THIRD RULE
Using Newton Cote’s Formula

Xg +nh n _ B B
Jf(x)dx=h I[yo + KAy, + k(k2| L) A%y, + k(k 1:)5|(k 2)
0 ! I

Xo

putting n = 2.
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1
-

Similarly
Xg + 4h

h
{ ydx = — (y2 + 4ys + ya)
Xg + 2h 3

..........................

--------------------------

Xq +nh

f ydx

Xy +{nN-2)h

U

Wl

(Yn*2 + 4Yn—1 +Yn)

Adding all these integrals, we have

xD}n;dx _ D_ (yo +yn)+4(y1 +Y3 +yn~1)+2(Y2 +y4 + o + yn—z-)‘J
Xo +(n-2)h 3

Here n is ever since we neglect all differences above second, y is a
polynomial of second degree. (ie) of the form y = Ix2 +mx + n, (ie) a parabola.
Here we assume that the curve passing through the extremities of 3 consecutive
ordinates is a parabola. This is known as Simpson’s one third Rule.

Errors in the different Rules:
The leading term dropped in the expansion of (1 + A)* gives the error.

In the case of Simpson’s one — third rule, the leading term dropped is

2 - —
] KEEDE=2) oy, g

4 2
(ie) -g [A?’yo ('—‘4— -k3 +k2] } =0

0]

Hence the next term dropped can be taken as error, which is equal
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h? k{k-1)(k-2)(k-3) Aty
0

24 o dk

h 4
~ A
90 Yo

h5
- _ f(4)
50 (e)

This error is for an interval of 2h. Hence the error in the interval of
h5

h=-——f%).
80
- nh5 (4)
Hence the error for the whole length nh = — Ta—()—f (g)
= (xn — xO) h4 f(4) (8)
180
where Xg < € < Xp.
Example: 1

1

d X
Calculate I —— using one-—third Simpson rule.
g 1+x

Solution:
rd

For Simpson’s 3 rule the range is to be divided respectively into even,

multiple of three and multiple of six equal parts. All these are satisfied if the
range is divided into six equal parts.

Hence h = —1—
6
We shall find the value of TL; at the points of division. The table given
+
. *t 1 11 21 1 3

below, gives those values: | 0+ —-——+—-+—=—, —+—=—............

g [ 6 6 66 63 6 6 }
X o 1 X 1 2z 5

6 3 2 3 6
t.+ 6 3 2 3 6 1

1+ X 7 4 3 5 11 2
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1 1 6 1 3
R e o
1+0 14+ 7 401
6 3
y: 1 0.8571 0.75 0.6667 0.6 0.5455 0.5

By Simpson’s third rule.

xg+nh

h
[ ydx=3 [0orya)+al+ystomVna)+ 202+ Yato Yo-2)|
X0

1
1d Xx = = l 2 [(1+.5)+ 4 (0.8571+0.6667 +0.5455) + 2 (0.7500 + 0.6000)]
+-

= 0.6931

In this case the erroris

_ (xq = %0) (1)4 O (e)

180 A0 ()= (14"

1 24 flta) =— (1 +x)?

i — -3
180 x1296 © (1+¢)° :.n()g();zs(}:fz()_z;

Y (x) =24 (1 +x)7°

(i.e.) —

1 w1
180 x54 (1+¢g)°

(i.e.) —

1 1

(i.e.) lies between + &
180 x 54 x32 180 x 54

[e=2,0]
(i.e.) 0.00003 and 0.0010.

Example: 2

3
Evaluate I x4 d x by using Simpson’s one third rule.
-3

Solution:
Here y (x) = x*

Interval length (b —a) =6
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So, we divide 6 equal intervals with h = -g- = 1.
X: -3 -2 -1 0 1 2 3
y = x* 81 16 1 0 1 16 81

By Simpson’s one-third rule

xp+nh
h
J ydx=2 | (o+¥n)+alys+¥s+. Yor)+2(y2 +¥a +on¥o2)l
Xg
¥ 1
[ x*dx= 3 [(B1+87)+2(1+1)+4(16 +0+16)]
-3
1
=3 [162 + 4 + 128]
3
I x*dx =98
-3
Example: 3

By dividing the range into ten equal parts. Evaluate j' sin x d x by
]
Simpson’s one—third rule.
Solution:
Range=n -0==x

T
Hence h= —

10
We tabulate below the values of y at difference x is
« - 0 L2 _2__1£ 3n 4n Sn 6n
' 10 10 10 10 10 10

Y = sin x: 0.0 0.3090 0.5878 0.8080 0.9511 1.0 0.9511

x 1 IF 8n Sr .
' 10 10 10
Y =sin X: 0.8080 0.5878 0.3090 0
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Use Simpson’s one third rule
xg+nh

h
.[ de=§ [(yo+yn)+4(Y1+Y3+ ------- Yn—1)+2(YZ+y4+ """" y"‘Z)]

X0

[ sinxdx= % (%) [ (0+0) + 2 (0.5878 + 0.9511 + 0.9511
0

+ 0.5878) + 4 (0.3090 +0.8090

+ 1 + 0.8090 + 0.3090)]

=1 (l) [6.1556 + 12.944] = [1) (19.0996)
3 10 3 (10

j sin x d x = 1.99909
0

Example: 4

1

Evaluate I e* d x Simpson’s one third rule correct to five decimal
0

places, by proper choice of h.

Solution:
Here, interval length=b - a =1 _
y=ex; y1____ex’, y11= x’_ yi1”=e"; y|v=ex;

Error = |E| < (t;_S—Oa) h*. M where M = Max (e*) in the range.

< h.e
180
we require (E) < 107°°
h* e
180

6 \/4
h < (%J = 0.148
e

<107 e =2.718282

Hence we take h = 0.1 to have the accuracy required.

