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REAL ANALYSIS UNIT - 1

INTRODUCTION

The concepts of sets and functions are indispensable to almost all branches of
pure mathematics. The usual material of elementary set theory is so current that we
take it for granted.

1) A is a subset of B written as ASB

i1) Union of two sets A and B written as AUB

iii)  Intersection of two sets A and B writtenas AnB

iv)  Complement of subset of A of X written as A€

V) Difference of two sets A and B written as A-B

Vi) Cartesian product of two sets A and B writtenas f: A x B
vii) A function f from a set A to a set B written as f : A—>B
viii) The empty set which contains no element is denoted by ¢.

Certain letters are reserved to denote particular sets which occur often.
They are:

N, the set of all natural numbers

Z., the set of all integers

Q, the set of al rational numbers

Q", the set of all positive rational numbers

R, the set of all real numbers

R", the set of all ordered n-tuples (x,, X,, ....... , X ) of real numbers

C, the set of all complex numbers

C", the set of all ordered n-tuples (z,, z,, ...... , z_) of complex numbers

The concept of union and intersection can be extended to any collection of éets.

Let I be a nonempty set. For each i€l, let A, be a set. Then we say that {A/iel}
is a family of sets indexed by the set L.



We define iLéIAi = {x/x €A for at least one i €1}

and iQIA. = {x/x €A, for alli eI}

Example :
For each ieN, let A, = {i, i+1,....., i+n,.....}
oA ={1,2,....}; A, = {2, 3,...}; e :
Then {A/ieN} is a family of sets indexed by N. -

Note 1 :

o
i is also written as UAi and
i=

UA
1eN

NA; .. NA;
ieN as i=1 1.

Note 2 :

The distributive laws for union and intersection and De Morgan's laws for finite
number of sets can be generalised to any collection of sets as follows.

C
i) (UAi) = ‘nAiC
iel 1€l
C
C
.. A _ UA;
W (121 IJ il
()
iii) An| UB;| = U(ANBj)
el iel
S |
iv) AUl NB;| = N (AUB;)
\iel iel




Intervals in R :
Let a, b € R and a<b. Then

i) (a, b) = {x/xeR and a<x<b} is called the open interval with a and b as end
points.

ii) [a, b] = {x/xeR and a<x<b} is called the closed interval with a and b as end
points.

iii) (a, b] = {x/xeR and a<x<b} is called the open-closed interval with a and b as
end pionts.

iv) [a, b) = {x/xeR and a<x<b} is called the closed-open interval with a and b as
end points.

V) [a, ©) = {x/xeR and x>a}
vi) (a, ) = {x/xeR and x>a}
vii) (—oo, a] = {x/xeR and x<a}
viii) (~o0, a) = {x/xeR and x<a}
ix) (-»,®©)=R

Any subset of R which is one of the above forms is called an interval. Any -
interval of the form (i), (ii), (iii) or (iv) is called a finite interval or bounded interval
and any interval of the form (v), (vi), (vii), (viii) or (ix) is called an infinite interval or
an unbounded interval.

The singleton set {a} is considered to be a degenerate closed interval [a, a].

COUNTABLE SETS

If a set A is finite then we can actually count the number of elements in this set.
In other words we can label the elements of A by using the natural numbers 1, 2,....,n
for some n and the number of elements in this set A is n.

In this case there exists a bijection f from A onto the set {1, 2,.....,n} and hence
if A and B are two finite sets having the same number of elements, then there exists a
bijection from A to B.

Definition :

Two sets A and B are said t be equivalent if there exists a bijection f from A to
B.



Note :

Two finite sets A and B are equivalent iff they have the same number of
clements. Hence a finite set cannot be equivalent to a proper subset of itself. However
an infinite set can be equivalent to a proper subset.

Example 1 : _

Let A=Nand B= {2, 4,6,....2n,...})

Then f: A—>B defined by f(n) = 2n is a bijection. Hence A is equivalent to B
eventhough A has actually ‘more' elements than B.

Example 2 :
N is equivalent to Z

The function f: N—>Z defined by

n.. .
— 1if n is even
f(n) =

I-n if n is odd is a bijection

Hence N is equivalent to Z.

Definition :

A set A is said to be countably infinite if A is equivalent to the set of natural
numbers N.

A is said to be countable if it is finite or countably infinite.

Note :
Let A be a countably infinite set. Then there is a bijection f from N to A.
Let (1) = a,, f(2) = 4y, ..., () = a,.... |

Thus all the elements of A can be labelled by using the elements of N.

Example 1 :

{2, 4, 6,.....,2n,......} is a countable set.



Example 2 :

Z is countable.

Example 3 :

_{1.2_.3_ }
Let A= 5 3

n e s
The function f : N—>A defined by f(n) = P is a bijection.

Hence A is countable.

Theorem 1 ;

A subset of a countable set is countable.

Proof :

Let A be a countable set and let BcA. If A or B is finite, then obviously B is
countable. Hence let A and B be both infinite. '

] n’
the first element in A such that anleB. Let a112 be the first element in A which follows
a, such that a_ eB.
1 ny

Since A is countably infinite, we can write A = {a,, a,,...... a,..... }. Let a, be

Proceeding like this we get B = {anl, R }. Thus all the elements of B canbe
labelled by using the elements of N. Hence B is countable.

Theorem 2 :

Q" is countable.

Proof :

Take all positive rational numbers whose numerator and denominator add up to

1
2. We have only one number namely T

Next we take all positive rational numbers whose numerator and denominator
add up to 3.

We have = and >
¢ have - and 7.

Next we take all positive rational numbers whose numerator and denominator
add up to 4.



3 2 1

We have T 5— and 3

Proceeding like this, we can list all the positive rational numbers together from
the beginning omitting those which are already listed.

1 1123 ,
Thus we obtain the set {1,5,2 3, 373 -2-,4, ----- ,}. This let contains every

positive rational number each occuring exactly once.

-

Thus Q% is countable.

Theorem 3 :

Q is countable.

Proof :

We know that Q¥ is countable.

Let Q"= {r,ry ... N A

Let f: N — Q be defined by
f(1) = 0, f(2n) =r_and f(2n+1) = -1 .

Clearly f is a bijection and hence Q is countable.

Theorem 4 :

N x N 1s countable.

Proof :
N xN={(a,b)/a,b € N}

Take all ordered pa‘+s (a, b) such taht a+b = 2. There is only one such pair
namely (1, 1).

Next take all ordered pairs (a, b) such that a+b = 3. We have (1, 2) and (2, 1)
Next take all ordered pairs (a, b) such that a+b = 4. We have (3, 1), (2, 2) and
(1, 3).

Proceeding like this and listing all the ordered pairs together from the
beginning, we get the set {(1, 1), (1, 2), (2, 1), (3, 1), (2, 2), (1, 3),......}. This set
contains every ordered pair belogning to NxN exactly once

Thus NxN is countable.



Note :

The above process of arranging the elements of NxN as a sequence can be
represented by means of a diagram. This process is known as Cantor's diagonalisation
process.

Ly @2 H)—@31n @41

o 2)/ 2,2) ‘/(3, 2>/ 4.2)

v
(1,3) 2,3) (3,3) 4,3)-----
+
(1,47 249 G G

Theorem 5 :

If A and B are countable sets then AxB is also countable.

Proof :

We assume that A and B are countably infinite.

Let A={a,a, .... , a

Define f : NxXN — AxB by {(i, j) = (a,, bj)
We claim that f is a bijection.
Suppose x = (p, q)eNxN and y = (u, v)eNxN
f)=fy) = (8,b)=(a,b)

= ap=au,bq=bv
p=uandq=v

(P, q9) = (u, v)

X=Yy

U 4 ¢

0% fis 1-1.

Now, suppoe (am, an)e AXB.

Then (m, n)eNxN and f(m, n) = (a_, ).

& f is onto. Hence f is a bijection.

Hence AxB is equivalent to NxN which is countable.

Hence AxB is countable.



Theorem 6 : ‘
Let A be a countably infinite set and f be a mapping of A onto a set B. Then B
is countable.

Proof :

Let A be a countably infinite set and f:A—B be an onto map. Let beB. Since f
is onto, there exists at least one pre-image for b. Choose one element acA such that

f(a)=b.
Define g : B—>A by g(b) = a.
Clearly g is 1-1.

oo B is equivalent to a subset of the countable set A.

oo B is countable (by theorem 1)

Theorem 7 :

Countable union of countable sets is countable.

Proof :

LetS={A, A,,...,A ,..... } be a countable family of countable sets.

Case (i) :
Let each A, be countably infinite.

Let A, = {a;, 3,y ..... - P }

We define a map f: NxXN—>UA_ by (i, j)=aij. Clearly f is onto.
Also by theorem (4), NxN is countably infinite.

Hence by theorem (6), UA_ is countably infinite.

Case (ii)
Let each A, be countable.



For each i choose a set B. such that B, is a countably infinite set and A,cB

=12
Then VA .cB..
B, is countable

do UA, is countable (by theorem 1).
Worked Examples :

Example 1 :

Any countably infinite set is equivalent to a proper subset of itself.

Solution :

Let A be a countable infinite set.

Hence A = {a, a,,...... R SO

Clearly B is a proper subset of A.
Define a map ffA—»B by f(a ) = a_,,

Clearly f is a bijection. Hence A is equivalent to B.

Example 2 :

Any infinite set is equivalent to a proper subset of itself.

Solution :

Let A be an infinite set.

Choose any eclement a,€A.

Since A is infinite set, we can choose another element a,e A—{a,}

Suppose we have chosen a,, a,,.....,a, from A.

Since A is infinite, A—{a,, a,,....,a_} is also infinite.

& We can choose a_,, from A—-{a,, a,,....,a_}

B = {a,, a,,...... % TR : BURYROON is countably infinite subset of A.

Clearly A = (A-B)UB.

Consider the following subset C of A given by
C=(A-B)u{a,a,,......ap....} = A—{a,}



Clearly C is a proper subset of A.
Consider the function f : A—»C defined by f(x) = x if xe A-B and f(a)=a_,,
Obviously f is a bijection.

Hence A is equivalent to C.

Exercise :
1. Show that N and A = {101, 102, 103,....} are equivalent.
2. Show that for any two sets A and B, the set AxB is equivalent to the set BxA.

3. Prove that the set of all even integers is countably infinite.

UNCOUNTABLE SETS
Definition :

A set which is not countable is called uncountable.

Theorem 8 ;

(0, 1] is uncountable.

Proof :

Every real number in (0, 1] can be written uniquely as a non-terminating
decimal 0.aa,,......a,.... where 0<a.<9 for each i subject to the following restriction that

any terminating decimal 0.a,a,........ a 000....... is written as 0.a,a,....(a,_,)999....
For example 0.54 = 0.53999......
1 = 0.999.....

Suppose (0, 1] is countable.

Then the elements of (0, 1] can be listed as

{X;5 Xppeene X -....; Where X, =0.a,a,.... : TR
X, = O.azla22 ...... : PR
X, = O.anlanz ...... a, ...

For each positive integer n choose an integer b_ such that 0<b_<9 and bn=0 and
b _#a_.

10



Lety=0.b; b, b, ......

Clearly y € (0, 1]

Also y is different from each x; at least in the i™" place.
Hence y = x, for each i which is a contradiction.

Hence (0, 1] is uncountable.

Corollary 1 :

Any subset A of R which contains (0, 1] is uncountable.

Proof :
Suppose A is countable.
¢ By theorem (1) any subset of A is countable.
Hence we get (0, 1] is countable which is a contradiction.

¢ A is uncountable.

Corollary 2 :
R is uncountable.

The result follows directly by taking A = R.

Corollary 3 :

The set S of irrational numbers is uncountable.

Proof :

Suppose S is countable.

We know that Q is countable.

oo SUQ = R is countable which is a contradiction (by corollary 1)

¢ S is uncountable.

Exercise :

1. Prove that C is uncountable.

2. Prove that any interval in R which contains more than one point is uncountable.

3. Prove that the set of all irratational numbers lying in the interval (0, 1] is
uncountable.

11



INEQUALITIES OF HOLDER AND MINKOWSKI THEOREM
(HOLDER'S INEQUALITY)

1 1 n n Up n Vg
If p> 1 and q is such that '5"“(—1:1 then X !aibi‘ < ['Z |ai|p] \:.zllbi‘q]

1= 1= 1=

where a,, a,, ...... ,a and b, b,, ..oees , b_are real numbers.

Proof :

First we shall prove the inequality.

1 1/ X
xV/Py qS;"‘%wberexZOandyZO.

This inequality is trivial if x =0 or y = 0.

Letx,y>0.

1
Consider f(t) = t*~At+A-1 where A = > and t=0

Then f'(t) = AtP1-A=A (tr1-1)
oo f(t) = f’(l) =0
Also fi(t) > 0 for 0 <t <1 and f'(t) < 0 fort>1.

. X

& f(t) < 0 for all t = 0 and in particular f(;) <0,

x " X |
do [—-) —7»(—)-!—7»—-150

y b4

1/p

do ("i) -l(iJ+l—1S0

y pP\y/ P

1-1/ X 1
Multiplying by y we get Xl/py( P) -;—(1 —-;Jy <0

Q0

P (1-1/p) _X _Y g ( N J
P 94

12



P q

To prove Holder's inequality, we apply the above inequality to the numbers

k[

: ;Y. foreachj=1, 2, ..... , N
’ .Ellailp ! Ellbilq
1=

1=

X

Pﬂ%l

. p 1/p
'leail

1=

7 < +yj forallj=1, 2, ... , .

.. 4]’ P 4
|bi|

-1

Adding these n inequalities we get

We get

1

2 Jailby
1=1

1/p /g ~—
E laiP] 2 o]
1=1 1=1

X: . 1 1
(—J+ﬁ] - =3 xj+— 2 y;
\p q Pj=1 ° qj=I

A
M

Now

T =

]

= l+.1.£since % Xj = E yj=1)

P q j=1 j=1
= 1
Using this in (1) we get
— -\l/p B "‘llq
Slaileil < | 2aP| - | B i
1=1 - Li=l i | i=1 i
- Al/pr Tl/q
X 'n |aibi| < 3 lai|p $ |bi|q
i=1 | 1=1 . L1=1 .
Note :

If we put p = 2 = q in Holder's inequality we get the following inequality which
is known as Cauchy-Schurarz inequality. "

13



Theorem 10 : (Minkowski's nequality)

1/p N 1/p n 1/p
Ifp2l, [ > |ai +bi|p] S[ ) |ai|p] +[ lebilp] where a,, a,,......,a, and b,,
1=1 i=1 i=

1=

byyeeeiis ,b, are real numbers.

Proof :
This inequality is trivial when p = 1. Let p>1.
n 1/p n 1/p
Clearly, [,leai+bi|p] < [,Zl(|ai|+|bi|)p} ------- (1)
1= 1=
-1
,>'5l[lai|+lbi|]p = ,>'51[|f=li|+|bi|]p (lail -+ bil)
1= 1=
-1 - -1
= _gllail(lail+|bi|)p + _gllbi‘(lad +[bil)°
1= 1=
i e[ (p-1)q ]’
<| Bl | | 2 (ail+bil)
1= 4 L=l i
- Wpr 1/q
p -1
A Bl | | 8 (ool
| i=1 J Li=l ' -
1
where ; + E =1 (using Holder's inequality).
Si L4221 we have p+q =
‘_nc,ep q we have p+q = pq
Hence (p—-1)q=p
N 1/q
Dividing by [‘Zl(lail""binp] we get
1=
“ql-1/q = Wy r -1/p
I R A
i=1 | i=1 i | i=1 i
1/p - A'p 1/p
(2G| < [BRP] o 2BP] o
= L 1= o 1= -

From (1) and (2) we get the required inequality.

14



METRIC SPACE

The concept of convergence of sequences of real numbers depends on the
absolute value of the difference between any two real numbers. We observe that this
absolute value is nothing but the distance between the two numbers when they are
considered as points on the real line. For the study of the concepts like continuity and
convergence the algebraic properties of R are irrelevent. A set equipped with a
reasonable concept of distance is called a metric space.

Definition :

A metric space is a non empty set M together with a function d:MxM—>R
satisfying the following conditions. '

i) dix,y)=20forallx,ye M

ii) dx,y)=0iffx=y

i) d(x,y)=d(y,x) forallx,ye M

iv) d(x, z) < d(x, y)*+d(y, z) for all x, y, z € M (triangle inequality)

d is called a metric or distance function and d(x, y) is called the distance
between x and y.

Note :

The metric space M with the metric d is denoted by (M, d) or simply by M.

Example 1:

In R we define d(x, y) = |x—~y|. Then d is a metric on R. This is called the usual
metric on R.

Proof :
Clearly dx,y) = [x-yl=290
Also dx,y)=0  [x-y|=0
S X=Yy
d(x,y) = [x-yl
= |yx|
= d(y, x)

15



Letx,y,ze R

Then d(x, z) = [x—z|=[x-yty-z|
< [|x-yltly—z|
< d(x, Y)+d(y, 2)

oo d(X, Z) < d(x , y)+d(y, Z)

Hence d is a metric on R.

Example 2 :

In C we define d(z, w) = |z—w|. Then d is a metric on C. This is called the usual
metric on C.

Note :

If the corhplex number z = x+Hy is identified with the point (x, y) of the two
dimensional Euclidean plane then the above distance formula takes the form

d(z, w) = \[(x—u)?‘ +(y_ v)2 where z = x+iy and w = u+iv

Example 3 :

On any non-empty set M we define d as follows.

0if x=y
d(x,y) = 1if x#y

Then d is a metric on M. This is called the discrete metric on M.