1
y J' e* dx= %‘_ l(1+e)+2(eo.2+eo.4 +e°'6+e°'8)+4(e°'1+e°'3+e°'5+e°'7 +eo.9)]
0
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= 91 [(1+2.718282) + 2 (1.22140) + 1.49182 + 1.8221188 +

-3
2.22554) + 4 (1.10517 + 1.34986 + 1.6487 + 2.01375 + 2.4596]
0.1

= = [3.718282 + 13.5217576 + 34.30832]
0.1

= 3 [51.5483596]

=1.718278

Exercise:
1

1. Evaluate I e”‘2 d x by Simpson’s one third rule. (10 strips)
0

2
2. Compute the value of j 9;)5 using Simpson on third rule. H = 025.
1

2
3. Evaluate j sin® x d x taking h = % using Simpson’s Rule.
1

9.5 SIMPSON’S THREE ENGHTH’S RULE
Using Newton Cote’s formula

xp+nh n
k(k-1 k(k -1k -2
I f(x)d x=h I [yo +k Ay, + (2' )A2y0+ ( 3?(‘ )A3y0+ ....... ]
o : ! .

(k% — k) (k — 2) k® — 2k? — k, + 2K]

X, + 3 h Puttingn =3

xp+3h 3
-1 - -
f(x)dx=nh j [y0+kAy0+k(';‘ )A2y0+k(k 13)("‘ 2)A3yo]dk
X0 0 . :
3
k2 k3 k%) ., k4 3k® 2k?
=h kK+—A ——— A ~ A3
[y" 3 y“(e 4) Yo*|22 718 T 12 y°0
9 27 9
= h l:3yo +—2— AYO +?§A2 yo +'2—4'A3 YO]

9 9 3
= h [33/0 +E(Y1 ‘YO)‘*'Z(VO -2y, +Y, +'8‘[“yo + 3y, -3y, +Y3]]
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9 9 ¢ 18 9 3 3

h 3Yo +‘2‘Y1 -‘2‘)/0 +Z‘Yo _‘Z—y1 +'ZY2 "—8‘)/0 +'8‘
3 3

(3y1)"’8‘(3y2)+‘5Y3

_ h [72y,+108y, 108y, +54y, -108y, +54y, -9V,
+27y, -27Y,+9 Y, ]

24

_ 9h

= > [Oyo+27Yy,—27y, +9Y;]
9h

= — +3y;-3y2+
Y [Yo Y1 Y2 + Ys)

xg+3h
3h
_[ = ry [yo+ 3y:1 —3y2+Ys]
X0
xp+6h 3h
Similarly I ydx= ry [ys + 3ys + 3ys + Yel

X0

------------------------

3h
ydx= = [Vne3 +3Yn-z +3Yni + ¥al

xg+(n-3)h

Here n is a multiple of 3 and y is a polynomial of degree 3, (i.e.)
y = Ix> + mx? + px + g. Since higher powers above the third differences are

neglected. Hence in this case we assume a cubic curve passes through 4
consecutive ordinates extremities.

Adding all these we get

XOThydxzip_ [(y0+yn)+3((y1+Y2+Y4 +Ys+Ys e +yn_1]
%o 8 |+2(ys+ Yo +eememenn +Y. 3)

This is known as Simpson’s three eighth’s rule.

Errors in the Difference rules:
The leading term dropped in the expansion of (1 + A )* gives the error.

In the case of Simpson’s three eighth’s rule the leading term dropped is
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k(k—1)(k-2)(k-3) Aty

o . d k.

I
O W

S LARALS 6k2] Aty
= - 0
1|5 T4 3 2

| =

1N

| -

+
S 4 3 2

" 243 486 297 54] 4
_ A 0

H

h 197 . 3h
— 1 A = — A
24 [10} Yo = gg & Yo

+ 50 f*’ (e ) where Xo < € < Xa.

This error is for the length of interval 3 h.

The error for the length of interval

where Xp < € < X,
Example: 1
]
d :
Calculate _[ _1_x; using three — eighths Simpson's rule.
+
0

Solution:
th

For Simpson’s ég- rule the range is to be divided respectively into even

multiple of three and muitiple of six equal parts. All these are satisfied if the range
is divided into six equal parts.

Hence h = -1—
6
1 1 1 2 5
X : — — — — — 1
0 6 3 2 3 6
L y 6 3 2 3 6 1
1+x 7 4 3 5 11 2

1 0.8571 0.75 0.6667 0.6 0.5455 0.5
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By Simpson’s three — eighth rule

xo+nh 3h [(yo+yn)+3((y1+y2+y4+vs+yv+ -------- +Vn-1)]

d x=—
y 8 +2(y3 + Yo Foeeeeeenens +yn_3)

X0

= g- : % [ (1+0.5)+3(0.8571+0.7500 +0.6000 + 0.5455 + 2(0.6667)]

= 0. 0625 [1.5 + 8.2578 + 1.3334]

= 0.6932
In this case the error is — 9(”—8})5"—) h* f* (¢)
4
(i.e.) — 1 (—1—) 24 5 e =1,2
80 \6) (1+g)

(i.e.) lies between &
80 x 54 x 32 80x54

0.000006 and .0002

Example: 2

3
Evaluate j x* d x by using Simpson’s three eighths rule.
-3

Solution:
Using Simpson'’s three — eighths rule.

8

xo+2h 3h (yo+yn)+3((y1+y2+y4+y5+ ........ +Yr1)
I yd =
+2(y3 +Yg + Ygerreeerones +Y,)

X0

Here y = x* . Interval length b — a = 6. So we divide 6 equal intervals with

h=_6_=1_
6

X : -3 -2 -1 0 1 2 3
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3
[ y d x=% [(81+81)+3(16 +1+1+16) +2(0)]

-3

= ‘% [162 + 99 + 0] = 97.875

Example: 3
52

Evaluate _[ log, x using Simpson’s three —eighth’s rule.
4

Solution:
Hereb-a=5.2-4=1.2

We shall divide the interval into 6 equal parts.

Hence, h = 163 = 0.2

X: 4 4.2 4.4 4.6 4.8

loge x 1.3862944 1.4350845 14816045 1.5260563 1.568659

Yo Yi Yo Ys Ya
X: 52
1.6486586
loge X Ve

By Simpson’s three eighth rule,

xg+nh _ﬁ \:(yo+yn)+3((y1+y2+y4+y5+ ........ +yn_1)
8 | +2(Ys+Vg+Ygerrimm +yn)

X0

8 1.5686159 +1.6094379) + 2(1.5260563)

0.6
= e [3.034953 + 18.2842284 + 3.0521126]

| =1.82784705
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_3(0.2) { (1.3862944 +1.6486586) + 3(1.4350845 +1.4816045 +]

1.6094379
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Example: 4
6

Evaluate _f
0
results by actual integration.

by Simpson's three — eighth’s rule; Also check up the

1+ x?

Solution:
Hereb-a=6-0=6

Divide into 6 equal parts h = g =1
X X 0 1 2 3 4 5 6

1
1+ x?

1.00 0.500 0.200 0.100 0.58824 0.038462 0.027027

By Simpson’s three eighth’s rule.

xot':]hydxzﬂ [(y0+yn)+3((y1+y2+y4 +Y¥Ys5+Yreennn. +yn_1):l
o 8 |+2(Ys+Ye + v +Yi3)
3 x1

= [(1+0.027027) + 3(0.5 + 0.2 + 0.058824 + 0.038462) + 2(0.1)]

= % [1.027027 + 2.391858 + 0.2]

1.35708188

By actual integration,

6
= | IX - (tan~'x)} = tan™" 6 = 1.40564765
1+ X
0

Exercise:
1.8

1. Find j f(x) d x from the data.

06

X: 0.6 0.8 1.0 1.2 1.4 1.6 1.8

f(x): 4.95 6.05 7.39 9.02 11.02 13.46 16.42

Using Simpson’s g Rule.
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2. Evaluate j _dx by Simpson’s 3 Rule with h = =
5 X+cosX 8 8

0.7

3. Calculate J e ™ xy2 d x taking 5 ordinates by Simpson’s % Rule
05
1.4 o 3

4. Evaluate _[ e ™" d x by taking h = 0.1 using Simpson’s y Rule.
1

5. Evaluate j. shx taking 6 intervals.
X
h
6. The speed of an electric train at various times after leaving one station unit it
stops at the next station are given table.

Speed in kmph: 0 13 33 391/2 40 40 36 15 0

2 in minutes: 0 y2 1 1y2 2 2%_ 3 3_:: 3y2

9.6 WEDDLE’S RULE
By Newton’s Cote’s formula

xg+nh

ydxel {(yo+yn)+4((y1+y3+----+yn_1)}
3 1 +2(Yy+ Y4+ +Yoo)

X0

Putting n = 6 and neglecting all differences above the sixth, the Newton’s
cote’s formula reduces to

xp+6 h 6
k(k — 1 (K -
J' ydx=hj Yo +KAY, + ( )Azy(,4—k(k ik Z)A"’yo
o 3 21 3
K(k = 1)(k = 2)(K — 3)...... k-5
61
=h| . 123 33 42 Ay
By, +18 Ay, +27 A%y, +24 Ay, + — A* ZF A5 e =70
0 Yo Yo Yo 10 YG+1O yo+140

Replace the last term by -1%% A%y,
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(i.e) % APy, which is negligible when h and A°y, are small.

Xp+6h 3h
ydx= [Yo + 5y + Y, +6Ys +Ys +5Y, +Ye]

Xo

Similarly

3h
y dx= TO_ [Yn-e +5Yn—5 + 6yn—3 +Ypot 5yn—1 + yn]

Xo +(n—6 )h

Adding all these integrals,

We have

yax= 3P [yo +5y1+y2+6y3+y4+5y5+2y6+5y7}
+Yg +6Yg +3Yy +2Y4, +3Y, 4 +Y,

Here n is a multiple of 6. This is known as Weddle’s rule.

Errors in the Different Rules:
The leading term dropped in the expansion of (1 + A)* gives the error.

In the Weddle’s rule,

. 41h ‘
The last term is —— A®y, but we have taken the last term as — 42h A
140 140
Hence the error = — —— A%y,
140
T 1;0 h 1% (2)

where Xg < & < Xs.
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Example: 1
]

Calculate I

0

using Weddle’s rule.
1+ x

Solution:
For Weddle’s rule the range is to be divided respectively into even, multiple

of three and multiple of six equal parts. All these we satisfied if the range is
divided into six equal parts.

1

Hence h = —
6
- 1 2 5
x 0K e o B % L
1 ;8 3 2 3 8 1
1+ X 7 4 3 5 11 2
1 0.8571 0.75 0.6667 0.6 0.5455 0.5

1J' d x 3h Yo +9y+Y, +6y;+y, +5y, +2yg + 0y, + Y5 + 6y,
K 1+ X 10

- + Y10 _|~5y11 +2y12 + e +5yn-1 +V¥Yn

13—0 : % [1+5(0.8571) + 0.7500 + 6(0.6667) + 0.6000 + 5(0.5455) + 0.5000]

63_0 [1.4.2855 + 0.7500 + 4.0002 + 0.6000 + 2.7275 + 09.5000]

0.6932

In this case the error is —M h* f® (&) and its lies between 0.00003

180
& .0010.

Actual value of dx=log (1+x)]

O N

1+ X

= 108.2

= 0.69315
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Example: 2
52

Evaluate the integral I = J. log . x d x using Weddie’s rule.
4

Solution:
XOT _ 3h [yo+5y,+y, +6ys+y, +5y,+2ye + 5y, + Vs +6Yo
ydx= —
10 + Y10 +5Y11 +2¥ 45 e +5Y.  +VYn |

X0
Hereb-a=52-4=12

We shall divide the interval into 6 equal parts.