Proof :
Clearlyd(x, y)20and d(x,y) =0 & x =Y
0if x=y

Also d(x, y) = d(y, X) = {1 if xzv

& d(x, y) =d(y, x) forallx,y e M. Letx,y,ze M

Case (i) :
X = 2
Then dx,z) = 0
Also dx, y)+d(y,z) =2 0
oo d(x, z) £ d(x, y)y+d(y, z)

16



Case (ii) :
X # Z

Then d(x,z) = 1
Also since x, z are distinct, y cannot be equal to both x and z.
Hence either y # x or y # z.

d(x, y)+d(y, z) = 1

d(x, z) < d(x, y)+d(y, z)

Thus d(x,z) £ d(x,y)td(y,z) forallx,y,ze M

Hence d is a metric on M.
Example 4 :

1/2
n
In R we define d(x, y) = [:_Z (Xi-yi)z} where X = (X, X, ...eeen ,X,.) and

1=1
y =(¥;»¥;------»¥,)- Then d is a metric on R". This is called the usual metric on R".

Proof :
- n 2-1/2
dx,y) = | 2 (xi-¥i) >0
[ i=1 i
- q1/2
n 2
dx, =0 < | 2 (xi—vi) =0
| i= J
< (x-y)=0foralli=1,2,...,n
< x, =y foralli=1,2, ... ,
S (X Xppeeens X ) = (Yi> Yyoereens ¥p)
S Xx=y
- n 2-1/2
Also, dx,y) = | 2 (xi-¥i)
L1=1 J
- N 211/2
= | 2 (vi—x)
Li=1 J
= d(y, x)



To prove the triangle inequality, take a, = x,~y;, b; = y;z; and p = 2 in
Minkowski's inequality.
5 1/2
(i-5

. ) 1/2 . ) 1/2
We get,[ ) (Xi‘zi) ] < [Z (Xi‘)’i) ] +[.
i

' 1=1

1=

LI g =]

1
ie., d(x,z) < d(x,y)+d(y, 2)
o% d is a metric on R™.

Note :

R" with usual metric is called the n-dimensional Euclidean space.

Example § :
Consider R". Let p > 1.

0 ) 1/p
We define d(x, y) = .lexi - il
i=

X = (X;5 Xy weeeey X)) @A Y = (¥, ¥p5 oo Y,)
Then d is a metric on R,

The proof is similar to that of Example 4.

Example 6 :
Let x, y € R% Then x = (x5 X,) and y.= (¥ ¥p) Where x;, X,, ¥, ¥, € Q. We
define d(x, y) = [X,~Y,[*[x,~Y,|. Then d is a metric on R
Proof :
dix,y) = Xyl +Ix-y,20
d(x, Y) =0 & [xy-y,| + [xpy,l = 0
< X~y = 0 and [x,~y,| =0
< x,=y,and x, =Yy,
& (%, %) = (¥, ¥)

S X=Yy

18



dx,y) = [x;=y|+ X7y,
= |y =Xy + [y, %,
= d(y, x)
Letx,y, z € R2.
dx, z) = [x;—z,| + [x,-2,]
= XYty izl + Xy tyszyl
< Ak y—z3 + {xyaltly, 2/}
= Ax=yHix=yld + {ly—z[Hly,—2,0}
= d(x,y) +d(y, 2)
Thus d(x,z) < d(x,y)+d(y, 2)

Hence d is a metric on R2.

Note :

’ n
More generally in R" we define d(x, y) = _lexi —Yil where x = (X,, X,,....,X,) and
fe==

Y =(¥;» ¥p-.--»¥,)- Then d is a metric on R™.

Example 7 :
In R" we define d(x,y) = max{xi-yi,i=1,2, ...... , n}
X = (X5 Xy, oeee , X))
and Y = (Y Yy oo > Yy

Then d is a metric on R".

Proof :
d(x, y) = max{|x,~y,|, |X,~Y,ls-.-c0rlx ~¥,I} 2 0
d(x, y) =0 < max{|x;~yl,-....,[x ~y |} =0

< x~y;,=0foralli=1, 2,.....,n



d(x,y) = max{lxi—yil}

= max{lyx}
= d(y, x)
Let x, y, z € R™. Since each x,, y,, z.eR
We have X;—2z;] < [x~y+ly—z|foralli=1,2,..n
oo max |x~z;|] < max|x~y,|+ max|y—z|
oo d(x, z) < d(x, y)+d(y, z)

Hence d is a metric on R

Example 8 :

oC
Let p=1. Let lp denote the set of all sequences (x,) such that %lxnlp is

1/p
convergent. Define d(x, y) = [ 2 lxn Ynl ] where x = (x,) and y = (y ).

n_

Then d is a metric on lp.

Proof :
Leta,b e lp.

First we prove d(a, b) is a real number. By Minkowskis' inequality we have

1/p 1/p 1/p
R N Y R Y — n
1=1 1=1 i=1

Since a, b e [, the right hand side of (1) has a finite limit as n—co.

l/p
oo [Z |a1+b| :, is a convergent series. Similarly we can prove that
1=1

1/p
[ Ial —b; I ] is also a convergent series and hence d(a, b) is a real number.
1=1

Taking limit as n— in (1) we get

1/p o« l/p 1/p
grosr]” < [gpe] e
1=1 1= i=1
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Obviously d(x, y) = 0
dix,y) = QOiffx=y
and d(x,y) = d(y, x)
Letx,y,z € lp
Taking a, = x,-y, and b; = y;-z; in (2) we get
[ > Ix; —zi|p]1/p < [ T Ix; —Yilp]l/p +[ % |yi- zilp}up
i=1 =1 i=1
o d(x, z) £ d(x,y) +4d(y, z)

Hence d is a metric on -

Note :

In particular /, is a metric space with the metric defined by

dx,y) = > 1[|"n ‘Yn|2]1/2

n=
Example 9 :

Let M be the set of all bounded real valued functions defined on a non-empty
set E. Define d(f, g) = sup {|{f(x)-g(x)|}/x€E} d is a metric on M.

Proof :
d(f, g) = sup{|f(x)-g(x)[} =0
Also, d(f, g =0 < sup{{f(x)-g(x)|} =0
< [f(x)-g(x)| = O for all xeE
& f(x) = g(x) for all xeE
> f=g
sup {|f(x)-g(x)I}
= sup{lg()-fx)l}
= d(g D

Also d(f, g)
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Letf, g, he M

We have If(x)-h(x)] < [fx)-gx)I+|g(x)-hx)|
oo sup {|f(x)-h(x)|} < sup{|f{x)-g(x)[}+sup {|g(x)-h(x)|}

RES d(f, h) d(f, g)+d(g, h)

Henc. d 1s a metric on M.

Example 10 :
Let M be the set of all sequences in R. Let x, y € M and let x = (x) and y=(y,)-

| < |%n = ¥n
Define d(x,y) = n=1 Zn(l + |xn - YnD

Then d is a metric on M.

Proof :

Let x, y € M. First we prove that d(x, y) is a real number = 0.

Xn~Yn < 1
We have 2“(1 +[xp "YnD on forall n.

< 1
Also 2 T3 is a convergent series.
n=12
& Ixn ~ Ynl

S = o0 (l +an _ Ynl) is a convergetn series.

¢ d(x, y) is a real number and d(x, y) = 0

OZC !Xn - Ynl
A% =0 < 212014y - ya))

< [x,~y,| = 0 for all n.

< x, =Yy, foralin.

& x=y
%C Xn—Y¥n
Also dx.y) = o 2"(1+]xn — ynl)
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x |Yn —xnl
n=1 2n(1 + |yn - xn|)

= d(y, x)
Letx,y, z € M. Then
|xn—zn| - 1
1+|xp—zn| 1+ |xp — 2|
1— 1

IA

(1 + lxn - Ynl + IYn - an)

lxn — Ynl +|Yn - an
1+|Xn "Ynl'*'l)’n“zn'

_ |xn - Ynl + IYn — an

1+|xn“Yn|+|Yn"Zn| 1+|xn_Ynl+|Yn"'Zn|

|xn_Yn| + |Yn—znl
1+|xn-—yn| 1+|yn—zn|

1
Multiplying both sides of the inequailty by z—n and taking the sum fromn =1 to
o we get d(x, z) < d(x,y) + d(y, z)
o% d is a metric on M.
Example 11 :

.Let I denote the set of all bounded sequences of real numbers. Let x = (x,) and

y = (y,)e!® define d on I* as d(x, y) = lub|x ~y. |.
Then d is a metric on /.
Solution :
d(x,y) = Tublx -y |20
d(x,y) =0 < lubjx -y |=0

< [x,~y,} = 0 for 1<n<oo
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< x =y, for 1<n<cw
< (x,) = (¥
S X=Y
d(x, y) = lublx -yl
= lubly x|
d(y; x)
(z)
[Xy=Yal + V024l
lubjx —y,| + lubly,—Z|
d(x, y)+d(y, z)
d(x, y)y+d(y; z)
oo d(x, 2) < d(x, y)y+d(y, z)

I

Let z

IA

lxn~zn|

IA

A

oo lub ‘X n—Z n l

& d is a metric on I*®.

Worked Examples :
Example 1 :

Let d, and d, be two metrics on M. Define d(x, y) = d,(x, y)+d,(x, y). Prove that
d is a metric on M. ’

Solution :
dix,y) = d;(x, y) +dyx, 920
d(x,y) =0 < d,(x,y) +d)(xy) = 0
< d,(x,y)=0and d,(x,y)=0
& X=y
dx,y) = d,(x,y) +d)yx,y)
= d{y, X) + d,(¥, X)
= d(y, X)
Let X, y, z € M. Then we have
d,(x,z) < d,x, v+ d,(y, z) and
dy(x,z) £ dy(x,y)+ d,(y, 2)
Adding, we get d(x,z) £ dx,y)+ d(y, z)

& d is a metric on M.
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Example 2 :

Determine whether d(x, y) defined on R by d(x, y) = (x—y)? is a metric or not.

Solution :
Letx,y e R
d(x,y) = (x-y)*=0
d(x, y) = (x-¥)?=(y—x)?
d(y, x)
But triangle inequality does not hold.
Takex =-5,y=—4,and z=4
Then d(x,y) = (-5+4)2=1
d(y, z) = (—4-4)>=64
d(x,z) = (4+5)2 =381
d(x, z) > d(x, y)td(y, z)

Hence triangle inequality does not hold.

|

oo d is not a metric on R.

Example 3 :

If d is a metric on M, prove that /g is a metric on M.

Solution :

Letx,y,ze M

o We have d(x,y) = 0

Alee 1/d(x,y) = Jd(y,x)

d(x, z) = d(x, y)td(y, z)

o;o 1/d(x,z) < ﬂx,y)+d(y,z)
< Jd(x,y)+d(y.z) (since Va+b <+a+b)

Hence /4 is a metric on M.
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Example 4 :

d(x,y .
Let (M, d) be a metric space. Define d,(x, y) = 1—;%—)}'—)— Prove that d, is a

metric on M.

Solution :

d(x,y
dx,y) = f#(,)—” 20 (since d(x, y)=0)

d(x,y)

_dl(x, y)=0 N 1+d(x,y) =0

< dx,y)=0

<> x =y (since d is a metric)

d(x,y)
Also dx,y) = -I_:d_(;,_y—)

d(y, x)
1+d(y,x)
= di(y, x)
Letx,y,ze M

d(x,z)
Then d,(x,z) = IT&TZ?)

1
C lm—_—
d,(x, z) = 1+d(x,z)

IA

1—[1+d(x,y;+d(y,z)]

d(x,y)+d(y,z)
1+d(x,y)+d(y,z)

dxy) . dyz)
1+d(x,y)+d(y,z) 1+d(x,y)+d(y,z2)
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d(x,y) N d(y,z)
S 1+d(x,y) 1+d(y,z)

= di(x, y)+d,(y, 2)
Thus d(x,2) = 4,(x,y)+d,(y, 2)

> d1 1S a metric on M.

Example 5 :

Let (M, d) be a metric space. Define d,(x, y) = min{1, d(x, y)}. Prove that d, is
a metric on M.

Solution :
d,(x,y) = min{l, d(x,y)} 20
cod(x,y) =2 0

d(x,y)=0 < min{l, d(x, y)} =0
< d(x,y)=0
&S xX=y

Also d,(x,y) = min{l, d(x, y)}
= min{l, d(y, x)}

= d,(y, x)
Letx,y,ze M
Then d(x,z) = min{l, d(x,2)} <1
To prove di(x,2) < d,(x, y)Hd(y, 2)

Ifd,(x, y) =1 ord,(y, z) = 1 the inequality is obvious.

Letd (x,y)<1and d,(y, z) < 1.

Then d,(x, y)+d(y, z) = min{l, d(x, y)}+min{1, d(y, z)}
d(x, y)+d(y, z)

d(x, z)

min{1, d(x, z)}

d,(x, 2)

d,(x, z)

v |

Vv

i

Thus  d,(x, y)+d,(y, 2)

v

o dl 1S a metric on M.

27



Example 6 :
Let M be a non-empty set.
Let d:MxM—-R be a function such that
(1) dix,y)=0iffx=y
(1) d(x, y) £ d(x, z) + d(y, z) for all X, y, z € M.

Prove that d is a metric on M.

Solution :

Put y = x in (ii)

We have d(x, x) £ d(x, z) + d(x, z)
oo 0 < 2d(x, z) (by (1))
oo dx,z) =2 0

To prove dix,y) = d(y, x)

Putting z = x in (ii)

we get d(x,y) < d(x, x) +d{y, x)
i.e., d(x, y) £ d(y, x) [using (1)]
Since this is true forallx,y e M

we have d(y,x) £ d(x,y)

Hence d(x,y) = d(y, x)

Now (ii) can be written as d(x, y) < d(x, z)+d(z, y) which is the triangle
inequality.

& d is a metric on M.

Example 7 :

Solution :

I s

dix,y) = 2 di(xp¥i)2 0

i=1
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Also d(x,y) =0 ,gldi(Xi,Yi) =0
1=

d(x,y)=0foralli=1,2,....,n
x,=y foralli=1,2,...,n

Xy XppereeX) = (Y5 YoreeensYy)
X=Y

8 ¢ 8¢

]

n
> di(x;.i)

=1

Also d(x, y)

£ di(vi.xi)
1=1

= d(y, x)
Letx,y,ze M

n
Then d(x,z) = 2 di(xiszi)
1=
n
< ,El[di(Xi,Yi)+di(Yi,Zi)]
1=
n n
= 2 di(x,yi)+ 2 di(yi»z)
i=1 1=1
= d(x,y) +d(y, 2)
oo d(x, z) £ d(x, y)+d(y, z)

Hence d 1s a metric on M.

Example 8 :

In a metric space (M, d) prove that |d(x, z)-d(y,z)| £ d(x, y) for all x, y, z eM.
Solution :

Letx,y,ze M

We have d(x, z) < d(x, y)+d(y, z)

oo d(x, z)-d(y, z) < dx,y)  eeem-- (D
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Interchanging x and y in (1) we get

d(y, 2)-d(x, 2) < d(y, x) =d(x, )
o d(y, z)-d(x,z) < dx,y9 === (2)
From (1) and (2) we get |d(x, z)-d(y, z)| £ d(x, y)

Exercis’ :
1. If d is a metric on M prove that
(i) 2d is a metric on M
(i1) nd is a metric on M where neN.
2. Let M denote the set of all sequences in R.
€ IXn - Yni

Define d(x, y) = izl n!(1+|xn _YI‘ID

Prove that d is a metric on M.
3. Determine whether d(x,y) = [x—2y| defined on R is a metric or not.
4. Let M, d,), M,, d,),...... (M, d ) be meuric spaces.

Let M = M, xM,x..... XM, . Let x = (X, Xy,....,X) and y = (¥, ¥j5-.--»¥,) b€
elements of M.

Define d(x, y) = max d.(x;, y,)

Prove that d 1s a metric on M.

BOUNDED SETS IN A METRIC SPACE

Definition :

Let (M, d) be a metric space. We say that a subset A of M is bounded if there
exists a positive real number K such that d(x, y) <K for all x, y € A.

Example 1 :
Any finite subset A of a metric space (M, d) is bounded.

Proof :
Let A be any finite subset of M.
If A = ¢ then A is obviously bounded.
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Let A # ¢. Then {d(x, y)/x, y € A} is a finite set of real numbers.
Let K = max {d(x, y)/x, ye A}
Clearly d(x, y) <K forallx,y € A

& A is bounded.

Example 2 :
[0, 1] is a bounded subset of R with usual metric since d(x, y)<1 for all x, y € [0, 1].

More generally any finite interval and any subset of R which is contained in a
finite interval are bounded subsets of R.

Example 3 :

(0, ) is an unbounded subset of R.

Example 4 :

If we consider R with discrete metric then (0, o) is a bounded subset of R, sicne
d(x, y) <1 for all x, y € (0, ).

More generally any subset of a discrete matric space M is a bounded subset of
M.

Example 5 :
In [, let e, = (1,0,..... ,0,...... )

Let A = {e,e,.....c

Then A is a bounded subset of l,.

Proof :

ﬁifnaem
d(e, €)= 0 ifn=m

o d(e,e,) <. foralle,e_ € A

oo A is a bounded set in 12.
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Example 6 :
Let (M, d) be a metric space.

d(x,y)
Define dl(x: Y):: m

We know that (M, d,) is also a metric space.
Also d\(x,y)<l forallx,y e M

Hence (M, d,) is a bounded metric space.