Hence h = 162—=0.2

X 4 4.2 4.4 4.6 4.8 5.0

log , x 1 1.3862944 1.4350845 1.4816045 1.5260563 1.5668159 1.6094379

X : 5.2

log . X : 1.6486586

= 302 14 3862044 + 5 (1.4350845) + 1.4816045 + 6 (1.5260563) +

1.5686159 + 5 (1.6094379) + 1.6486586]

I

= %éi [1.3862944 + 7.1754225 + 1.4816045 + 9.1563378 + 1.5686159

+ 8.0471895 + 1.648658]
[ =1.82784734.

Example: 3

6
Evaluate =1 = j 1—1—— d x using Weddle's rule. Also check up by direct
+ X
0

integration.

Solution:
Take the number of intervals as o.

~h=20_,
6
X 0 1 2 3 4 5 6
L o5 4+ 1 1 1 1
T+ X 3 4 5 6 7
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By Weddle’s rule

xo+nhydx— 3h {yo+5y1+y2+6y3+y4+5y5+2y6 +9Y7 + Vs +6y9j|
+ Y10 +5y11 +2y12 Foreennns +5yn_1 +¥Yn

Xo

- 3 'l+5(0.5)+1+6(1)+1+5(—1—J+l
10 3 4) 5 6 7

= f_O [1 +2.5+0.3333+1.5+ % +0.8333 + 0.14286}

= 1.95285

By actual integration,
6

| LI [log (1+x)[5 =log, 7 = 1.949591015
g 1+x

Example: 4

6
Evaluate J 1dX2 by Weddle’'s Rule. Also check up the results by
§ 1+Xx

actual integration.

Solution:
Hereb-a=6-0=6

Divide into 6 equal parts h = % =1.
X: 0 1 2 3 4 5 6

, 1 . 1.00 0.500 0.200 0.100 0.058824 0.038462 0.027027
+ X '

By Weddle’s rule.

Xp+nh

3h [yo +0Y,+Y, +6Y; +Y, +0Y5 +2yg + 0y, + Y +6yg}
+ VY0 +OY 11 +2Y 0 + cenen +3Y,1+VYn

X0

=3 x % [1+5(0.5)+0.2+86 (0.1) + 0.058824 + 5
(0.038462) + 0.027027]
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= f_O [1+2.5+0.2+0.6+0.058824 + 0.19231+ 0.027027]

I =1.3734483

By actual integration,

6
1= | 9X_ - ftan"' x) =tan™' 6 = 1.405648

2
g 1+X
Exercise
)
1. Evaluate j 5 With h = 1 by Weddle’s rule.
; 1+x 6
1.4
2. Evaluate J. (sin x — log x + e* ) d x with h = 0.1 by Weddle’s rule
.2

0

3.Find by Weddie’s rule.

1.

(a) f(x) d x from the data.

» = o

X! 0.6 0.8 1.0 1.2 1.4 1.6 1.8

f(x): 4.95 6.05 7.39 9.02 11.02 13.46 16.42

11

b) j f(x) d x from the data
3

X: 5 6 7 8 9 10 11

f(x): 95.90 96.85 97.77 98.68 99.56 100.41 101.24
X6
4. Show that the difference between the values of _f f(x) d x obtained by
XQ
Simpson’s one third rule & Weddle’s rule with six sub-intervals is
n (A + A% + A®) f (x,) where h = X6 —Xo
30 6

12
5. Compute:J. E—)ﬁ
X

5

% d x
6. Evaluate j J—Z by Weddle's rule, taking h = 6.
0 1—Xx
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UNIT - X

DIFFERENCE EQUATIONS

10.1 In the following article we take the common difference of the successive
differences of the independent variable as unity.

An equation which express a relation between an independent variable x
and successive differences or successive values of a dependent variable yy is.

Difference equation:
Thus, examples of difference equation are

i) Ay, —3Ay, =0
i) A’y, —2A%y, —3Ay, +yx=0
i) A’y, —3Ay, —2y,=x+2

By means of the relationship
A"Yx = Yxon — NC1Yxen-1 tonn, + (=1)" yx

We can express the difference equations in forms involving successive
values of y, instead of successive differences of y,. Thus the above three
equations may be written respectively.

Yx+2 — 5}’x+1 + Yy = 0 (1)
Yx+3 — Yxr2 — 4Yx+1+t0yx = 0 (2)
Yxe3 — 3Yxs2 = X + 2 (3)

Of the two forms, for purposes of solution, that involving successive values
is usually preferable. The order of a differende equation written in this form is the
difference between the highest and the lowest subscript of the y's.

Hence the order of the equation (1), (2) and (3) are respectively 2,3,and 1

The degree of a_differential equation of this form is the highest power of the
y’s. These for a differential equation of the form
(Yx)? (Yxe1)® — 2Yx Yxe2 + 3y°x+1 = 2x* — 5 the order is 2 and the degree is 3.

General linear difference equation:

The most important type of difference equation is the linear differenc
equation it has the general form.

Yx+n + An—1Yx+n—1 + An-2yx+n—2 oo + A1 Yx+1 + AOYx = f(X) (1)
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where Ao, Ay... An.; f(x) are known functions of x.

If the right hand member of the equation (1)
If f(x) is zero, the equation is called homogenous. Equation (1) is known
as complete equation.

With regard to homogeneous equation of the form,
Yx+n + An—‘!Yx-!-n—‘l +oo AIYXH + Aoyx = O (2)

The following results are easily established:-

I ¢;(x) is a solution of (2), so is ¢1¢,(x)

) If 9, (X), ¢,(X), ¢5(x)...... ¢, (x) are n functions of x, which are independent
solution of 2. Then
Yx = C10(X) +Coby(X)+...... +Cn ¢, (X) (3)
is a general solution of (2).

My I cid. (X)) + cady (X) + ..., +Cn ¢, (X) is the general solutinn of (2), then the
general solution of (1) is
Y = Crd(X) + Cady(X) +...... +Cn ¢, (X)+F(X).

We shall (3) the complementary function and F(x) the particular integral
and hence the general solution of (1) is the sum of the complementary function
and the particular integral. We thus see some analogy between this and the linear
differential equation with constant coefficients.

Solution of first and second order equation with constant coefficient.

10.2 Linear Difference Equation of order one:
The genera! form of this equation is
Yorr — F(X)Yu = ¢ (X) .
We shall first solve the equation when the right side is zero

C e = f(X)y =
(‘e) yx*’ - f(X)YX
SY = f(X=1) Y
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Hence y, = f(x — 1) (x — 2)....... f(r)y:.
If y. has arbitrary value C. the solution becomes yx = CX—;lf(x) . Where
r
XT—1 f(x) stands for the continued product.
"
f(r) f(r+1)....f(x =2) f(x — 1)

We can continue to the process upto r = 0.

In that case the solution is

vo= 221 f(x)
0
Now, let us consider the equation
Yirt = FX) yx = ¢(%) (1)

Let V, be the solution of the equation
Yx+1 — f(X) Yx = 0 (2)

Let us assume that u, v, be a solution of the equation (1)
" ¥Yx = Uy Vy (3)

Hence Yys1 = Uyt Vyaq
AUy = Uygeq — Uy
S0 Yxer = (A Ux + Ux)Vyes (4)
. Substituting (3) and (4) in (1)

we get
(A Uy + Ug)Vyer — T(X) Uy Vi = d(X)

(i&i) (A Ux)Vx+1 + Uy {Vx+1 - f(X) VX} = ¢(X)

(ie) (AuyVyer = ¢ (X)

(ie) Auy = —(ﬁ
Y

x+1

(ie) u = A {4>(x)}
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Hence the general solution of equation (1) is

Yx = CVx + vy A {M}

Vx+1

Example: 1
Solve the equation yy.1 — 2yx = 0

Solution:
The general form of this equation in y..q — f(xX)yx = ¢ (X)

In this equation f(x) = 2.
f(0), f(1),f(2), ..... f(x — 1) are all equal to 2.
.ox1 f(x) = 2*
Tt
x=0

[- £(0). £(1). f(2).....f(x 1)

2.2 . 2.2 =2

Hence the general equation
X -1
yx = C—— f(x)
T

0
yYx=C.2"

Exampie: 2
Solve the equation yy.1— 3yx = 2

Solution:
The solution of the equation
Yx+1 — 3yx =0

In this equation f(x) =3 . ¢(x) =2
- F(0),f (1),f(2)....f(x — 1) are equal to 3.

%l f(x) = f(0),f (1),§(2)....f(x — 1)

x=0
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Yy = i(____l f(x) = ¢c.3*%
(L

x=0

Hence the general solution of the equation is
Formula:

Yx = CV, + v, A [ﬂx—)]
Vv

X+1

yx = C.3% + 3% A" [ 2 }

=C.3*+ 2.3 AT

Aliter:
Let us find the general solution of the equation

yx+1 - Ayx = B
Yx+1 = Ay, + B
Hence y, = Ay,_, +B
= A(Ay x> + B) +B
= A%y, , + B(1+A)
= A%(y x3 + B)+ B(1+A)

= A’y x5 + B (1+A+A?)
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Continuing this process, we get
yx = A'yo + B (1+ A+ A%+ LAY

X

. 1-A
yX=Ayo+B-1—:~A— when A = 1

Yx = Yo+ B (1T+1+1+...... +1) when A=1
Yx = Yo + xB
Hence we get that the solution of the equation yy1 — Ay, = B

1-A”

yy = A*C + B.

when A = 1

= C + x B when A =1
taking y, as the arbitrary constant.
Hence in the case of the equation
Vet — 3Yx = 2

The general solution is

X
yx=c:.3"+23 !
3-1
=c.3+3 -1
Yy = 63"~ 1)

Example: 3
Solve the equation y,.; — ayy = 4"

Solution:-
The solution of the equation
yx+1 - ayx =

In this equation f(x) = a

- f(0), f(1), f(2).....f(x—1) are all equal to a.
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l(_;_:__lf(x) = £(0) . £(1) .£(2) . oo fxo1)

x=0
=a . a . a....a=a.

. The general equation is

Yy = c X1 f(x) = c.a”
T

x=0
Vo1 — aYx = 4%

is y, = c.a*+a* A ( ‘t”] [ Y, =CV, +va“1{i(—x—)H
a Vx+1

Yx = c.a* + a~. .1 AT (_4'_}
a a
2]
=c.a’+a~t A2 -+ A m* )= m”
c.a T [ ( ) T
a
x = c.a’+
Y -a
Example:
Soive the equation yy.q - 1yx =0
+
Solution:
In this equation f(x) = X
X +1

- f(0), (1), f(2) ....... f(x—1)
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Sy = C-’ini £(x) = ¢ £(0) . f(1) . f(2) .....f(x=1)

x=1

Exercise
1.Solve the equation:
i) Yxe1 = Yx = 3%
i) 2Yxe1 — Yx = X
iii) Yx+1 — Yx = 0
iv) 3yx+1 + 2y, = O for which y, = 0,
V) Yae1 — DBy, = 2% . X2

10.3 The solution of linear equation with constant coefficients of order
more than one:

Let us consider an equation of the order n which of the form.
Yx+n + Anp-1 YX+n—1 + Qp-2 Yx+n-2 + . + doyYx =
where ag, a;...... a,-1 are constants and x, a function of x.