Definition :

Let (M, d) be a metric space. Let AcM. Then the diameter of A, denoted by
d(A), is defined by d(A) = Lu.b. {d(x, y)/x, yeA}.
Note 1 :

A non empty set A is a bounded set iff d(A) is finite.

Note 2 :
Let AL Bc M. Then A c B = d(A) £ d(B)

Example 1 :

The diameter of any non-empty subset in a discrete metric space is 1.

Example 2 :

In R the diameter of any interval is equal to the length of the interval. For
example the diameter of [0, 1] is 1.

Example 3 :

In any metric space, d($) = -0

Exercise :

1. Let (M, d) be a bounded metric space. Define d,(x, y) = 2d(x, y). Prove that
M, d,) is a bounded metric space.

2. Prove that in a metric space any subset of a bounded set is bounded.
3, Find the diameter of the following subset of R with usual metric.

(1) {1,3,5,7,9}, (i) [-3, 5] (1i1) [1, 2}5, 6]
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Open ball (open sphere) in a metric space

Definition :

Let (M, d) be a metric space. Let acM and r be a positive real number. Then the

open ball or the open sphere with centre a and radius r denoted by B,(a, 1) is the
subset of M given by B(a, r) = {xeM/d(a, x)<r}.

When the metric d under consideration is clear we write B(a, r) instead of
B,(a, r).

Note 1 :

B(a, r) is always nonempty since it contains at least its centre a.

Note 2 :
B(a, r) is a bounded set.
For let x, y €eB(a, r)
oo d(a, x) <rand d(a, y) <r
oo d(x, y) < d(x, a)+d(a, y) Sr+r =2r

Example 1 :
Consider R with usual metric.
Let aeR
Then B(a,r) = {xeR/d(a,x)<r}
= {xeR/ja—x|<r}
= {xeR/a-r<x<a+r}

= (a-r, a+tr)

Example 2 :
Consider C with usual metric Let aeC.
Then B(a,r) = {zeC/d(a,z)<r}
= {zeC/ |z—al<r}

This is the interior of the circle with centre a and radius r.
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Example 3 :

In R? with usual metric B(a, 1) is the interior of the circle with centre a and
radius r. |
Example 4 :

Let d be the discrete metric on M.

Mifr>1
Then B(a,r) = {a} if r<1
Proof :
lif x#y
We have dix,y) = 0if x=y

Let acM. Let r be any positive real number.

Case (i) :
Letr>1.
Then B(a, r) = {xeM/d(a, x)<r}
Clearly every point xeM is such that d(a, x)<r.

Hence B(a, r) = M

Case (ii) :
Let r<1. In this case for any point x#a, d(a, x) = 12r
Hence x¢B(a, r) so that B(a, r) = {a}
Mifr>1
S B@ )=y irr<1

Example 5 :
Consider M = [0, 1] with usual metric d(x, y) = |x—y|

Here B(0, %) = {xe[0, 1}/ d(0, x)<¥:}
= {xe[0, 1]/ x{<¥}
= [0, %2)
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Example 6 :
Consider R? with the metric d given by
d((x}, ¥1)s (X3 ¥2)) = X —X,*y, -y,
Then B((0,0), 1) = {(x,y)eR?/ [x-0[+ly-0l<1}

= {(x, y)eR?/ Ixj+y|<1}

This is the interior of the square bounded by the four lines x+y=1, —x+y=1,
x+y=-1 and x-y = 1.

Exercise :

1. In R with usual metric find (i) B(-1, 1), (ii) B(}%2, 1)

2. In R2 with usual metric find (i) B((0, 0), }4), (ii) B((1, 1), 1)
3. In [0, 1] with usual metric find (i) B(1, }2), (ii) B(0, %)

OPEN SETS

Definition :

Let (M, d) be a metric space. Let A be a subset of M. Then A is said to be open
in M if for every xe A there exists a positive real number r such that B(x, r)cA.

Example 1 :

In R with usual metric (0, 1) is an open set.

Proof :
Let xe(0, 1)
Choose r = min{x—0, 1-x} = min{x, 1-x}
Clearly r>0 and B(x, r) = (x-1, x+1r)c(0,1)
oo (0, 1) is open.

Example 2 :

In R with usual metric [0, 1) is not open since no open ball with centre O is
contained [0, 1).

Example 3 :

Consider M=[0, 2) with usual matric. Let A = [0, 1)cM. Then A is open in M.
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Proof :
Let xe[0, 1)
If x = 0, then B(0, 12)= [0, %)cA
If x#0 choose r = min{x, 1—x}
r>0 and B(x, r) = (x-1, x+1)c[0, 1)

o A is open in M.

Example 4 :

Any open interval (a, b) is an open set in R with usual metric.

Proof :
Let xe(a, b)
Let r = min{x-a, b—x}
Then B(x, r)c(a, b)
Hence (a, b) is an open set.

Note : (—, a) and (a, «) are open sets.

Example 5§ :

In R with usual metric the set {0} is not an open set since any open ball wtih
centre 0 is not contained in {0}.

Example 6 :

In R with usual matric any finite non empty subset A of Ris not an open set.

Proof :

Any open ball in R is a bounded open interval which is an infinite subset of R.
Hence it cannot be contained inthe finite subset A. Hence A is not open in R.
Example 7 :

Q is not open in R.

Proof :

Let xeQ. Then for any r>0 the intervl (x~1, x+71) contains both rational and
irrational numbers.
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oo (X—r, x+r) is not a subset of Q.

]

oo Q is not open in R.

Example 8 :

Z is not open in R.

Proof :

Let xeZ. Then for any r>0, the interval (x—r, x+r) is not a subset of Z. Hence Z
is not open in R.

Note : The set of irrational numbers is not open in R.

Theorem :

In any metric space M, (i) ¢ is open, (ii) M is open.

Proof :
(i) Trivially ¢ is an open set.
(11) Let xeM. Clearly for any r>0, B(x, r)cM

Hence M is an open set.

Theorem :

In any metric spac (M, d) each open ball is an open set.

Proof :
Let B(a, r) be an open ball in M.
Let xeB(a, r)
Then d(a, x) <r
oo I—d(a, x)>0
Let r, = r—d(a, x)
We claim that B(x, r,)cB(a, r)
Let y € B(x, fl)
oo d(x, y) <r, =r—d(a, x)
oo d(x, y)+d(a, x)<r e (1)
d(a, y) <d(a, x)*d(x, y) <r  (by (1))
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do d(a, y) <r
co YEB(a, r)
Hence B(x, r,)<B(a, 1)

o%. B(a, r) 1s an open set.

Theorem :

In any metric space the union of any family of open sets is open.

Proof :
Let (M, d) be a metric space.
Let {Ai/iel} be a family of open set in M.

UA;
el

If A = ¢ then A is open
oo Let A # ¢. Let xeA

LetA=i

Then xe A, for some i€l
Since A, is open there exists an open ball B(x, r) such that B(x, r)cA
o B(x, r)cA

Hence A is open.

Theorem k

In any metric space the intersection of a finite number of open sets is open.

Proof :
Let (M, d) be a metric space.
Let A,, A,,.....,A be upen sets inM.
Let A = A;NA,N.......NA "
If A = ¢ then A is open.
oo Let A # ¢. Let xeA
oo X€A. foreachi=1, 2,....... , 1.
Since each A, is an open set there is a positive real number r; such that

B(x,r) ¢ A, e (1)
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Let r = min{r, 1,,..1}

Obviously r is a positive real number and B(x, r)cB(x, r,) for all i=1,2,....,n.

Hence B(x,r) c A foralli=1,2,.....n(by (1)
. n

X B(x,r) < NA]
i=1

o Bx, 1) ¢ A

oo A is open.

Note :

The intersection of an infinite number of open sets ina metric space need not be
open. For example, consider R with usual metric.

1 1
Let A = (—;,;)

Then A is open in R for all n.
(o
But n?n ={0} which is not open in R.
n=

Worked Examples :

Example 1:
Let (M, d) be a metric space. Let xeM show that {x}° is open

Solution :
Let ye {x}°. Then y=x:
o dx,y)=r>90

1
Clearly B(y,if) c {x}°

& {x}€ is open.

Example 2 :

Let (M, d) be a metric space show that every subset of M is open iff {x} is open
for all xeM.
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Solution :

Suppose every subset of M is open. Then obviously {x} is open for all xeM.
Conversely let {x} be open for all xeM.

Let A be any subset of M.
If A = ¢ then A is open.

— U
LetA;&d).ThenA—xei }

By hypothesis {x} is open.

Hence A is open.

Example 3 :

Prove that any open subset of R can be expressed as the union of a countable
number of mutually disjoint open intervals. '
Solution :

Let A be an open subset of R. Let xe A. Then there exists a positive real number
r such that B(x, r) = (x-1, x+r)cA. Thus there exists an open interval I such that xel
and ISA.

Let I, denote the largest open interval such that xeI and I cA.

Clearly xgix =A

Letx,ye A ‘
We claim that I = Iy or Imey =¢
Suppose I N Iy # ¢.

Then I, U I is an open interval contained in A. But I is the largest open
interval such that x € Ix and I cA.

oo I U Iy =1, so that Iy c I

Similarty I < I

oo I, = L. Thus the intervals I, are mutually disjoint.
We claim that the set F = {I /xeA} is countable.

For each IxeF choose a rational number rerx.
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Since the intervals Ix are mutually disjoint Lzly=r.#r,
¢ f:F—>Q defined by f(I.) =r_is 1-1
oo F 1s equivalent to a subset of Q which is countable.

oo F is countable.

EQUIVALENT METRICS

Definition :

Let d and p be the two metrics on M. Then the metrics d and p are said to be
equivalent if the open sets of (M, p) are the open sets of (M, d) and conversely.

Example :

Let (M, d) be a metric space. Define p(x, y) = 2d(x, y). Then d and p are
equivalent metrics.

Solution :

We know that p is a metric on M. We first prove that B,(a, r) = B p(a, 2r).

Let xeBy(a, r)

oo d(a,x) < r
oo 2d(a, x) < 2r
oo p(a, x) < 2r

Hence xeB p(a, 2r)
oo Bya, 1) c B lD(a, 2ry  mmemea- (1)

Let x<D3 p(a, 2r)

oo p(a, X) < 2r
. 1 <

oo 9 p(a, X) T

oo d(a, x) < r.

Hence xeB (a, 1)

& Bp(a, 2r) < By@a,r) e 2)
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% By (1) and (2) we get By(a, 1) =Bp(a,2r)  ---mee- (3)
Let G be any open subset in (M, d).

Let aeG. Hence there exists r>0 such that B (a, NcG

¢ B (a, 2r) G (using (3))

oo G is open in (M, p)

Conversely suppose G is open in (M, p) '

Let aeG. Hence there exists r>0 such that B p(a, rcG
Hence Bd(a,-;-r) c G. (using (3))

Hence G is open in (M, d)

¢% d and p are equivalent metrics.
Example :

d(x,y
Let (M, d) be a metric space. Define p(x, y) = ﬁ‘l‘) Prove that d and p are

X,y
equivalent metrics on M.

Solution :

r
We know that p is a metric on M. We first prove B (a, r)= Bd(a’l_-x-') provided
O<r<l1.

Let xeB p(a, r). Hence p(a, x)<r.

d(a,x)

o0 1+d(a,x) = T

oo d(a,x) < r[l+d(a, x)]

co d(a, x){1-r] < r

& d(a, x) < i—r (since 0<r<1)

r
o Bg| a,—
oo X € d(a 1—1‘)
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o B, (a, 1) < Bd(aa—r—) ------- (1)

T r

Byl a,— d(a,x)<—
Let X € d( 1_r).Hence ( ) -
co d(a, x)(1-1) < r
oo d(a, x) < r[l+d(a, x)]

d(a,x)
°° 1+d(a,x) < T
oo p(aa X) < T
oo x € B(a, r)
T
oo Bd(afljr‘) c B@n (2)
r

% By (1) and (2) we get Bd[a,-l-_—;) = Bp(a, ) I (3)

Let G be open in (M, p)
Let acG. Hence there exists r>0 such that B p(a, NEG.

Without loss of generality we may assume that r<1.

Bd[a,l—i-;) c G (by. (3))

&% G is open in (M, d)
Conversely let G be open in (M, d)

& There exists r>0 such that B,(a, r)<G

r
o Bp(a,:) c G (using (3))

o G is open in (M, p)

Hence d and p are equivalent metrics.

Example :

1
If d and p are metrics onM and if there exists K>1 such that Ep(x, y) <

d(x, y)<Kp(x,y) for all x,yeM. Prove that d and p are equivalent metrics.
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Solution :

Suppose there exists K>1 such that for all x, yeM.

1
T P Y) = d(x, y) < Kp(x,y)

Let G be an open set in (M, d).
Let ae G. Hence there exists r>0 such that B,(a, =G

r
We now claim that Bp[a,EJQG

Let X € Bp[a,%J

r
o p(a, x) < <+
oo Kp(a,x) < r
oo d(a,x) < r (using (1))
oo xeBy(a, 1) < G (by (2))
oo x € G.
Hence Bp(aai) c G

K

oo G is open in (M, p)
Conversely let G be open in (M, p). Let aeG.
There exists r>0 such that B p(al, <G

\ r
We claim Bd[a,'IZJ c G

r
Let X € Bd(asi‘)
d(a, x) < =
K
Kd(a,x) < r
p(a,x) < r (using (1))
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x € B@ncG  (by(3)
x € G.

T
Hence Bd(a,—lz) c G

Hence G is open in (M, d)

& d and p are equivalent metrics.

Exercise :

1.

Determine which of the following subsets of R are open in R with usual metric.

11
G) (1LDVGE 4 () ('?E)U{l} (i) (~<0, a)

(iv) (oo, a] (v) (a, »)

Determine which of the following subsets of C are open in C with usual metric.
(1) {z/1 <|z| =2} (i) {z/ |z} < 1}

(iii) {x+1y/x=0} (iv) {x+iy/y>0}

Prove that any subset of R with usual metric is not an open set in R? with usual
metric.

Prove that the complement of any finite subset of a metric space M is open.

SUBSPACE

Definition :

also a

M, d).

Note :

Let (M, d) be a metric space. Let M, be a non-empty subset of M. Then M, is
metric space with the same metric d. We say that (M,, d) is a subspace of

If M, is a subspace of M a set which is open in M, need not be open in M.

For example, if M=R with usual metric and M,=[0,1] then [0, '2) is open in M,

but not open in M.

Theorem :

Let M be a metric space and M, a subspace of M. Let A;SM,. Then A, is

openin M, iff there exists an open set A in M such tht A; = AnM,.
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Proo

f:
Let M, be a subspace of M. Let acM,. We denote B,(a, r) the open ball in M,

with centre a, radius r.

Then B,(a, 1) = {xeM,/d(a, x)<r}
Also B(a, r) = {xeM/d(a, x)<r}
Hence B/(a,r) = B(a,r)nM;, e (1)
Let A, be an open set in M,.

. U Byix,rix

A, = XA, 1( ( ))

_ U |B{x,r(x))NM;

= 5 [Bertn] -y 1)

= I: U B(x,r(x))}ﬂMl

XeAq

= ANM, where A= (J B(x,r(x)) which is open in M.
XEAI

Conversely let A; = AnM, where A is open in M.

We claim that A, is open in M.

Let xeA,.

oo XeA and xeM,.

Since A is open in M there exists a positive real number r such that B(x, r)cA.
oo M,mB(x, 1) < M;NA

ie., B,(x, 1) < A (using (1))

oo A, is open in M.

Example :
=Rand M, = L —Ol)N A—Ol)——llﬂ[OI]
Let M=R and M, =[O0, 1]. Let A = 'y ) Now Ay =05 = 25 ’
(_11). .
and 575 | 18 open in R.

1
oo [0’5) is open in [0, 1].
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INTERIOR OF A SET

Definition :

Let (M, d) be a metric space. Let ASM. Let xeA. Then x is said to be an

interior point of A if there exists a positive real number r such that B(x, r)CA.

Int A.

The set of all interior points of A is called the interior of A and it is denoted by

Note : Int ASA.

Example :

Consider R with usual metric.

(a) Let A=[0, 1]. Clearly O and 1 are not interior points of A and any point xe(0, 1)
is an interior point of A. Hence Int A = (0, 1)

(b) Let A be a finite subset of R. Then Int A = ¢.

Theorem :
Let (M, d) be a metric space. Let A, BEM.

(1) Aisopeniff A=1Int A
In particular Int ¢ =p and Int M =M

(11)  Int A = union of all open sets contained in A.

(11i) Int A is an open subset of A and if B is any other open set contained in A then
BE<Int A. i.e., Int A is the largest open set contained in A.

(iv) ASB = Int A < Int B.

(V) Int (AnB) =Int AnIntB

(vi) Int(AUB)o>Int AU IntB

Proof :

(1) Follows from the definition of open set.

(11) Let G = {B/B is an open subset of A}

To prove thatInt A=G
Letx € Int A

oo There exists a positive real number r such that B(x, r)SA
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Thus B(x, r) is an open set contained in A.

oo B(x, )G

oo Xe@G

¢ Int AcG (1)
Let xeG

Then there exists an open set B such that xeB and BSA

Since B is open and xeB there exists a positive real number such that

B(x, r)SBSA

(iii)

(iv)

(v)

oo X 1§ an interior point of A

Hence GEIntA (2)
From (1) and (2), we get G = Int A.

Since union of any collection of open sets is open (ii) = Int A is an open set.
Trivially Int ACA

Let B be any open set contained in A.

Then BEG =Int A (by (2))

oo Int A 1s the largest open set contained in A.