From the definition of the operator E, we get E(y,) = Y1
Ez(yx) = Yxs2

E“y,; = Yxen
Hence the equation (1) becomes
(E"yx*+an-: E™ vy, + .. +a.E + 2, )y, = x
(ie) f(E) = x

where f(E) is a rational integral function of E.
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We shall first discuss the methods of determining the complementary
function and then the particular integral. The complementary function of (1) is the
general solution of the homogeneous function

f(E)yx=0

(ie) (E" + ans E™' + ... +a; E + ag) yx =0 (2)

Let m* is a trial solution of this equation

We have

E(m*) = m**!, E3(m*) = m**%,...... E"(m*) = m**"
Hence

M + ago M a; m*" + aym* = 0. )
(ie) m*(Mm*+ ap.y m" "+ ... aim + ag) =

. If m* is a solution of the equation it is necessary that
m*+a_m™t o+ +aim + ag = 0.

Since m” is not zero for any finite values of x.

Equation (3) is called, the auxiliary equations are distinct and if they are
my, M2 . ... My, then equation (2) can be written as

(E-m,) (E-mj,)...... (E-m,)y, =0

If the auxiliary equation has multiple roots say m,= m,, then the general
solution becomes,

yx =Cim* + Com * + . ... + Chym X
=(Cy +Cz)mi +. ... +c,m)
Yx = Aimi +cami + ... + cpm;

The solution contains only (n — 1) arbitrary constant and hence is solution
not general.

In this case the difference equation becomes
(E-my)?(E-mj) ...... (E-~my)yc=0
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Hence we have to find the particular solution corresponding to
(E-mi)’yc=0

(ie) (E—my) (E—my)yx=0
Let (E — my)y, be Uy
Then (E —my)u, =0

U = cmf

Hence (E — my)yx = cm]

[ emi
yx=c1m;‘+m;‘A1( 1)

X+1

mj

Hence the general solution of the equation is

Yx = (Cq1 + CaxX) My +camy +....... CnMm,

Similarly it can be shown that if the auxiliary equation has k equal roots m,
then the general solution of the equation is

Yx = (€1 + Cax + CaxX? +...+CX" T ) MY + Cier Mg + .t G

Suppose the auxiliary equation has imaginary and real roots. Imaginary
roots occur in pairs. Suppose one pairs of imaginary roots is A + iB.
Corresponding to these roots the terms in the complementary function are

C1{A+iB)* + cy(A — iB)*
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A + iB can be expressed in the modulus amplitude form as r(cos 6 +

where r’ = A’ + B & 0 = tan™’ (%J
~A-iB=r(cos 0 —isin 0)

Hence the expression (5) becomes

ci {r(cos 6 +i sin 8)}*+ C, {r (cos 6 — I sin 8)}*

(ie) c4r* (cos x0 +isin x0) + cor* (cos x6 — i sin x0)
(ie) r* {(cq + c) cos x6 +i (cqy — c2) sinx6 }
(ie) of the form r* (A cos x6 + B sin x0)

where A and B are arbitrary constant.

Example:1
Solve the equation yx.2 — 3Yxe1 + 2y, =0

Solution:

The equation can be written in the form
(E2-3E +2)y, =0

The auxiliary equation is
m?—3m+2 =0
ie)(m-1)(m-2)=0
(ieym=1or2
Hence the general solution of the equation is
Yy = C11° + g 2%
S Yx = Cp + Cp2"

Example: 2
Solve the equation y,iz — 4y + 4y, =0

Solution:
The equation can be written in the form
(E2~4E+4)y,=0
(ie) (E-2)° yx=0
Hence the auxiliary equation is (m - 2)2=0

The roots are 2, 2,
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. The general solution of the equation is
Y« = (A+Bx)2*
Example: 3
Solve the equationy,,, - 2y,,, +2y, =0.

Solution:
This equation can be put in the form

(E2-2E+2)y, =0

Hence the auxiliary equation is

m?-2m+2=0

The roots of this equation are 1 +iand 1 - i.

We have 1 +i= 2 (cos-}ﬂsin%)

Hence the general solution of the equation is
X X
y, = (\/'2-) (Acos 7tT)(+Bsinﬂ7—J

Particular Solutions of the complete equations:
Let us find the general solution of the complete equation.

yx+n +a1 yx+n— oo an yx = X. (1)
Having already found the general solution of the corresponding
homogeneous equation, it we add to it any particular solution of the equation (1)

the sum will be the generai solution of the complete equation.

A number of special techniques exist for finding particular solution of the
equation. (1)

We have written the general linear difference equation with constant
coefficients in the form f (E) y, = x.
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The particular integral to this equation is

Y. = ?%ij, where we define the right-hand member to the expression

which when operated upon by f (E), produces x.

Some Useful Results:
1. If f (E) is a polynomial in E, then f (E) m* = m* f (m).

Letf(E)=a, +a,E+a,E*+....+a,E"

f(Eym*=(a,+a,E+a,E>+....+a,E" ) m*
=a,m*“+a, m* +a, m*+_ . +am*"
=m* (a,+a,m+a,m?>+....+a m" )

f(Eym* =m* f(m)

Using this result we can show that

——1——m" = ——1-—m" if f (m) = 0.

f(E) f(m)
If f (m) =0, Let m, be a repeated root of order k.

Thenf(m)=(m-my* ¢ (m).
In that case f (E) = (E -~ m,)* ¢ (E)

Hence ——m”* = ! my.= ! m,*
f(E) (E-m,)" ¢ (E) ¢ (M) (E-m,)"

Let us first find 1 my.
E-m,)

(E-my)xmy"=E(xm"')-m;xm}’
=E(xm ')~ xm?
=(x+1)mj - xmj

:m;‘

mi =xmj
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We have (E - m;)2 x (x — 1) m}™?

(E—my) (E-my) x (x—1) m™>

= (E-my) |x+xmi" - x(x=1,mi"

= (E - my) [2xm*"]

= 2 [+ s —mxm )] = 2 [ Hm —xmy]

i =2 mj.
x(x —1 -
Hence > m} = ( )mfz
—my) 2
(2)
X _
= m:‘z
2!

Similarly we can extend this result and show that
(k)
1 _m* = X xk
(E-my) k!

. __‘l_m:‘ = 1x m:‘
f(E) (E-m;)” ¢(m)
- 1 x(k) x—k
B ¢(m,) k! ™

2. If f (E) is a polynomial in E and F (x) is a function of x, then

f(E) m*F (x) = m*f (m E) F (x)
f(E)[m*F(x)]= (a, +a,E+a, E2 +....+a, E") [m*F(x)]

=a,m* F(x)+a, E[m* F (x)] +a,E? [m*F(x)J
+ ... +a,E" [m"F(x)]

= a,m*F((x)+a, m* F(x+ 1) +a, m*? F (x +2)

+ ... .. +a, m*" F (x+n)
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m* [a, F(x)+a;m F(x+1)+a, m? F(x + 2)

+ ... .. +a, m" F (x+n)]

m* [a, F(x)+a, m E F(x)+a,m? E?F (x)

fF(E)[m*F(x)]= m* [a,+a,mE+a, m?E2 +.... +a, m"E" |F(x)

=m* f(mE) F (x).
Hence if f (x) is a polynomial in x,

—1—m"F(x)=m" 1

fE) fme) - X

1 1 1 1
X, X = X.
f(E) ' f(E) f(1+A)  T(1+A)

expanded in ascending powers of A in the form b,+ b A + b,A% +...

3. When x is a polynomial in x to find can be

1
X=(b,+b,A +b,A%+.... X
f(1+A) (b, 1 28+ )

=by x+ b,A X+ b,A%X+......

Example: 1
Solve the equationy, ., -7y, ., +12y, =2*.

Solution:
The equation can be written in the form
(E? -7 E + 12) yx = 2%,

The auxiliary equation m>-7m+ 12 =0
(ie)(mMm-3)(m-4)=0

The roots of the equation are 3 and 4.

Hence the complementary function is

yx=C13x +Cz 4X.
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Particular integral = ! 2"

EZ2-7E+12
= 1 2"
22 _7(2)+12
:Z_x_ = 2"‘1
2

.. Hence the general solution is
yx = Ci13* + C,4* + 2%

Example: 2
Solve the equationy,,, -6y, +8y, =27%.

Solution:
The equation can be written in the form

(E2 -6 E + 8) yx = 2.
The auxiliary equationis m? —-6m +8 =0

The roots of this auxiliary equation are 2 and 4. Hence the complementary
function is C; 2* + C,4".
Particular Integral = —2——1—-—— 2
E°-6E+8
= 1 2%
(E-2) (E-4)

;.
L

=_x. 2%?
Hence the general solution is
o= Ci2% + C,4% — x572
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Example: 3

Solve the equationy,,, -6y, +9y, =3"
Solution:

The equation can be written in the form of (E2 -6E+9)y, =3".

The auxiliary equation is m?-6m+9=0

The roots of this equation are 3, 3.

Hence C.F = (C, + C,x) 3*

PI1= — 3
(E2 -6E +9)
=—12_3x
(E-3)
x® 32 x(x-1) 3x-2
2! 2

Hence the general solution is
Vo= (C+Cx) 3%+ XD 5x

Example: 4
Soive the equationy, ., -5y,,, +6Yy, = x%+x+1

Solution:
The equation can be written in the form.

(E2-5E+6)y, = x%+x+1

its auxiliary equation is m? — 5m + 6 = 0.
The roots are 3, 2

Hence C.F.=C,; 3"+ C, 2*
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PI = 1 (x2+x+1)

(E? -5E +6)

= 1 (X2+x+1)

(A+1)2-5(A+1)+6

1
A2 +2A+1-5A-5+6

(x2+x+1)

= :;D+2 (x%+x+1)

1

= (x%+x+1)
(1-A)(2-4)

= (x2+x+1)

2
(1+A+A% +...) (1+%+é—+.... ) (X% +x+1)

P.I= 2 4
2
2 2 3 3 4
=1 1+9—+é—+....+A+—+—A—+ ........ +A2+—A—+—A-—+.... X% +x+1
2 2" a 2 "4 2 4
3 2
= 1+——A-+7A (X% +x+1)
2 4 8
PI= (X% +x+1) + 3A (X2 +x+1) + — A2 (X +x+1)

We have, A x=(xX+ 1) -x=1
A (X3 = (x+1)2 = x2 =x%2 +2x+1-x?
=2x+1

A?(x)=0
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A2 () =2 (x+1)+1-(2x+1)

=2x+2+1-2x-1=2
Hence P.I = — (x2+x+1)+§(2x+1+1)+z (2)
2 4 8

=1X2+lx+_1_+9x+_6.+.1_4.

2 2 2 4 4 8
PI =1 x2+2x+ 2
2 4

Hence the general solution is

yx=C13"+022"+—;-x2+2x+§

Aliter:
By the method of undetermined coefficients also, the particular integral can

be determined.
Let a x2 + b x + ¢ be a particular solution of the equation
(E2-5E+6)y, =x%+x+1.
Then (E2-5 E + 6) (a x%+ 6 x +¢) = x%+x+1
(i.e)a (x + 2)> + b (x+2) + ¢ — 5[a (x+1)*+ b (x+1) + c] +b (ax? + bx + ¢)= xZ%+x+1
Equating the coefficients of x?, x and constant terms on both side.
a (x?+2x +4) + b (x+2) +c - 5 (a (x? + 2x +1) +b (x+1) +c) +6 (ax® +bx +c)
= x% + x +1
ax?>+2xa+4a+bx+2b+c-5ax’- 10 ax - 5a - 5b x — 5b — 5¢ + 6 ax® + 6bx + 6¢
= X%+ X +1
x2(a-5a+6a)+x(2a+b-10a-5b+6b)+4+2b+c-5a-5c+6

= %% + X +1
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Equating the coefficients x*, x & constant.