Letx € Int A

oo There exists a real number r>0 such that B(x, r)cA

But ASB. Hence B(x, r)&B

oo X € Int B. Hence Int A € Int B

ANBEA

oo Int(ANB) € Int A (by (iv))

Similarly Int (ANB) € Int B

oo Int (A B)SIntAmnItB e (D)
IntAS A; ntBS B

Hence Int A nInt B ¢ AnB

Thus Int A n Int B is an open set contained in AnB. But Int(AnB) is the

largest open set contained in ANB.

oo Int A Int B € InttAB)y (2)
From (1) and (2) we get Int (AnB) = Int A N Int B.
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(vi) ASAUB
oo Int A & Int(AUB) (by (iv))
Similarly Int B € Int (AUB)
oo Int A U Int B € Int (AUB)
Note :

Int (AnB) need not be equal to Int A U Int B. For example, in R with usual
metric consider.

A =(0,2] and B = (2, 3)

Then AUB = (0, B). Clearly Int (AUB) = (0, 3)
But Int A U Int B = (0, 2)u(2, 3) = (0, 3)-{2}
oo Int (AUB) # Int A U Int B

CLOSED SETS

Definition :

Let (M, d) be a metric space. Let AcM. Then A is said to be closed in M if the
complement of A is open in M. |

Example 1 :

In R with usual metric any closed interval [a, b] is closed set.

Proof :
[a, b]¢ = R—[a, b] = (-0, a)(b, )
Also (—x, a) and (b, ) are open in R.
i.e., [a, b]° is open in R.

oo [a, b] 1s closed in R.

Example 2 :

In R with usual metric [a, b) is neither closed nor open.

Proof :
[a, b) is not open in R since a is not an interior point of [a, b).
[a, b)¢ = R—[a, b) = (-, a)U[b, ») and this set is not open since b is not an

interior point.
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oo [a, b) is not closed in R.

Hence [a, b) is neither open nor closed in R.

Example 3 :

Z 1s closed.
Proof :
sC— U (n, n+1)
n=—oc

The open interval (n, n+1) is open and union of open sets is open.

Z¢ is open. Hence Z is closed.

Example 4 :

Q is not closed in R.

Proof :

QC = the set of irrationals which is not open in R.

o Q is not closed in R.

Example 5 :

In R with usual metric every singleton set is closed.

Proof :
Let aeR
Then {a}€ = R—{a} = (-0, a) U (a, )
Since (—0, a) and (a, ) are both cpen sets, (—w0, a)U(a, ) is open.

o {a}C is open in R. Hence {a} is closed in R.

Definition :

Let (M, d) be a metric space. Let acM. Let r be any positive real number. Then
the closed ball or the closed sphere with centre a and radius denoted by Bgla, r] is

defined by B [a, r] = {xeM/d(a, x)<r}.

When the metric d under consideration is clear we write B[a, r] instead of
B [a,r].
d b
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Example 1 :

In R with usual metric Bla, r}=[a-r. a+1]

Example 2 :

In R? with usual metric let.

a = (a,, a,)eR?

Then

Hence B[a, r] is the set of all points which lie within and on the circumference

B(a, r]

{(x, y)eR? | d((a,,a,), (x, y))<r}

{(x,y)eR? | (x-a,)*+(y-a,)’<r%}

of the circle with centre a and radius r.

Theorem :

In any metric space every closed ball is a closed set.

Proof :

Let (M, d) be a metric space.

Let Bla, r] be a closed ball in M.

Case (i) :

Suppose Bla, r]¢ = ¢.

& Bl[a, r]¢ is open and hence Bfa, r] is closed.

Case (ii) @

Suppose Bla, r]€
Let X
oo X
oo d(a, x)
oo d(a, x)-r
Let I,
We claim that B(x, r,)
Let y
Then d(x, y)<r,

v V. m mn #

m n

Bla, r]©
Bla, r]

d(a, x)-r
Bl[a, r]°€
B(x, r))
d(a, x)-r
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oo d(a,x) > dx,y)*tr T (1)

d(a, x) < d(a, y)+d(y, X)
oo d(a,y) 2 d(a, x)-d(y, x)
> d(x, y)+r-d(y, x) (by (1))
=T
Thus d(a,y) > r
N y ¢ Ba,r]
Hence y € Bja,r]¢
% B(x,r,) < Bla, r]¢

& Bla, r]€ is open in M

% B[a, r] is closed in M.

Theorem :

In any metric space M, (i) ¢ is closed. (ii) M is closed.

Proof :

Since MC = ¢ is open, M is closed. Similarly ¢¢ = M is open and hence is ¢
closed.

Note : In any metric space M, ¢ and M are both open and closed.

Theorem :

In any metric space arbitrary intersection of closed sets is closed.

Proof :

Let (M, d) be a metric space.

Let {Ai/ieI} be a collection of closed sets.

We claim that iQIA iis closed.

C

We have ( ﬂAi) = UAiC (by De Morgan's law)
i€l i€l

Since A, is closed A€ is open.

C
H UA;~ ; .
ence 1 is open
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C
o ( ﬂAi) is open.
1€l

o ﬂAl .
o . 1 '8 closed.

Theorem :

In any metric space the union of a finite number of closed sets is closed.

Proof :
Let (M, d) be a metric space.
Let A, A,,....,A_be closed sets in M.
By De-Morgan's law (A ;UA,U......UA )¢ = A “NA Cn.....nA ©
Since each A, is closed A is open
Hence A “NA,°N.....NA C is open
o (A;UAUA UL......... UA )€ is open.
Hence A LA, L........ VA is closed.
Note : The union of an infinite collection of closed sets need not be closed.

For example, consider R with usual metric.

1
Let A = [—, 1] wheren=1, 2, 3,.......
n
oC o |1 1 1
ST £ Y £ £
Then e n It [ {1}u > U 3 U
= (0, 1] which is not closed in R.
C
& UAp s not closed
n=1

Theorem :

Let M be a metric space and M, be a subspace of M. Let F,cM,. Then F, is
closed in M, iff there exists a set F which is closed in M such that F,=FnM,.
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Proof :
. Let F, be closed in M.

oo M,~F, is open in M,.

S M,-F, = AnM, where A is open in M.
F = M-(AnM))
= M,;-A =AM,

Also since A is open in M, A€ is closed in M.
& F, = FnM, where F = A€ is closed in M.
Conversely, there exists a set F which is closed in M such that F, = FAM,

To prove That F, is closed in M,.
F, = FnM, where F is closed in M

Let F = A€

oo F, = FnM,
=AM,
= M,NAC

It

M,-A = M,~(AnM))
Since A€ is closed in M, A is open in M.
éo, F, = M,~(AnM,) = M-F, = AnM, which is open in M,.

M,-F, is open in M, = F, is closed in M,.
Exercise :

1. Prove that any finite subset of a metric space is closed.

2. Let M, be a subspace of' a metric space M. Prove that every closed set A; of M,
is closed in M iff M, itself is closed in M.

3. Let M, be a subspace of a metric space M. Prove that every closed set A, of M,
is closed in M iff M, itself is closed in M.

Closure ;

Let (M, d) be a metric space. Let AcM. Consider the collection of all closed
sets which contain A. This collection is non empty since at least M is a member of this
collection.
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Definition :

Let A be a subset of metric space (M, d). The closure of A denoted by A is

defined to be the intersection of all closed sets which contain A. Thus A = U{B/B is
closed in M and AcB}.

Note : Since intersection of any collection of closed sets is closed A is a closed set.

Further ADA. Also if B is any clsoed set containing A then AcB. Thus A is the
smallest closed set containing A.

Theorem :

Aisclosed iff A= A

Proof :
Suppose A = A

Since A is closed A is closed. Conversely, suppose A is closed. Then the
smallest closed set contains A is A itself.

oo A= X
Note :
In particular (i) ¢ =¢ (@ M=M (iii))A=A

Theorem :

Let (M, d) be a metric space. Let A, Bc M

Then (i) AcB = XcB

(ii) ' AUB - AUB

(iii) ANB < ANB
Proof :

(1) Let AcB
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(1) We have A ¢ AUB
% AcAUB (by (1))
Similarly B ¢ AUB
s AUBc AUB e 1)

A is a closed set containing A and B is a closed set containing B.

& AUB is a closed set containing AUB
But AUB is the smallest closed set containing AuUB
&% AUBcAUB e (2)
From (1) and (2) we get AUB = AUB
(iii) Wehave ANBc A
AUBc A (by (i)
. Similarly, ANB < B

& ANB < ANB

Note :
AN B need not be equal to ANB.
For example in R with usual matric, take A=(0, 1) and B=(1, 2)
Then AnNB = ¢

oo ANB = 6 =
But AyB =1[0, 1]1n[1, 2] = {1}
& ANB = ANB

LIMIT POINT

Definition :

Let (M, d) be a metric space. Let AcM. Let xeM. Then x 1s called a limit point
or a cluster point or an accumulation point of A if every open ball with centre x
contains at least one point of A differetn from x.

i.e., B(x, )(A—-{x}) = ¢ forall r > 0.
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The set of all limit points of A is called the derived set of A and is denoted by
D(A).

Note : x is not a limit point of A iff there exists an open ball B(x, r) such that
B(x, r)Nn(A—{x})=¢.
Example 1 :

Consider R with usual metric.

LetA=[0,1)

Any open ball with centre 0 is of the form (-r, r) which contains a point of
[0, 1) other than 0.

Hence 0 is a limit point of {0,1 )
Similarly 1 is a limit point of [0, 1)
: o : 1,1 3 5

2 is not a limit point of A, since 2‘-2‘,2+-2* N[o,1) = 53 N[0,1) =¢

In this case all points of {0, 1] are limit points of [0, 1) and no other point is a
limit point. Hence D[0, 1) = [0, 1]
Example 2 :

Z has no limit point.

Let x be any real number.

_ _ 1 1 1
If x is an integer, then B(X,*) = (X—*, X+—) does not contain any integer

2 2 2
other than x. Hence x is not a limit point of Z.
If x is not an integer, let n be the integer which is closert to x.
Cho~ze 1 such that O<r<|x-—n|
Then B(x, r) = (x—1, x+r) contains no integer.
Hence x is not a limit point of Z.
Since X is arbitrary Z has no limit point.

oo D(Z) = ¢.
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Example 3 :
Let (M, d) be a discrete metric space. Let AcM. Let xeM

Then B(x,%)n(A ~{xh)={xIn(a-{x})=4¢

c% X is not a limit point of A
Since xeM is arbitrary A has no limit point.
o D(A)=¢

Thus any subset of a discrete metric space has no limit point.

Theorem :
Let (M, d) be a metric space. Let AcM. Then x is a limit point of A iff each

open ball with centre x contains an infinite number of points of A.
Proof :

Let x be a limit piont of A.

Suppose an open ball B(x, r) contains only a finite number of points of A.
Let B(x, DN(A—-{x}) = {X|, Xpeeeee0rX,

Let r;, = min{d(x, x,}/i = 1, 2,......,n}

Since x # X, d(x, x))>0 for alli=1, 2,.....n and hence r, > 0

Also B(x, r) )N(A-{x}) = ¢

o% X is not a limit point of A which is a contradiction.

Hence every opén ball with centre x contains infinite number of points of A.

The converse is obvious.

Corollary :

Any finite subset of a metric space has no limit point.

Proof :
Let A be a finite subset of M.

Suppose A has limit point say x. Then B(x, r) contains infinite number of points
of A. This is a contradiction since A is finite.
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Theorem :

Let M be a metric space and AcM. Then A = AUD(A)

Proof :
Let xe AUD(A). We shall prove that xe A
Suppose xg A
% xeM-A and since A is closed M—A is open.
< There exists an open ball B(x, r)cM—-A
& B(x, DNA =¢
& B(Xx,r )NA= ¢ (since AcA)
oo X& AUD(A) which is a contradiction
& XxeA
& AUD(A)cA e (1)
Now let xe A. To prove xe AUD(A)
If xeA, Clearly xe AUD(A)
Suppose x¢ A. We claim that xeD(A)
Suppose xgD(A). Then there exists an open ball B(x, r) such that B(x, r)nA=¢.
o> B(X, r)°2A and B(x, r)€ is closed.
But A is the smallest closed set containing A.
& A < B(x, )¢
But xe A and x¢B(x, r)¢ which is a countradiction
Hence xeD(A)
oo XeAUD(A)
A cAUDA) (2)

From (1) and (2) we get A = AUD(A)

Corollary 1 :

A is closed iff A contains all its limit points.
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Corollary 2 :
xeA < B(x, r)NA = ¢ for all r>0.

DENSE SETS

Definition :

1) A subset A of a metric space M is said to be dense in M or everywhere dense
if A =M.

2) A metric space M is said to be separable if there exists a countable dense subset
in M.

Example 1 :
Let M be a metric space. Trivially, M is dense in M.

Hence any countable metric space is separable.

Example 2 :
Let M be a discrete metric space.

Let AcM and A=M
Since A is closed, A = A

A 1s not dense.

Hence any uncountable discrete metric space is not separable.

Theorem :
Let M be a metric space and AcM. Then the following are equivalent.
(1) A is dense in M
(i1)  The only closed set which contains A is M
(ii1) The only open set disjoint from A is ¢
(iv) A intersects every non-empty open set

(v) A intersects every open ball

Proof :
(i) = (1)
Suppose A is dense in M
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ThenA =M  mmmmme (D)
Let FcM be any closed set containing A.

Since A is the smallest closed set containing A, we have AcCF

Hence McF (by (1))

o M=F

& The only closed set which contain A is M.

(ii) = (iii) |

Suppose (iii) is not true

Then there exists a non empty open set B such that BNA = ¢

& BC€ is a closed set and B¢ A

Further, since B#¢ we have B®+M which is a contradiction to (ii)

Hence (i1) = (iii)

Obviously (iii) = (iv)

(iv) = (v), since every open ball is an open set.

(v) = (1) .

Let xeM. Suppose every open ball B(x, r) intersects A.

Then by corolary (2) x€A.

& McA

But trivially AcM

o A =M
%o A is dense in M.

Exercise : .

1. Prove that any finite subset of a metric space is closed.

2. Prove that the set of all limit points of a subset of a metric space is closed.

3. If G is an open set and GNA=¢ prove that GNA = ¢

4, Prove that in a metric space M, the only set which is both closed and dense is

M.
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REAL ANALYSIS UNIT -2

COMPLETE METRIC SPACE

COMPLETENESS

Definition :

in M. Let xeM. We say that (x_) converges to x if given >0 there exists a positive
integer v, such that d(x_, x)<e for all n>n,. Also x is called a limit of (x ). If (x)

converges tu x we write Lt x; =X or (x )—X.
n—oc

Note 1 : (x)—>x iff for each open ball B(x, €) with centre x there exists a positive
integer n;, such that x_ eB(x, €) for all n=n,. Thus the open ball B(x, €) contains all but

a finite number of terms of the sequence.

Note 2 : (x_ )—x iff the sequence of real numbers (d (x,, x))—0.

Theorem 1 :

For a convergent sequences (x_) the limit is unique.

Proof :

Suppose (x_ )—x and (x_)—>y.

‘ 1
Let €>0 be given. Then there exist positive integers n, and n, such that d(x_, x)<- e

2
1 ..

for all n2n, and d(x, y)<5 € for all n>n,. Let m be a positive integer such that m2n,,
n,.

Then d(x, y) < d(x, x )+d(x_,y)

< Lesleo
22 €
oo : dx,y) < €

Since €>0 is arbitrary, d(x, y) =0

o°oX=y
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Theorem 2 :

(1) Let M be a metric space and AcM. Then (i) xe A iff there exists a sequence
(x,) in A such that (x,)—x.

(ii)  x is a limit point of A iff there exists a sequence (x,) of distinct points in A
such that (x )—x.

Proof :
Let xe A |
Then xe AUD(A)
co XeA or xeD(A)

If xe A, then the constant sequence X, X, ....., iS a sequence in A converging to Xx.

1
If xeD(A) then the open ball B(X,;) contains infinite number of points of A.

oo (X,) is a sequence of distinct points in A.
1
Also d(x_, x) < o for all n.

N Lt d(Xn,X) =0
n—oc

oo (Xn) — X

Conversely, suppose there exists a sequence (x_) in A such that (x_)—>x. Then
for any r>0 there exists a positive integer n, such that d(x,, x)<r for all n=n,,

& x €B(x,r) forallnzn, s (1)
do B(x, )NA#d

o XEA

Further if (x ) is a sequence of distinct points B(x,r)NA is infinite.

e xeD(A) |

o% X 1s a limit point of A.
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Definition :

Let (M, d) be metric space. Let (x,) be a sequence of points inM. (x,) 1s said to
be a cauchy sequence in M if given €>0 there exists a positive integer n, such that

d(x_, x )<e for all m, n2n,,

Theorem 3 :

Let (M, d) be a metric space. Then any convergent sequence in M is a Cauchy
sequence.

Proof :
Let (x,) be a convergent sequence in M converging to xeM.

Let €>0 be given.

1
Then there exists a positive integer n, such that d(x_, x)<-£ € for all n2n,,

oo d(xn, xm) < d(x,, x)*+d(x, x)
1
< 5€+5€ for all n, m 2 n,
= € forallm,n2n,

Thus d(x, x,) < forallm,n2n,

¢ (x_) is a Cauchy sequence.

Note :
The converse of the above theorem is not true.

For example, consider the metric space (0, 1] with usual metric.

1
(;) is a Cauchy sequence in (0, 1]. But this sequence does not converge to any

point in (0, 1].

Definition :

A metric space M is said to be complete if every Cauchy sequence in M
converges to a point in M.

Example 1 :

R with usual metric is complete.
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Example 2 :

,;;{Z with usual metric is complete.

Proof :
Let (Z,) be a Cauchy sequence in C.
Let Z =x +iy wherex ,y eR
We claim that (x) and (y_) are Cauchy sequences in R.

Let €>0 be given.

Since (Z,) is a Cauchy sequence, there exists a positive integer n, such that
|Z ~Z |<e for all n, m 2 n,,

Now |x X | <|Z-Z |and |y -y |<|Z-Z_|
Hence |x —x_|<€ for all n, m > n; and
ly,~Y,I<€ for alln, m > n,
o (x,) and (y,) are Cauchy sequences in R.
Since R is complete, there exist x, y € R such that (x_)—x and (y )—>y
Let Z = x+1y. We claim that (Z )—>Z
We have ‘ 1Z —Z| |(x Fiy )—(x+iy)|
= %, X)+i(y,y)l
< KexPyey o e (1)

Let €>0 be given.

Since (x )—>x and (y,)—>Yy there exist positive integers n, and n, such that

x —x| < < e forallnn, and

2
vyl < 5 € for all n2n,
Let n, = max{n,, n,}

1 1
From (1) we get |Z -Z| < 5 €+-2- € = ¢ for all n2n,

oo (Z n) - Z

o C is complete
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Example 3 :

Any discrete metric space is complete.

Proof :

Let (M, d) be a discrete metric space. Let (x_) be a Cauchy sequence in M. Then

: e 1
there exists a positive integer n, such that d(x_, xm)<5 for all n,m>n,

Since d is the discrete metric distance between any two points is either O or 1.
oo d(x, x_ ) = 0 for all n, m2n,

& X, =X, = x(say) for all n>n,

oo d(x,, x) = 0 for all n=n,

oo (X )—>X.

Hence M is complete.

Example 4 :

V2
R" with usual metric is complete.

Proof :
Let (xp) be a Cauchy sequence in R".

Letx =(X_,X_,...... ,X_ ) Let €>0 be given.
J P, P,

Then there exists a positive integer n, such that d(x,, x )<e for all p, q 2 n,

n 2 1/2
oo [kil(xpk —qu) J <€ forallp, q 2 n,

n 2
oo kEI(XPk “qu) <& for all p, q = n,

oo Foreachk =1,2,...... ,n we have [x_ —x_ |<e for all p, q = n,
P %
oo (xp ) is a Cauchy sequence in R for each k = 1,2,.....,n.
k ,
Since R is complete, there exists y, €R such that (xp )Y
k

Let y = (y;, ¥35-----»¥,). We claim that (xp)—>y.
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Since (xp )->y, there exists a positive integer m, such that
k

€
|xpk—yk| < '\/—; for all p2m,.

Let m,

1]
5
£
E
B
i

Then d(x,, ¥)

il
™
—_——
>
o
w
<
Z_
)
—
=
o

2
€
< n(ﬁ) ] for all p 2 m,
L

= € forallp2m,
Thus d(xp, y) < e forallp2m,

oo (xp)—>y. Hence R"® is complete.

Example 5 :

I, is complete.

Proof :
Let (x,) be a cauchy sequence in /,.
Let X, = {xpl, X

Let €>0 be given. Then there exists a positive integer n, such that d(x, x )<e
for all p, q 2 n,,

212

C

i.e., [ Zl(xpn-an) ] * <€ for all p, q = n,
n=

2

oC

oo Zl(xpn ‘an) <& forallp,gq=2n, = -em-e- (1)
n=

For eachn = 1,2,3,....... We have

Ix —x_|<e for all p, q 2 n,,
P, 9, 0

oo (1-:p ) is a Cauchy sequence in R for each n. Since R is complete, there exists
n
* y,€R such that (xpn)—>yn -------- (2)

Let y = (¥)> YysereeresYpoereeers )
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We claim that ye/, and (x,)—>Yy

For any fixed positive integer m, we have

2
m .
nEl(xpn - an) < e?forallp,q=n, (using (1))

Fixing q and allowing p—0 in this finite sum we get

m 2 .
Zl(yn —an) < e?forallq=n, (using (2))
n=

Since this is true for every positive integer m

oC 2
Zl(yn —an) < e?forallq=n, = s-=-e-e-- 3)
n=
1/2 - 9 1/2
Now [ozcly Iz:l == OZC Yn —Xq, T X ' ]
n = n

nxq, | +| £ |,
1 “n n=1 om

IA
3
I M8

(by Minkowski's inequailty)

o 2 1/2
< e+[ 5 lan’ ] for all g=n, (by (3))

n=1
o« 5l/2
% Since x, € I, we have nzllanl converges.
oo y € 12
Also (3) gives d(y, x q) < € for all g2n,
oo (Xp)—)y

oo [, 1s complete.

Note :
A subspace of a complete metric space need not be complete.
For example R with usual metric is complete.

But the subspace (0,1] is not complete.
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Theorem 4 :

A subset A of a complete metric space M is complete iff A is closed.

Proof :

Suppose A is complete.

To prove that A is closed, we shall prove that A contains all its limit points.
Let x be a limit point of A.

Then there exists a sequence (x_) in A such that (x )X (by theorem (2))

Since A is complete, xe A

o A contains all its limit points.
Hence A is closed.

. "Conversely, let A be a closed subset of M. Let (x,) be a Cauchy sequence in A.
Then (x,) is a Cauchy sequence in M also and since M is complete there exists xeM
such that (x_)—>x. Thus (x,) is a sequence in A converging to X.

& xe€A (by theorem (2))

Since A is closed A = A

o XEA

Thus every Cauchy sequence (x ) in A
converges to a point in A.

o A is complete.

Note 1:

[0, 1] with usual metric is complete since it is a closed subset of the complete
metric space R.

Note 2 :
Consider Q.

Since Q = R, Q is not a closed subset of R. Hence Q is not complete.

Problem :

Let A, B be subsets of R. Prove that AxB = AxB
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Solution :

Let(x,y) € AxB

& There exists a sequence ((x,, y,))€AxB such that ((x, Y (x, ¥) (by
theorem (2))

oo (x,)—x and (y )—>y
Also (x,) is a sequence in A and (y, ) is a sequence in B.
& XeA and ye B (by theorem (2))

& (X,y) € AxB

ocAxBcAxB  emmemeee (1)
Now let (x,y) € AxB
& xeA and yeB

¢ There exists a sequence (x ) in A and a sequence (y,) in B such that (x )—x
and (y_ )—>y

ds ((x,, y,)) is a sequence in AxB which converges to (X, y)
co (X, VVEA B
o AxBg AxB -------- (2)

% By (1) and (2) we get AxB=AxB.

Exercise :
1. Prove that Ip is a complete metric space for any p=1.

2. Determine which of the following subsets of R are complete.
11
@ (ab), (@) @bl, (i) (1’5’3’ ------- ) @v) [0, 1]V[2, 3]

3. Prove that R" with d,(x,y) = max{|x; - yj|/i=1,2,....n} is complete.

CANTOR'S INTERSECTION THEOREM
Theorem 5 :

Let M be a metric space. M is complete iff for every sequence (F ) of non-
empty closed subsets of M such that
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) oF,D.........and (d(F,))—0

oC
nfn is non empty.
n=

Proof :

Let M be a complete metric space. Let (F,) be a sequence of closed subsets of
M such that

and (d(F_))—0 . e U

oC
We claim that ﬂfn * ¢
Nn=

For each positive integer n, choose a point X, €F,.
By (1), X, X410 Xpipseeeen all liein F_

i.e., x, €F_for all m2n e )

Since (d(F ))—>0, given €>0, there exists a positive integer n,, such .
d(F )<e for all n>n,,.

In particular d(Fn) < e ~eem—e-(4)

o d(x,y)< e forallx,y e F_ |

X, € Fﬂ0 for all m2n,, (by (3))

oo mnzn, = X_, xnan0
= d(x,, x,) <€ (by (4))

o2 (x,) is a Cauchy sequence in M.

Since M is complete there exists a point xeM such that (x, )—x

We claim that x € NE,
n=]

Now for any positive integer n, Xpr Xoypseeeees is a sequence in F_ and this
sequence converges to X. '

s xeF, (by theorem (2))
But F;, is closed and hence F, =F

n

oo X€E Fn
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ot
Hence NFn =9 .

n=1

To prove the converse let, (x ) be any Cauchy sequence in M.

Let F, = {X, XpeerensX 5eene }
F, = {Xg XgpeeeensXppeenns H
F o o= {Xp Xpppseeeerereeres }

& (F,) is a decreasing sequence of closed sets. Since (x) is a Cauchy sequence
given >0 there exists a positive integer n,, such that d(x_, x )<e for all n, m 2 n,,

&% For any integer n2n,, the distance between any two points of F_ is less than €.
¢ d(F)) < € foralln 2 n,
But d(F,) = d(Fy,)

& d(F;) <eforalnzn, e (5)

& (d(Fy)) - 0

QC
Hence Nkn # ¢

n=1

o op—
Let X€ nfn. Then x and x_eF,
n=

. o0 d(kn’ X) < d(E)
& d(x,, x) < € for all n2n; (by (5))
oo (Xn) —> X

oo M is complete.



Note 1 :

oC
In the above theorem ann contains exactly one point.
n=

aoC
For suppose ﬂfn contains two distint points x and y.
n=

Then d(F ) = d(x, y) for all n.

oo (d(F,)) does not tend to zero which is a contradiction.

o«
& ﬂfn contains exactly one point.
n=

Note 2 :

ot
In the above theorem nfn may be empty if each F_ is not closed.
n=

1
For example, consider F_ = (0, ;) in R.

Clearly F OF o........ oF o....... and

(d(F))) = (%)—)O as n—oo

oC
But NE = ¢.

n=1

Note 3 :

aC
In this theorem nfn may be empty if the hypothesis (d(F,))—0 is omitted.
n=

For example, consider F, = [n, ») in R. Clearly (F) is a sequence of closed sets
and

Here d(F) = o for all n and hence the hypothesis (d(F_))—0 is not true.
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BAIRE'S CATEGORY THEOREM
Definition :

A subset A of a metric space is said to be nowhere dense in M if Int A = ¢.

Definition :

A subset A of a metric space M is said to be of first categery in M if A can be
expressed as a countable union of nowhere dense sets.

A set which is not of first category is said to be of second category.

oC
Note : If A is of first category then A= UFn where E_ is nowhere dense subsets in M.
n=

Exampile 1 :

In R with usual metric.

11 1 ,
A= 1,"2",“5, ------ SRR is nowhere dense.

Clearly Int A = ¢

Example 2 :
In any discrete metric space M, any non-empty subset A is not nowhere dense.
For, in a discrete metric space every subset is both open and closed.
GdA=IntA=IntA=A
HIntA #¢

e A is not newhere dense.

Example 3 :
In R with usual metric any finite subset A is nowhere dense.
For, let A be any finite subset of R.
ThenA is closed and hence A = A

Also since A is finite, no point of A is an interior piont of A.
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o°oIntX=IntA=(|)

& A is nowhere dense.

Example 4 :
Consider R with usual metric. Any singleton set {x} is nowhere dense.

Any countable subset of R being a countable union of singleton sets is of first
category.

In particular Q is of first category.

Note :

If A and B are sets of first category in a metric space M then AUB is also of
first category.

w_ .
For, since A and B are of first category in M we have A = UPn and B = U{In
n= n=

where E_ and Hn are nowhere dense subsets in M.
S AUB is a countable union of nowhere dense subsets of M.

Hence AUB is of first category.

Theorem 6 : (Baire's Category Theorem) :

Any complete metric space is of second category.

Proof :

Let M be a complete metric space. We claim that M is not of first category Let
(A,) be a sequence of nowhere dense sets in M.

We claim that UAn =M

n=1

Since M is open and A, is nowhere dense, there exists an open ball say B, of
radius less than 1 such that B, is disjoint from A,.

i N A
Let F, denote the concentric closed ball whose radius is E times that of B,.
Now Int F, is open and A, is nowhere dense.

& Int F, contains an open ball B, of radius less than 5 such that B, is disjoint

from Az-
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1 .
Let F, be the concentric closed ball whose radius is ) times that of B,. Now

Int F, is open and A, is nowhere dense.

1 C e
&% Int F, contains an open ball B, of radius less than 1 such that B, is disjoint
from A,.
Proceeding like this we get a sequence of non-empty closed balls F such that

1
F 2F,0oF;o.......... oF o........ and d(Fn)<'2';

Hence (d(F_))—0 as n—0

Since M is complete, by Cantor's intersection theorem there exists a point x 1n

cC
M such that X € ﬂfn
n=

Also each F_ is disjoint from A .

Hence xg A for all n.

oC
oo X¢& UAI‘I
n=1

oC
oo Uf‘n # M Hence M is of second category.
n=

Corollary :
R is of second category.

Note :

The converse of the above theorem is not true. i.e., A metric space which is of
second category need not be complete.

For example, consider M = R—Q, the space of irrational numbers.
We know that Q is of first category.

Suppose M is of first category. Then MUQ=R is also of first category which is a
contradiction. :

& M is of second category.

Also M is not a closed subspace of R and hence M is not complete.
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SOLVED PROBLEMS :
Problem 1 :

Prove that any nonempty open interval (a, b) in R is of second category.
Solution :

Let (a, b) be a nonempty open interval in R.

Suppose (a, b) is of first category.

Now, [a, b] = (a, b)u{a}u{b}

oo [a, blis of first category.

But [a, b] i1s a complete metric space and hence is of second category which is a
contradiction.

oo (a, b) is of second category.

Problem 2 :
Prove that a closed set A in a metric space M is nowhere dense iff A€ is
everywhere dense.
Solution :
Let A be a closed set in M.
A=A (1)
Suppose A is nowhere dense in M
o Int A =¢
SIntA=¢ (by (1) . )

Now we claim that AC =M

Obviously ACeMm (3)
Let xeM. Let G be any open set such that xe G

Since Int A = ¢ we have GgzA

& GNAC#

co X €A

do McA™ e 4)
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oo By (3) and (4) we have M = F
o» A€ is everywhere dense in M.

Conversely let A® bt everywhere dense in M.

& AC =M
We claim that Int A = ¢
Let G be any nonempty open set in M.
Since A = M we have GNAC%¢
- oo GZA
oo The only open set which is contained in A is the empty set.
o IntA=¢.% Int A =¢ (by (1)

oo A i1s nowhere dense in M.

Exercise :

1. Prove that a subset of a nowhere dense set is a nowhere dense set.

2. Prove that the union of a countable number of sets which are of first categoryv 1s

again of first category.

3. Prove that any complete metric space M in which every finite subset is nowhere
dense is uncountable. Deduce that R is uncountable.

(Hint. If M is countable then M is of first category).

78



REAL ANALYSIS UNIT -3

CONTINUITY

The definition of continuity for real valued functions depends on the usual
metric of the real line. Hence the concept of continuity can be extended for functions
defined from one metric space to another in a natural way.

Definition :

Let (M,, d,) and (M,, d,) be metric spaces. Let f2M,—>M, be a function. Let
aeM, and /eM,. The function f is said to have limit as x—a if given €>0, there exists
8>0 such that 0<d,(x, 3)<é = d,(f(x), DH<e.

We write -t f(x) =]
X—>a

~ Definition :

Let (M,, d,) and (M,, d,) be two metric spaces. Lét aeMl.{A function
f: M;—M, is said to be continuous at a if given €>0, there exists >0 such that
d,(x, a)<8 = d,(f(x)), f(a))<e.

f is said to be continuous if it is continuous at every point of M.

Note 1 : fis continuous at a iff Lt f(x) = f(a).
X—d

Note 2 : The condition d,(x, a)<6 = d,(f(x), f{a))<e can be rewritten as (i) xeB(a, 3)
= f(x)eB({(a),€) or (ii) f(B(a, 8)) < B(f(a), €).

Example 1 :

Let (M,, d,) and (M,, d,) be two metric spaces. Then any constant function.
f:M,—M, is continuous.

Proof :
Let £:M,—M, be given by f(x) = a where aeM, is a fixed elemeﬁt._
Let xeM, and €>0 be given.
Then for any >0, {(B(x, d)) = {a}< B(a, )
o% f is continuous at x.

Since xeM, is arbitrary, f is continuous.
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Example 2 :

Let (M, d)) be a discrete metric space and let (M,, d,) be any metric space.
Then any function f:M,—M, is continuous. i.e., any function whose domain is a

discrete metric space is continuous.

Proof :
Let xeM,. Let €>0 be given.
Since M, is discrete for any <1, B(x, 8)={x}
o f(B(x, 8)) = {f(x)}cB(f(x), €)

o fis continuous at x.

Theorem 1 :
Let (M,, d)) and (M,, d,) be two metric spaces.

Let aeM,. A function f:M,—M, is continuous at a iff (x )—a = (f(x,))—>1(a).

Proof :
Suppose f is continuous at a.
Let (x_) be a sequence in M, such that (x )—a
We claim that (f(x,))—f(a).
Let €>0 be given. By definition of continuity there exists >0 such that
d,(x, a)<d = dy(f(x), fla)y<ce e (D)
Since (x_)—>a there exists a positive integer n, such that d,(x_, a)<6 for all n2n,,
& d,(f(x,), f(a))<e for all n2n, (by (1)) |
& (f(xn))—f(a)
Conversely, suppose (x. ) = a = (f(x,))—>f(2)
We claim that f is continuous at a.
Suppose f is not continuous at a.
Then there exists an €>0 such that for all >0, f(B(a, 3)) & B(f(a), €)
In particular f(B (a, 1/n)) & B(f(a), €).
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Choose x,, such that x €B(a, 1/n) and f(x_)zB(f(a), €).
¢o d,(x,, a)<l/n and d,(f(x ), f(a))2e.

o (x,)—>a and (f(x,)) does not converge to f(a) which is a contradiction to the
hypothesis.

o f is continuosu at a.