2a =1 »a= %
~8a + 2b = 1 = -8 (J4) +2b=1
—4+2b=1
2b=1+4
b=§.
2
—-5a+2b-4c+ 10 =1
-5a + 2b - 4c=-9
5
-5 (1 +2(—)—4c=—9
-(/2) 2
_§.+l(_)__4c;=_9
2 2
._5__4c=_
2
_4c=_9_§
2
_dc-= -18-5
2
_40::_2_3_:—_2?.
2 2

Example: 5
Show that n straight lines, no two which are parallel and no three of which

meet in a point, divide a plane into y2 (n?+n+2) parts.

Under these conditions, let the number of compartments formed by the n
straight lines by y,, .

Draw the (n+1)" line in the plane.
It will meet each of the n lines once in 'n’ points and dissect (n+1)

previously existing compartments and thus add (n+1) compartments more.
Hence y ., = y,+n+1

When n = 1, the number of compartments is 2.
Hence y; = 2.
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So we have to solve the equation
yn+1 = yn'H'l +1

Subject to y, = 2.

The equation can be written in the form.
(E - 1) Yn =N+ 1

Hence its C.F = A (1)"

1
PI= —— (n+1
g_7 1)

% (n+1) = A" (n+1)

_ n(2)+n=n(n—1)+n
2 2

Yn=A+ M+n

whenn=1,y, =2

A=A

1 2
“YaE = (NT+n+2
Ya= 3 ( )

Exercise:
1. YX+2_ZYx+1+4yx=O
2. y,oty, =0
3. ¥Y2=3Yy -2y, =1
4' YX+2+5yX+1 +6Yx =4x
S. 6Y,,2* Sy, 4—6y, =2"
6. Yau2+2¥,u * ¥, =(9) 2%, given thaty, = 2 = % Vi

7. Yo TY¥s1 =8y, =x(x-1) 2%,

395






	0001
	0002
	0003
	0004
	0005
	0006
	0007
	0008
	0009
	0010
	0011
	0012
	0013
	0014
	0015
	0016
	0017
	0018
	0019
	0020
	0021
	0022
	0023
	0024
	0025
	0026
	0027
	0028
	0029
	0030
	0031
	0032
	0033
	0034
	0035
	0036
	0037
	0038
	0039
	0040
	0041
	0042
	0043
	0044
	0045
	0046
	0047
	0048
	0049
	0050
	0051
	0052
	0053
	0054
	0055
	0056
	0057
	0058
	0059
	0060
	0061
	0062
	0063
	0064
	0065
	0066
	0067
	0068
	0069
	0070
	0071
	0072
	0073
	0074
	0075
	0076
	0077
	0078
	0079
	0080
	0081
	0082
	0083
	0084
	0085
	0086
	0087
	0088
	0089
	0090
	0091
	0092
	0093
	0094
	0095
	0096
	0097
	0098
	0099
	0100
	0101
	0102
	0103
	0104
	0105
	0106
	0107
	0108
	0109
	0110
	0111
	0112
	0113
	0114
	0115
	0116
	0117
	0118
	0119
	0120
	0121
	0122
	0123
	0124
	0125
	0126
	0127
	0128
	0129
	0130
	0131
	0132
	0133
	0134
	0135
	0136
	0137
	0138
	0139
	0140
	0141
	0142
	0143
	0144
	0145
	0146
	0147
	0148
	0149
	0150
	0151
	0152
	0153
	0154
	0155
	0156
	0157
	0158
	0159
	0160
	0161
	0162
	0163
	0164
	0165
	0166
	0167
	0168
	0169
	0170
	0171
	0172
	0173
	0174
	0175
	0176
	0177
	0178
	0179
	0180
	0181
	0182
	0183
	0184
	0185
	0186
	0187
	0188
	0189
	0190
	0191
	0192
	0193
	0194
	0195
	0196
	0197
	0198
	0199
	0200
	0201
	0202
	0203
	0204
	0205
	0206
	0207
	0208
	0209
	0210
	0211
	0212
	0213
	0214
	0215
	0216
	0217
	0218
	0219
	0220
	0221
	0222
	0223
	0224
	0225
	0226
	0227
	0228
	0229
	0230
	0231
	0232
	0233
	0234
	0235
	0236
	0237
	0238
	0239
	0240
	0241
	0242
	0243
	0244
	0245
	0246
	0247
	0248
	0249
	0250
	0251
	0252
	0253
	0254
	0255
	0256
	0257
	0258
	0259
	0260
	0261
	0262
	0263
	0264
	0265
	0266
	0267
	0268
	0269
	0270
	0271
	0272
	0273
	0274
	0275
	0276
	0277
	0278
	0279
	0280
	0281
	0282
	0283
	0284
	0285
	0286
	0287
	0288
	0289
	0290
	0291
	0292
	0293
	0294
	0295
	0296
	0297
	0298
	0299
	0300
	0301
	0302
	0303
	0304
	0305
	0306
	0307
	0308
	0309
	0310
	0311
	0312
	0313
	0314
	0315
	0316
	0317
	0318
	0319
	0320
	0321
	0322
	0323
	0324
	0325
	0326
	0327
	0328
	0329
	0330
	0331
	0332
	0333
	0334
	0335
	0336
	0337
	0338
	0339
	0340
	0341
	0342
	0343
	0344
	0345
	0346
	0347
	0348
	0349
	0350
	0351
	0352
	0353
	0354
	0355
	0356
	0357
	0358
	0359
	0360
	0361
	0362
	0363
	0364
	0365
	0366
	0367
	0368
	0369
	0370
	0371
	0372
	0373
	0374
	0375
	0376
	0377
	0378
	0379
	0380
	0381
	0382
	0383
	0384
	0385
	0386
	0387
	0388
	0389
	0390
	0391
	0392
	0393
	0394
	0395
	0396
	0397
	0398