Corollary :

A function f : M, —>M, is continuous iff (x )—»x = (f(x )—>(x).

Theorem 2 :

Let (M,, d,) and (M,, d,) be two metric spaces. f:M,—=>M, is continuous iff
f1(G) is open in M, whenever G is open in M,. i.e., f is continuous iff inverse image
of every open set is open.

Proof :

Suppose f is continuous.

Let G be an open set in M,.

We claim that £-1(G) is open in M,.

If £-1(G) is empty, then it is open.

Let £1(G) = ¢

Let xef1(G). Hence f(x)eG

Since G is open, there exists an open ball B(f(x), €) such that
B(f(x), €)cG ------~(1)

By definition of continuity, there exists an open ball B(x, 8) such that
f(B(x, 8)) < B(f(x), €)

&  f(B(x,8))cGC (by (1))

oo B(x, 8) < f1(G)

Since xef!(G) is arbitrary, f(G) is open.

Conversely, suppose f'(G) is open in M, whenever G is open in M,
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We claim that f is continuous.

Let xeM,.

Now B(f(x), €) is an open set in M.

& f1(B(f(x), €) is open in M, and xef ' (B(f(x), €))
o» There exists 8>0 such that B(x, 8) < f1(f(x), €))
o> f(B(x, 8)) ¢ B(f(x), €)

o fis continuous at x.

Since xeM, is arbitrary f is continuous.

Note 1 :

If f :M,—M, is continuous and G is open in M,, then it is not necessary that
f(G) is open in M,,.

i.e., under a continuosus map the image of an open set need not be an open set. ‘
For example let M,=R with discrete metric and let M,=R with usual metric.

Let f:M,—M, be defined by f(x)=x. Since M, is discrete every subset of M, is

open.
Hence for any open stvbset G of M, f-1(G) is open in M,.
o% f is continuous.
A = {x} is open in M.
But f(A) = {x} is not open in M,,.

Note 2 :

In the above example f is a continuous bijection whereas f":M2—>M1 is not
continuous.

For, {x} is an open set in M.
(FH)7! ({x}) = {x} which is not open in M,,.
& f-! is not continuous.

Thus if f is a continuous bijection, f! need not be continuous.
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Theorem 3 :
Let (M,, d,) and (MZ, d,) be two metric spaces. A function f:M,—>M, is
continuous iff f~!(F) is closed in M, whenever F is closed in M,.
Proof :
Suppose f:M,;—M, is continuous.
Let FEM, be closed in M,,.
& FC is open in M,
&b £/(FC) is open in M,.
But f!(F€) = [f-(F)]€
f-1(F) is closed in M,.
Conversely, suppose f}(F) is closed in M, whenever F is closed in M,.
We claim that f is continuous. |
Let G be an open set in M,.
o G€ is closed in M,
& £1(G) is closed in M.
¢ [f1(G)]C is closed in M,.
o f1(G) is open in M,.

o f1s continucus.

Theorem 4 :
Let (M,, d,) and (M,, d,) be two metric spaces. Then f:M,—M, is continuous iff
f(A) < f(A) for all AcM,.

Proof :

Suppose f is continuous.

Let AcM,. Then f(A)eM,

Since f is continuous, f_l(fiAi) is closed in M,.
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Also f_l(m) D A (since f{A) = f(A))

But A is the smallest closed set containing A.
& AcfI(f(A)

oo f(x) C fi A ;
Conversely, let f(A) < f(A) for all ACM,.

To prove that f is continuous, we shall show that if F is a closed set in M,, then
f-1(F) is closed in M.

By hypothesis, f(f'l(F)) c f f—l(F)
S F
= F (since F is closed)
Thus f(f7'(F) < F
& IF) < £'(
Also f1F) ¢ Y(F)
o f1F) = Y(F)

Hence f-!(F) is closed.

& f is continuous.

Solved Problems :
Problem 1 :

Let f be a continuous real valued function defined on a metric space M.

Let A = {xeM} /f(x)ZO}. Prove that A is closed.

Solution :

{xeM/f(x)?.O}

>
It

{xeM/f(x)e [0, )}

f~1(]0, «))
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Also [0, ) is a closed subset of R.

Since f is continuous, f!([0, o)) is closed in M.

ce A 1s closed.

Problem 2 :
Show that the function f:R—>R defined by
0 if x is irrational
fx) = 1 if x is rational
is not continuous by each of the following methods.

(i) By the usual €, 6 method.

(i) By exhibiting a sequence (x,) such that (x )—>x and (f(x_)) does not converge to
f(x).

(iii) By exhibiting an open set G such that f-!(G) is not open.
(iv) By exhibiting a closed subset F such that f-1(F) is not closed.

(v) By exhibiting a subset of A of R such that f(A) ¢ f(A)

Solution :

(1) To prove that f is not continuous at x we have to show that there exists an €>0
such that for all >0,

f(B(x, 8)) « B(f(x), €)
Lete =1/2
For any 3>0, B(x, d) = (x—6, x+8) contains both rational and irrational numbers.

If x is rational, choose yeB(x, 8) such that y is irrational and if x is irrational
choose yeB(x, 8) such that y is rational.

Then f{(x)-f(y)| = 1 (by definiﬁon of y)
i.e., d(f(x), f(y)) = 1
oo f(}') & B(f(X), 1/2)

Thus yeB(x, ) and f(y)g B(f(x), 1/2)
os f(B(x, 9)) B(f(x), 8)

Hence f is not continuous at x.
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(ii) Let xeR. Suppose x is rational. Then f(x) = 1
Let (x,) be a sequence of irrational numbers such that (x )—X.
Then (f(x,))—0 and f(x) =1
¢ (f(x,)) does not converge to f(x).

Proof is similar if x is ‘i1-ational.

]

1 3
[ > 2) Clearly G is open in R.

f1(G) = {xeR/f(x)eG}

_ {xeR/f(x) (; ;)}

Q

(ii1) Let G

i

But Q is not open in R.
Thus £'(G) is not open in R.

& f is not continuous.

. [1 3]
(iv) Choose F = 23

Then f!(F) = Q which is not closed in R.

oo f is not continuous.
(v) LetA=Q.ThenA =R
& f(A ) = f(R) = {0, 1} (by definition of y)
Also f(A) = f(Q) = {1}
S f(A) = {1} = {1}
& f(A) @ f{A)

& f is not continuous.

Problem 3 :

Let M|, M,, M, be metric spaces. If f:M;—>M, and g:M,—M, are continuous
functions, prove that gof:M,—M, is also continuous.

i.e., composition of two continuous functions is continuous.
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Solution :
Let G be open in M.
Since g is continuous, g(G) is open in M,.
Now, since f is continuous, f-'(g7'(G)) is open in M.
i.e., (gof) '(G) is open in M,.

oo gof is continuous.

Problem 4 :

Let M be a metric space. Let f:M—R and g:M—R be two continuous functions.
Prove that f+g:M—R is continuous.

Selution :
Let (x) be a sequence converging to x in M.

Since f and g are continuous functions,
(f(x,)—>f(x) and (g(x,))—>g(x)

oo (f(x )+g(x,)>f(x)+g(x)

ie., ((fg) (x,)>(frg)(x)

o f+g is continuous.

Problem 5 :

If f:R—R and g:R—R are both continuous functions on R and if h:RZ—R? is
defined by h(x, y)=(f(x), g(v)) prove that h is continuous on R2.

Solution :
Let (x,, y,) be a sequence in R? converging to (x, y).
We claim that (h(x_, y,)) converges to h(x, y).
Since ((x,, ¥,))—>(x, y) in R?, (x )—x and (y, )—y in R.
Also f and g are continuous.
oo (f(x,)—>1f(x) and g(y,)—>g(y)
oo (f(x,), 8(y,)>(f(x), g(y))
o (h(x,, y,))—>h(x, y)
& h is continuous on R2.
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Problem 6 :
Let (M, d) be a metric space. Let acM show that the function f:M—R defined

by f(x) = d(x, a) is continuous.

Solution :
Let xeM
Let (x,) be a sequence in M such that (x,)—x
We claim that (f(x ))—>f(x)
Let €>0 be given.
Now, [f(x )-f(x)| = |d(x,, a)-d(x, a)] < d(x,, x)

Since (x )—>x, there exists a positive integer n, such that d(x_, x)<e for all
n2n,.
=1,

o5 |f(xn)—f(x)|<e for all n2n,.
oo (f(x,)) — f(x)

% f 1s continuous.

Problem 7 :

Define f:l,—/, as follows. If sel, is the sequence 85> Sy,...., let f(s), be the
sequence 0, s, s,,....... show that f is continuous on 1,.

Solution :

Let y = (¥, ¥poreeeee sY paeveeees )el,

Let (x,) be a sequence in /, converging to y.

Letx = (xnl, Xpyoeeeees ,xnk,....)
Then (xnl)—>yl; (xnz)—>y2, ...... ,(xnk)—->yk, .......
& (f(x,)) = ((0, Xp > XpyoeeeesKp seeeee- N0, ¥, Yoeren Yoo onnn) = £y)

oo (f(x,))>f(y)

o f 1s continuous.
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Problem 8 :

Let G be an open subset of R. Prove that the characteristic function on G

1 ifxeG
defined by y(x) = 0 ifxeG is continuous at every point of G.

Solution :
Let xeG so that x,(x) = 1
Let >0 be given.

Since G is open and xeG, we can find a §>0 such that

B(x,3) ¢ G
oo xG(B(x, 9)) = x6(G)
= {1}
c B(l, €)
Thus xc(B(x, 8)) = B(xg(x) €)-

¢ g is continuous at x.

Since x€G is arbitrary, ¥ is continuous on G.

Exercise :
1. Prove that that map f:R"—>R defined by f(x,, X,,.....,X,) = X, is continuous.

2. If f and g are two continuous functions from a metric spae M, into another

metric space M, and if f(x) = g(x) for all xe A, then prove that f(x) = g(x) for all
xeA where AcM,.

-2 ifx <0

3. Let f:R—R be defined by f(x) = { 2 ifx>0

Prove that f is not continuous.
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HOMEOMORPHISM

. Definition :

Let (M,, d,) and (M,, d,) be metric spaces. A function f:M,—M, is called a

homeomorphism if
(i) fis 1-1 and onto
(i1)  fis continuosu
(iii) f!is continuous
M, and M, are said to be homeomorphic if there exists a homeomorphism

f:M,—>M,,.

Definition :

A function f:M,;—M, is said to be an epen map if f(G) is open in M, for every
open set G in M,.

i.e., f is an open map if the image of an open set in M, is an open set in M,.

fis called a closed map if f(F) is closed in M, for every closed set F in M,.

Note 1 :

Let f:M,—M, be a 1-1 onto function.

Then ! is continuous iff f is an open map.

For, f-! is continuous iff for any open set G in M,, (f')~! (G) is open in M,,.
But, (fF1)"I(G) = (G)

& -1 is continuous iff for every open set G in M, f(G) is open in M,

& ! is continuous iff f is an open map.

Note 2 :

f-1 is continuous iff f is a closed map.

Note 3 :

Let :M,—M, be a 1-1 onto map. Then the following are equivalent.
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(1) f is a homeomorphism
(ii)  fis a continuous open map

(iti) fis a continuous closed map.

Note 4 :

Let f:M,—>M, be a homeomorphism. GEM, is open in M, iff f(G) is open in
M,.

For, since f is an open map G is open in M,=f(G) is open in M,
Also, since f is continuous, f(G) is open in M,=f!(f(G))=G is open in M,.
& G is open in M, iff f(G) isopeninM, -  ---eee- (1)

Conversely, if f:M,—»>M, is a 1-1 onto map satisfying (1) then fis a
homeomorphism. ‘ '

Thus a homeomerphism f:M;—M, is simply a 1-1 onto map between the pionts

of the two spaces such that their open sets are also in 1-1 correspondence with each
otehr. '

Note 5 :

Let f:M,—M, be a 1-1 onto map. Then f is a homeomorphism iff it satisfies the
following condition. '

F is closed in M, iff f(F) is closed in M.,
Example 1 :

The metric spaces [0,1] and [0, 2] with usual metric are homeomorphic.
Proof :

Define £:[0, 1]—[0, 2] by f(x) = 2x.

Clearly fis 1-1 and onto

Also f1(x) = %X

f and f! are both continuous

oo f is a homeomorphism.
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Example 2 :

The metric spaces (0, ©) and R with usual metrics are homeomorphic.

Proof :

f:(0, )R defined by f(x)=logx is the required homeomorphism. Here
f-1(x) = eX.

Example 3 :

T T
The metric spaces ("’E, 5) and R with usual metrics are homeomorphic and
n n » .
f:(-z, 5:) —R defined by f(x) = tax x is the required homeomorphism.
. m MY : -
In this example, (”2—’5) 1s not a complete metric space whereas R 1s
complete.

This shows that completeness of metric spaces is not preserved under
homeomorphism.

Example 4 :

The metric spaces (0, 1) and (0, ) with usual metrics are homeomorphic.

Proof :
X
Define £:(0, 1)—(0, =) by f(x) = T
We claim that f is 1-1 and onto.
Let fx) = {(y)
o x Y
oo 1 _x 1 . y
00 X—Xy = y—-XY
oo X =Yy

Hence fis 1-1.

Let ye(0, «)
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. ey o X o
co (X)—Yﬁl_x

= y-Xy =X

= x(1+y) =y

:-‘)X:m

oo l-l)-,y €(0, 1) is the preimage of y under f. Clearly f and f~! are continuous.

oo fis a homeomorphism.

Example 5 :

R with usual metric is not homeomorphic to R with discrete metric.

Proof :
Let M, = R with usual metric.
Let M, = R with discrete metric
Let f:M,—M, be any 1-1 onto map.
Now, {a} is open in M,
But f-!({a}) = {f!(a)} is not open in M,.
Hence f is not continuous.

Thus any bijection f:M;—M, is not a homeomorphism. Hence M, is not
homeomorphic to M, )

Definition :

Let (M;, d)) and (M,, d;) be two metric spaces. Let £M,—M, be a 1-1 onto

map. f is said to be an isometry if d,(x, y)=d,(f(x), f(y)) for all x, yeM,. In other
words, an isometry is a distance preserving map.

M, and M, are said to be isometric if there exists an isometry f from M, onto
MZ.

Example 6 :

R? with usual metric and C with usual metric are isometric and f'R2—C defined
by f(x, y) = x+iy is the required isometry.
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Proof :

Let d1 denate the usual metric on R? and d2 denote the usual metric on C.

Let a = (x,, y;) and b = (x,, y,)eR2

Then di(ab) = (x;-x)% +(y1-y2)?

= I(X 1—x2)+i(yl—Y2)|
= |(X 1+iyl )—(x2+iy2) I
= d,(f(a), f(b))

oo fis an isometry.

Example 7 :

Let d, be the usual metric on [0, 1] and d, be the usual metric on [0, 2]. The
map £:[0, 1]>[0, 2] defined by f(x).= 2x is not an isometry.
Proof :

Let x, ye[0, 1]

Then  d,(f(x), f(y)) = fx)-f(y)]
= [2x-2y]|
= 2fx—y|
= 2d, (x,y)
o d(x,y) # d,(f(x), f(y))

Hence f is not an isometry.

Note :

Since an isometry f preserves distances, the image of an open ball B(x, 1) is the
open ball B(f(x), r)

Hence it follows that under an isometry the image of an open set is also an open
set. Also if f is an isometry ™! is also an isometry.

Hence under an isometry the inverse image of an open set is open.
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Hence an isometry is a homeomorphism.

But a homeomorphism from one metric space to another need not be an

isometry.

For example f:[0, 1]—[0, 2] defined by f(x) = 2x is a homeomorphism.

But f is not an isometry.

Exercise :

1.

Prove that any two open intervals are homeomorphic.

1 1

—— is a homeomorphism.
1-x x

Show that f:(0, 1)>R defined by f(x) =

Prove that (2, 5) and (8, 11) are isometric
Prove that homeomorphism is an equivalence relation among metric spaces.

Prove that isometry is an equivalance relation among metric spaces.

UNIFORM CONTINUITY

We introduce the concebt of uniform continuity.

Let M,, d,) and (M,, d,) be two metric spaces. Let f:M,—M, be a continuous

function. For each acM, the following is true.

Given e>0, there exists a 8>0 such that d,(x, a)<6 = d,(f(x), f(a))<e.
In general the number 8 depends on € and the point a under consideration.
For example, consider f:R—R given by f(x) = x2
Let aecR. Let €>0 be given.'
We want to find 6>0 such that

x-al<s = |f(x)-f(a)l<e S
Clearly if 8>0 satisfies (1) then any 3, where 0<3,<3 also satisfies (1).

Hence if there exists a 8>0 satisfying (1) then we can find another 6, such that

0<3,<1 and 8, also satisfies (1).

Hence we may restrict x such that |x—a[<1.
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a-1 <x<atl
x+a < 2a+1
if(x)—f(a)] = [x?-a?| = |x+a| |x—a]

< [2a+l1]| |x—a|if |x-a| <1

Hence if we choose & = min{l, } then we have |x—a|<é = |f(x)—f(a)|<e.

€
|2a +1|

Thus we see that the number & depends on both € and the point a under
consideration and if a becomes large, 6 has to be chosen correspondingly small. In fact,
there is no >0 such that (1) holds for all a.

For, suppose there exists >0 such that

x—al<déd = |f(x)-f(a)l<e for all acR

Take X = a+18
2
1
Clearly, |x—a] = -2-8<8
oo ]f(x)—f(a)l < €
2
1 2
N (34‘56) -a. < e
1.]1
o —O&|—0+2a
oo 2 |2 < €

This inequality cannot be true for all aeR, since by taking a sufficiently large,

1._j1
we can make 55 ‘2‘5 +2a>€

Thus there is no 6>0 such that (1) holds for all aeR
Let f:R—R be given by f(x) = 2x
Let aeR. Let €>0 be given.

Then |f(x)—f(a)| = [2x—2a|= 2|x—a]
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1
o If we choose § = 5 € then we have

x-a]<d = |[f(x)-f(a)|<e
Here 8 depends on e and not an a.

i.e., for a given €>0 we are able to find §>0 such that 8 works uniformly for all
aeR.

Definition :

Let (M, d,) and (M,, d,) be metric spaces. A function f:M,—M, is said to be
uniformly continuous on M, if given €>0 there exists a >0 such that d,(x, y)<o
=d,(f(x), f(y))<e.

Note 1 :

If f:M,—M, is uniformly continuous on M,, then f is continuous at every point

ofMl.

Moreover for a given €>0 there exists a >0 such that x, yeM, and d,(x, y)<d
=d,(f(x), f(y))<e.

Thus uniform continuity is continuity plus the added condition that for a given
€>0 we can find >0 which works uniformly for all points of M.

Note 2 :
A continuous function f:M;—M, need not be uniformly continuous on M,.

For example f:R—>R defined by f(x) = x? is continuous but not uniformly
continuous on R.

Solved Problems :

Problem 1 :

Prove that f:[0, 1]5R defined by f(x) = x? is uniformly continuous on [0, 1]

Solution :

Let €>0 be given. Let x, ye[O0, 1].
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Then Ifx)-f(y)] = x2-y¥ = [x+ylx-yl

< 2|x-y| (since x<1 and y<1)

-1
x-yl<zye = Ifx)-fy)i<e
& f is uniformly continuous on [0, 1]

Problem 2 :

1
Prove that the function f:(0, 1)>R defined by f(x)=-; is not uniformly

continuous.

Solution :

Let €>0 be given. Suppose there exists a 8>0 such that
x-yl<8 = |f(x)}-f(y)l < e

1

Take X = y+—2—6
1
Clearly x-y| = §8<8
co Ifx)-f(y)] < e
1 1
co — < E€E.
X Yy
1 1
Y] 1 < €
+=8 Y
AL
5
oo 1 < €
2l y+—90
(v+35)
o
oo (2y+8)y = €
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o
This inequality cannot be true for all ye(0, 1) since (2y N S-I)y becomes

arbitrarily large as y approaches zero.

& f is not uniformly continuous.

Problem 3 :

Prove that the function f:R—R defined by f(x) = sin x is uniformly continuous
‘on R.

Solution :

Let x, yeR nd x>y

sinXx—siny = (x—y)‘cos z where X>z>y (by mean value theorem)
o Isin x —siny] = [|x-y||cos z]
< [|x-y| (since |cos z|<1)
Hence for a given €>0, if we choose d=¢,
we have |x—y|<d = [f(x)—f(y)| = |sin x — sin y| <e.

& f(Xx) = sin x is uniformly continuous on R.

Exercise :

1. Let fR—R and g:R—>R be two functions uniformly continuous on R. Prove that
f+g is also uniformly continuous on R.

2. Is the product of uniformly continuous real valued functions again uniformly
continuous?

3. Determine whether f:[0, 1] R defined by f(x)=,/x is uniformly continuous.

DISCONTINUOUS FUNCTIONS ON R

Definition :

A function f:R—R is said to approach to a limit / as x tends to a if given €>0

there exists a >0 such that 0<|x—a|<8 => |f(x)-/|< and we write [t {(X) =
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A function f is said to have [ as the right limit at x=a if given €>0 there exists

Lt f(X) =]
X—a+

a >0 such that a<x<a+§ = |f(x)-/|<e and we write
Also we denote the right limit / by f(a+).
A function f is said to have / as the left limit at x=a if given €>0 there exists a

5>0 such that a—0<x<a = |f(x)-li<e and we write it _ f(x) - l

Also we denote the left limit 1 by f(a-).

Note 1 :
Lt f(x)=1iff Lt f(x)- Lt f(x)=1
Xx—>a X—> X—>a—
Note 2 :

f is continuous at a iff f(at+) = f(a—) = f(a)
Note 3 :

If XI;)'ta f(x) does not exist then one of the following happens.

(1) X _I;ta N f(x) does not exist.
(i1) X_I_;';_ f(x) does not exist.

(i11) X iEH_ f(x) and X it f(x) exist and are unequal.

Definition :

If a function f is discontinuous at a then a is called a point of discontinuity for

the function.

If a is a point of discontinuity of a function then any one of the following cases

arises.

(1) xl—fa f (x) exists but is not equal to f(a).

(i) Lt f(x)and Lt f(x)

exist and are not equal.
X—>a+ X

- Lt f(x)or Lt f(x :
(it1)  Either e ( ) K>t ( )does not exist.
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Definition :

Let a be a point of discontinuity for f(x) a is said to be a point of discontinuity

of the first kind if Lt f(x)and Lt f(x) exist and both of them are finite and
X—>a+ X—>a-—- .

unequal.

a is said to be a point of discontinuity of the second kind if either
Lt f(x)or Lt

f(x) :
X—>a+ Xe>a— does not exist.

Definition :

Let AcR. A function f:A—R is called monotonic increasing if x, ye A and x<y
= f(x)<f(y).

f is called monotonic decreasing if x, ye A and x>y=f(x)=(y).

f is called monotonic if it is either monotonic increasing or monotonic
decreasing.

Theorem 5 ;

Let f:[a, b]->R be a monotonic increasing function. Then f has a left limit and a
right limit at every point of (a,b). Also f has a right limit at a and f has a left limit at b.

Further x<y = f(x+) < f(y-)

Similar result is true for monotonic decreasing functions.

Proof :

Let f:[a, b] >R be monotonic increasing.
Let xe[a, b]. Then {f(t)/a_<_t<x} is bounded above by f(x).

Let I = Lu.b. {f(t)/ast<x}
We claim that f(x-) =/

Let €>0 be given. By definition of Z.u.b. there exists t such that a<t<x and _
l-e<f(t)<i

oo t<u<x = l-e<f(t)<f(u)<!/ (since f is monotonic increasing)
= [-e<f(u)<i/
oo Xx-0<u<x = l-e<f(u)</ where §=x—t

oo f(x—) = ]
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Similar we can prove that

f(x+) = g.lb.{f(t)[x<t<b}

Now we shall prove that
x<y = f(x+)<f(y-)

Let x<y
Now, f(x+) = g.lb. {f(t)fx<t<b}
= glb. {fit)x<tsy} = e 1)
(since f is monotonic increasing)
Also f(y-) = Lub. {f(t)/ast<y}
= Lub. {f()y/x<t<y} = mmmmeee- (2)

¢’ fxt) = Ky-) (by (1) and (2))

Theorem 6 : -

Let f : [a, b] >R be a monotonic function. Then the set of points of [a, b] at
which f is discontinuous is countable.

Proof :
We shall preve the theorem for a monotonic increasing function.
Let E = {x/x€{a, b] and f is discontinuous at x}
Let xeE. Then f(x+) and f(x-) exist and f(x-)<f(x)<f(x+)
If f(x-) = f(x+) then f(x-) = f(x) = f(x+) .
oo fis égnfféuqn,s at x which is a contradiction.
o f(x—) # f(x+)
oo f(x—) <f(x+)
Choose 4 rational number r(x) such that f{x—)<r(x)<f(x+)
This defines a mal.:a r from E to Q which maps x to r(x).
« . Weclaim that ris 1-1.
Let x,<x, |

oo f(x 1 +)<f(X2—)
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Also f(x,-)<r(x,)<f(x,+)
and f(x,-)<r(x,)<f(x,+)

oo r(xl)<f(xl+)<f(x2—)<r(x2)
Thus x <x, = r(x,)<r(x,)
oo E—>Q is 1-1.

Hence E is countable.

Thus we have proved that the set of discontinuties of a monotonic function is
countable.

Definition :

A subset D of R is said to be of type F_ if D can be expressed as a countable
union of closed sets.

i.e., D=UF, where every F_ is a closed subset of R.

Definition :

Consider any function f:R—R. Let I be a bounded open interval in R. Then the
oscillation of f over I denoted by o(f, I) is defined by

of, ) = Lub.{f(x)xel}

If aeR the oscillation of f at a denoted by w(f, a) is defined by w(f, a) = g.l.b.
o(f, I) where g.L.b. is taken over all bounded open intervals contammg a.

Example :
Consider the function f:R—R defined by f(x) = [x]
Let a=4. Let I be any bounded open interval containing 4.
Suppose I does not contain any integer other than 4. Then o(f, ) =43 =1.
For any other open interval I containing 4,
of,I) 2 1
oo o(f,4) = 1

In general, for any nez, o(f, n) =1

Theorem 7 :

f:R—R is continuous at aeR iff o(f, a) = 0.
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Proof :

Suppose f is continuous at a.

1
Let €>0 be given. Then there exists >0 such that |x—a|<d = If(x)—f(a)l<5 €.

Let I = (a-9, a+d)

1
oo For any xel, |f(x)—f(a)l<—2- €.

1 1
oo For any x, yel, |f(x)-f(y)| < [f(x)-f(a)] + |(a)-1f(y)| < -2-e+-2-e = €.

o o(f, ) < €.
Since €>0 is arbitary o(f, a) = 0
Conversely, let o(f, a) = 0. We claim that f is continuous at a.

Let €>0 be given.

Since w(f, a) = g.l.b. o(f, I) = 0, there exists a bounded open interval I
containing a such that

of) < e e (1)
Let X, X, € I
Then f(x,) < Lub. {f{x)/xel}
and f(x,) = glb.{f(x)xel}
o [f(x))-f(x,)] < o(f D<e by (1)

Thus for any two points x,, x, € L, |f(x)-f(x,)|<e.
In particular |[f(x)-f(a)|<e for all xel.

Since I is a bounded open interval containing a we can choose 8 > 0 such that
(a-9, a+d)cl.

oo |f(x)—1(a)|<e for all xe(a-d, a+d)
o% |x—al<d = [f(x)-f(a)|<e.

& f1s continuous at a.
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Theorem 8 :

1
Let f.R—R be any function. Let r>0. Then E_= {a eR/ oa(f,a)k;} is a closed

set.

Proof :

- Let x be any limit point of E .
We claim that xeE .

. 1
‘For this wemust prove that o(f, x) > e

Let 1 be any bounded open interval containing x. Since x is a limit point of E, I
contains a piont y of E .

Hence I is a bounded open interval containing y.

oo (D(f, Y) < OJ(f, I)
1
But of,y) 2 - (since yeE)
1 .. :
oo of, ) = T and this 1s true for any bounded open interval I
containing X.
1
oo O)(f, X) 2 —.
r
oo x € E
o E_contains all its limit points.
oo E_ is closed.

Theorem 9 :

Let D be the set of points of discontinuities of a function f:R—R. Then D is of
type F ..

Proof :

Let xeD. Then f is discontinuous at x.

oo of,x) > 0 (by theorem 7)
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1 e s
o o(f, x) 2 a for some positive integer n.

& xeE_ for some positive integer n where E_ is defined as in theorem 8.

oC
LY X € nEn
n=1
oC
s Dc UE, (1)
n=1
oC
Let x e UE;
n=1

Then x€E_ for some positive integer n.

1
oo f 2 —.
o(f, x) o

Hence o(f, x) > 0.

& fis discontinuous at x. Hence xeD.

CR
i
=)
IN

D e )

H

oC
Thus D UFn (by (1) and (2)).
n=

Also each E_ is closed (by theorem 8)

Thus D is a countable union of closed sets.

¢o D is of type F_.

Theorem 10 :

There is no function f:R—R such that f is continuous at each rational number
and discontinuous at each irrational number.

Proof :

Because .of theorem 9 it is enough to prove that the set A of all irrational
numbers is not of type F_.

Suppose A is of type F .
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oC
Then A = UF, where each F_ is closed.

n=1
Since F_ contains only irrational numbers, F, cannot contain any open interval.
oo IntFn = ¢
0% Int E, = ¢ (sinceF_is closed)
& F_ is nowhere dense.
o% A is of first category which is a contradiction.
oo A is not of type F_.

Hence the theorem.

Exercise :

5.

If f : M,—>M, is a continuous bijection then ™! : M,—M, is also continuous.
If M, is homeo'morphic to M, and M, is complete then M, is complete.

If f: M;—>M, is continuous at every point of M, then f is uniformly continuous
on M,. '
1

If £ : M,—>M, is uniformly continuous on M, then f is continuous at every point
of M,.
1

f: [0, 1]->R defined by f(x) = x? is uniformly continuous on [0, 1].
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REAL ANALYSIS UNIT - 4

CONNECTEDNESS

In R consider the subsets A = [1, 2] and B = [1, 2]U[3, 4]. The set A consists of
a single ‘piece' whereas B consists of ‘two pieces'. We say that A is a connected set
and B is not a connected set. '
Definition and Examples :

Definition :

Let (M, d) be a metric space. M is said to be connected if M cannot be

represented as the union of two disjoint non-empty open sets.

If M is not connected it is said to be disconnected.

Example 1 :

Let M = [1, 2]U[3, 4] with usual metric then M is disconnected.

Proof :
[1, 2] and [3, 4] are open in M.
Thus M is the union of two disjoint non empty open sets namely [1, 2] and [3, 4].

Hence M is disconnected.

Example 2 :

Any discrete metric space M with more than one point is disconnected.

Proof :

Let A be a proper non-empty subset of M. Since M has more than one point

such a set exists.
Then A€ is also non-empty.
Since M is discrete every subset of M is open.
&% A and A® are open. |
Thus M = AUA® where A and A are two disjoint non-empty open sets.

< M is not connected.

108



Theorem 1 :
Let (M, d) be a metric space. Then the following are equivalent.
(i) " M is connected.
(i) M cannot be written as the union of two disjoint non-empty closed sets.

(iii) M cannot be written as the union of two non-empty sets A and B such that
ANB=ANB = ¢.

(iv)’ M and ¢ are the only sets which are both open and clos.ed in M.

Proof :
@) = (i)
Suppose (ii) is not true
" &% M = AUB where A and B are closed A # ¢, B # ¢ and AnB = ¢
& AC=B and BC = A
Since A and B are closed, A€ and B are open.
o» B and A are open.
Thus M is the union of two disjoint non-empty open sets.
¢ M is not connected which is a contradiction.
& (1) = (i)
(i1) = (iii)
Suppose (iii) is not true.
Then M = AUB where A # ¢, B # ¢ and Anﬁ;_:'A_nB = ¢.

We claim that A and B are closed.

Let X € A
o x ¢ B (since ANB = ¢)
oo X € A (since AUB = M)
b A c A
But A c A
o A= A and hence A is closed.

Similarly B is closed.
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Now AnNB = ANB (since A = A)
= ¢

Thus M = AUB where A # ¢, B » ¢, A and B are closed and AnB = ¢ which is
a contradiction to (ii) .

do (11) = (ii1)

(iii) = (iv)

Suppose (iv) is not true.

Then there exists AcM such that A¥M and A= and A is both open and closed.
Let B = A€

Then B is also both open and closed and B#¢.

Also M = AUB

Further ANB = ANAC (since A=A and B=A°)
= ¢

Similarly ANB = ¢

o> M = AUB where ANB = ¢ = AB which is a contradiction to (iii).
oo (i1i) = (iv)

(iv) = (1)

Suppose M is not connected.

co M = AUB where A=), B#$, A and B are open and A~B = ¢.

Then B¢ = A

Now since B is open A is closed.

Also A#$ and A=M (sicne B#¢)

de A is a proper non-empty subset of M which is both open and closed which is
a contradiction to (iv).

& (iv) = ().

Theorem 2 :

A metric space M is connected iff there does not exist a continuous function f
from M onto the discrete metric space {0, 1}.
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Proof :

Suppose there exists a continuous function f from M onto {0, 1}

Since {0, 1} is discrete, {0} and {1} are open.

A = f1({0}) and B = f-!({1}) are open in M.

Since f is onto, A and B are non-empty.

Clearly AnB = ¢ and AUB = M.

Thus M = AUB where A and B are disjoint non-empty open sets.
oo M is not connected which is a contradiction.

Hence there does not exist a continuous function from onto the discrete metric

space {0, 1}

Now define fM— {0, 1} by f(x) = {

Conversely, suppose M is not connected.

Then there exist disjoint non-empty open sets A and B in M such that M=AUB

0 ifxeA
1 ifxeB

Clearly f is onto.
Also £1(¢) = ¢, £1({0}) = A, f1({1}) =B and -1({0,1)) =M

Thus the inverse image of every open set in {0, 1} is open in M.

Hence f is continuous.

Thus there exists a continuous function f from M onto {0, 1} which is a

contradiction. Hence M is connected.

Note :

The above theorem can be restated as follows. M is connected iff every

continuous function f:M—{0, 1} is not onto.

Solved Problems :

Problem 1 :

Let M be a metric space. Let A be a connected subset of M. If B is a subset of

M such that AcBc A then B is connected. In particular A is connected.

Solution :

Suppose B is not connected.

Then B = B,UB, where B #¢, B,#¢, B,"B,=¢ and B, and B, are open in B.
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Now since B, and B, are open in B there exist open sets G, and G, in M such

that
B, = G,"Band B, =G,NB
oo B = B,UB, =(G,NB)U(G,NB) = (G,VG,)"B
co B c G,UG,
o A < G,UG, (since AcCB)
oo ‘ A = (GWG)NA

(G,NA)U(G2NA)
Now, G;NA and G,NA are open in A.
Further, (G;NA)N(G,NA) = (GNGINA
‘ = (G,nG)NB (since AcB)
= (G;"B)"(G,NB)
= B,NB,
= .
oo (G,NAN(G,NA) = ¢.
Now, since A is coﬁnected, either G,NA = ¢ or G,NA = ¢§.
Without lossof generality let u; assume that G,NA = ¢.
Since G, is open in M, we have G,NA = ¢.
¢ G,MB = ¢ (since BcA)
oo B, = ¢ which is a contradiction.

oo B 1s connected.

Problem 2 :

If A and B are connected subsets of a metric space M and if AnB # ¢, prove
that AUB is connected. '
Solution :

Let f:AUB— {0,1} be a continuous function.

Since AnB#¢ we can choose x,€ ANB

Let f(x,) = 0
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Since f:AUB—{0, 1} is continuous f/A : A—{0, 1} is also continuous.

But A is connected.

Hence {/A is not onto.

so f(x) = 0 for all xeA or f(x) =1 for all xeA.

But f(x;) = 0 and x,€A

oo f(x) =0 for all xeA

Similarly f(x) = 0 for all xeB

oo f(x) = 0 for all xe AUB

Thus any continuous function f:AUB— {0, 1} is not onto.

oo AUB is connected.

Exercise :
1. Prove that {0, 1} is not a connected subset of R with discrete metric.

2. Let A, A, A be connected subsets of a metric space M each of which

oC
intersects its successor. Prove that UAn is connected.

n=1
3. Let {A,} be a family of connected subsets of a metric space M such that NA_ # ¢.
Then prov that A = UA _ is a connected subset of M.
4. Prove that the set of all components of a metric space M forms a partition of M.
5. Prove that in a discrete metric space each component consists of a single piont.

CONNECTED SUBSETS OF R

Theorem 3 :

A subspace of R is connected iff it is an interval.

Proof :
Let A be a connected subset of R. Suppose A is not an interval.
Then there exist a, b, ¢ € R such that a<b<c and a, ¢ € A but bgA.
Let A, = (=0, b)NA and A, = (b, ©)NA

Since (—oo, b) and (b, ) are open in R, A, and A, are open sets in A.
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that y—

Also A\NA, =¢and A|JVA, =A

Further ae A, and ceA,

Hence A #¢ and A,#¢

Thus A is the union of two disjoint non-empty open sets A, and A,.
Hence A is not connected which is a contradiction.

Hence A is an interval.

Conversely, let A be an interval.

We claim that A is connected.

Suppose A is not connected.

Let A = A;UA, where A #¢, A#¢, A\NA,=¢ and A, and A, are closed sets in A.
Choose x€ A, and z€A,.

Since A|NA, = ¢ we have x#z

Without loss of generality we assume that x<z.

Now, since A is an interval we have [x, z]cCA.

ie., [x, z] € AVA,

> Every element of [x, z] is either in A, or in A,.

Now let y = Lu.b. {[x, z]nA,}

Clearly x<y<z

Hence ye A

Let €>0 be given. Then by the definition of /.u.b. there exists te[x, z]JNA, such
e<t<y

(}’—G, y+€) . ([X, Z]f\Al) # ¢

do Y elx,zlﬂAl

¢ Ye[X, z]NA, (since [x, z]NA, is closed in A)

oo YEA, . mmmemmee- (1)
Again by the definition of y, y+e € A, for all €>0 such that y+e < z.

& YEA,.

oo yEA, (since A,isclosed) eeme (2)

do yeA,NA, [by (1) and (2)] which is a contradiction sicne A NA=$.

Hence A is connected.
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Theorem 4 :

R is connected.

Proof :
R = (—o0, ) is an interval.

< R is connected.
Solved Problems :

Problem 1 :

Give an example to show that a subspace .of a connected metric space need not
be connected.

Solution :
We know that R is connected.

A =1, 2]U][3, 4] is a subspace of R which is not connected.

Problem 2 :

Prove or disprove if A and C are connected subsets of a metric space M and if
AcBcC, then B i1s connected.

Solution :

We disprove this statement by giving a counter example.
Let A=1[1, 2}; B=1[1, 2]JU[3, 4]; C=R.
Clearly AcBcC

Here A and C are connected. But B is not connected.

Exercise :

Determine which of the following are connected subsets of R.

1. [4, 6]UI8, 10]
2. (4, 6]V[S, 7]
3. z

4, R—~{0}

5. (-0, 0)
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CONNECTEDNESS AND CONTINUITY

Theorem 5 :

Let M, be connected metric space. Let M, be any metric space. Let f:M,—»M,
be a continuous function. Then f(M,) is a connected subset of M,

i.e., Any continuous image of a connected set is connected.

Proof :

Let f(M,) = A so that f is a function from M, onto A.
We claim that A is connected.

Suppose A is not connected. Then there exists a proper non-empty subset B of
A which is both open and closed in A.

& 1 (B) is a proper non-empty subset of M, which is both open and closed in
M,. Hence M, is not connected which is a contradiction.

Hence A is connected.

Theorem 6 :

Let f be a real valued continuous function defined on an interval I. Then f takes

every value between any two values it assumes.

(This is known as the intermediate value theorem)

Proof :

Let a, bel and let f(a)#f(b). Without loss of generality we assume that f(a)<f(b).
Let ¢ be such that f{a)<c<f(b).

The interval I is a connected subset of R.

oo f(I) is a connected subset of R.

oo f(I) is an interval.

Aléo f(a), f(b) € f(I). Hence [{(a), f(b)] < f(c)

oo cef(I) (since f(a)<c<f(b))

do ¢ = f(c) for some xel.
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Solved Problem :

Prove that if f is a non-constant real valued continuous function on R then the
range of f is uncountable.

Solution :
We know that R is connected.
Since f is a continuous function on R, f(R) is a connected subset of R.
oo f(R) is an interval in R.

Also, since f is a non-constant function the interval, f(R) contains more than one

point.

& f(R) is uncountable. i.e., The range of f is uncountable.

Exercise :

1. Prove that if f:R—>R is a continuous function which assumes only rational
values then f is a constant function.

2. Prove that A = {(x, y)/x2+y =1} is a connected subset of R2.
[Hint : Consider f : {0, 2n]—A given by f(x) = (cos x, sin x)]

3. Determine whether Q is connected or not.
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REAL ANALYSIS UNIT - 5§

COMPACTNESS

COMPACT METRIC SPACES

Definition :

Let M be a metric space. A family of open sets {G_ }in M is called an open
cover for M if UG, = M. '

A subfamily of {G_} which itself is an open cover is called a subcover.

A metric space M is said to be compact if every open cover for M has finite
subcover.

i.e., for each family of open. sets {G,} such that UG =M, there exist a finite

n
subfamily {G, , G, ,----sGg } such that iL:JlG“i =M.

Example 1 :

R with usual metric is not compact.

Proof :

Consider the family of open intervals {(-n, n)/neN}.

oC

This is a family of open sets in R. Clearly U(-n,n) = r

n=1

o {(-n, n)/neN} is an open cover for R and this open cover has no finite

subcover.

d» K 1s not compact.

Example 2 :

(0, 1) with usual metric is not compact.

Proof :

(1
Consider the family of open intervals {(;,1) / n=2,3,..... }
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N |
Clearly U ;1-’1 =(0, 1)

n=2

1 .
S {(;,1) /n: 2,3,........ } is an open cover for (0, 1) and this open cover has no

finite subcover. Hence (0, 1) is not compact.

Example 3 :

[0, 0) with usual metric is not compact.

Proof :

Consider the.family of intervals {[0, n)/neN}
oC
Also UI[O, n) =0, w)
n=

oo {[0, n)/neN} is an open cover for [0, ) and this open cover has no finite
subcover. Hence [0, ) 1s not compact.

Example 4 :

Let M be an infinite set with discrete metric. Then M is not compact.

Proof :

Let xeM. Since M is a discrete metric space {x} is open in M.
U{x}
Also <=M M.
Hence {{x}/xeM} is an open cover for M and since M is infinite, this open

cover has no finite subcover.

Hence M is not compact.

Theorem 1 :

Let M be a metric space. Let AcM. A is compact iff given a family of open sets
{G,} in M such that UG_DA thre exists a subfamily Gal, Ga2> ...... ,G, such that

n

a1
U Gg; oA,
1=1
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Proof :

Let A be a compact subset of M. Let {G_} be a family of open sets in M such
that UG _DA.

Then (VG)O)NA = A

oo W(G,NA) = A

Also G NAis open in A.

oo The family {G NA} is an open cover for A.

Since A is compact this open cover has a finite subcover, say Ga]r\A,
G, NA,.....G_ NA

a2 %n
n
oo U (Ga,nA) = A
1=1
n
oo ( U GGIJnA = A
1=1
n
oo U Gai =2 A
1=1
Conversely let {H_} be an open cover for A.
oo Each H, is open in A.
H, = G,NA where G_ is open in M.
Now, UH, = A
oo U(G,NA) = A
oo (UGa)ﬁA = A
oo UGa D A
Hence by hypothesis there exists a finite subfamily Gal', Ga2= ..... .G, such that
) n
n
U Ga; oA
1=1
oo ( lrj Ga,)nA = A
1=1
n
oo U] (GalnA) = A
1=
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n
S U Hal = A
1=1

Thus {Hal, Haz, ...... ’H“n} is a finite subcover of the open cover {H_}.

oo A is compact.

Theroem 2 :

Any compact subset A of a metric space M is bounded.

Proof :

Letx, € A

Consider {B(x,, n)/neN}
oC

Cleraly U B(xg,n) = M
n=
oC

oo U B(XO’n) =2 A
n=1

Since A is compact there exists a finite subfamily say, B(x4 1),

k
B(xy, ny),....,B(x,, n,) such that U B(XOsni) DA

1=1
Let n, = max{n, n,,...... 0, }
k
Then _UIB(XOani) = B(xy np)
1=
oo B(xpny) 2 A

We know that B(x,, n,) is a bounded set and a subset of a bounded set is
bounded. Hence A is bounded.

Note :
The converse of the above theorem is not true.

For example, (0, 1) is a bounded subset of R.

But it is not compact.

Theorem 3 :

Any compact subset A of a metric space (M, d) is closed.
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Proof :
To prove that A is closed we shall prove that A® is open.
Let ye A€ and let xe A. Then x#y

oo d(x, y) = I'x>0

] ] 1 1
It can be easily verified that B(x,—z—rx)ﬂ B(Ys‘irx) = ¢.

1
Now consider the collection {B(X,El’x) / X EA}

1
: U B} x,—r
Cleary LA ( 5 x) D A.
Since A is compact there exists a finite number of such open balls say,
1 1
B xla‘z‘rxl seeeeees B xn,Erxn such that

1
GB[Xi,—r ) S A (1)

=1 \ 27 =

n 1
Let V = N B( Y, '5 rxi )

y 1=1

Clearly, Vy is an open set containing y.

1 1 1
Since B(Y,Ery)ﬂ B(x,—z-rx) =¢ we have VyﬂBExrz‘fxi) =¢ for each i=1,2,.....n.

n 1
o V B s . -
°° yn[igl (x ZIX‘H ¢

& VA = ¢ (by (1)
) C
oo Vy - A
U V. :
o yeAC ¥ = ACand each V, is open.

o AC is open. Hence A is closed.
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Note 1 :

The converse of the above theorem is not true.

For example, [0, ®) is a closed subset of R. But it is not compact.
Note 2 :

Any compact subset of a metric space is closed and bounded.

Theorem 4 :

A closed subspace of a compact metric space is compact.

Proof :
Let M be a compact metric space. Let A be a non-empty closed subset of M.

We claim that A is compact.

Let {G /ael} be a family of open sets in M such that ‘}éIGO‘ DA
co ACU[ UGG] =M

ael
Also AC is open. (since A is closed)

oo {Ga/ael}u{AC} is an open cover for M. Since M is compact it has a finite
subcover say Ga],Gaz, ..... ,Gan, A€,

n
1=1
n
oo U Goci o A
i=1
oo A is compact.
Exercise :
1. Show that every finite metric space is compact.
2. A and B are two compact subsets of a metric space M. Prove that AUB is also
compact.
3. Give an example of a connected subset of R which is not compact.
4. Give an example of an open cover which has no finite subcover for the |

following subsets of R.

M 5,6) (@) (5,0 ()5, (iv) [7,9).
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COMPACT SUBSETS OF R

We know that every compact subset of a metric space is closed and bounded.
However the converse is not true. For example, consider an infinite discrete metric

space (M, d).
Let A be an infinite subset of M.
Then A is bounded since d(x, y)<1 for all x, yeA

Also A is closed since any subset of a discrete metric space is closed.
Hence A is closed and bounded.

However A is not compact.

Theorem 5 : (Heine Borel Theorem)

Any closed interval [a, b] is a compact subset of R.

Proof :

Let {Gajocel} be a family of open sets in R such that aUEIGa 2(a, b].

Let S = {x/xe[a,b] and [a, x]} can be covered by a finite number of G_s.
Clearly aeS and hence S#¢.

Also S is bounded above by b.

Let ¢ denote the l.u.b. of S.

Clearly ce[a, b].

oo ceGm1 for some o, €l.

Since GmI is open, there exists €>0 such that (c—e€, C+e)gGal.
Choose x,€[a, b] such that x,<C and [x,, c]gGal.

Now, since x,<C, [a, x,] can be covered by a finite number of G, s.
These finite number of G, s together with GG_] cover [a, c]

oo By definition of S, ceS.

Now, we claim that c=b.

Suppose c#b.
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Then choose x,&[a, b] such that x,>c and [c, x,]cG,

As before, [a, x,] can be covered by a finite number of G, s.
Hence x,€S.

But x,>¢ which is a contradiction, sicne C is the Z.u.b. of S.
doc=Db

% [a, b] can be covered by a finite number of G, s.

o% [a, b] is a compact subset of R.

Theorem 6 :

A subset A of R is compact iff A is closed and bounded.

Proof :
If A is compact then A is closed and bounded.
Conversely, let A be subset of R which is closed and bounded.
Since A is bounded we can find a closed interval [a, b} such that Ac[a, b}
Since A is closed in R, A is closed in [a, b] also.
Thus A is a closed subset of the compact space [a, b].

Hence A is compact (by theorem (4)).

Exercise :

1. Determine which of the following subset of R are compact.
(1) Z (1) Q (iii) [1, 2]
(iv) (3, 4) v) [1, 2]U13, 4] (vi) [1, 3]Nn[3, 4]
11 1
(vii) {1’5’3’ ........ e }
2. If A and B are compact subsets of R prove that ANB is also a compact subset of
R.
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EQUIVALENT CHARACTERISATIONS FOR COMPACTNESS

Definition :

A farriily ¥ of subsets of a set M is said to have the finite intersection
property if any finite members of 3 have non-empty intersection.

Example :

In R the family of closed intervals ={[-n, n]/neN} has finite intersection

property.

Theorem 7 :

A metric space M is compact iff any family of closed sets with finite
intersection property has non-empty intersection.
Proof :

Suppose M 1s compact.

Let {A_} be a family of closed subsets of M with finite intersection property.

We claim that NA  # ¢ |

Suppose NA_ = ¢ then (NA )€ = ¢C.

oo ﬁAaC = M

Also, since each A is closed, A C is open.

& {A_ C} is an open cover for M.

Since M is compact this open cover has a finite subcover say, A C, A,S,.....,A €.

n

oo UAIC = M

i=1

o C
oo ( nA]J = M

i=1

n. .
oo iQ lAi = ¢ which is a contradiction to the finite intersection
property.

oo ('\Aa #* ¢
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Conversely, suppose that each family of closed sets in M with finite intersection

property has non empty intersection.

To prove that M is compact, let {Gajael} be an open cover for M.

o UG, _
oo ol “a =M
C
co (UGGJ = MC
ael
oo ﬂGaC = ¢
ael »

Since G, is open, G_€ is closed for each a.
oo F = {GaC/aeI} is a family of closed sets whose intersection is empty:

Hence by hypothesis this family of closed sets does not have the finite

intersection property.

Hence there exists a finite sub-collection of ¥ say {G,C, G,S,....,G_,®} such that

—_—¢.
n C

oo (UG1) = ¢
1=1

oo EIJ(}l = M

oo {G,, G,,......,G,} is a finite subcover of the given open cover.

Hence M is compact.

Definition :

A metric space M is said to be totally bounded if for every €>0 there exists a

finite number of elements x, X,,...,x, €M such that B(x,, €)UB(x,,€)u...UB(x_,€)=M.

A non-empty subset A of a metric space M is said to be totally bounded if the

- subspace A is a totally bounded metric space.

Theorem 8 :

Any compact metric space is totally bounded.
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Proof :
Let M be a compact metric space. Then {B(x, €)/xeM} is an open cover for M.

Since M is compact this open cover has a finite subcover say B(x,, €),

oo M = B(x,, €)UB(x,, €)U....UB(X, €)

oo M is totally bounded.

Theorem 9 :

Let A be a subset of a metric space M. If A is totally bounded then A is
bounded.
Proof :

Let A be a totally bounded subset of M. Let €>0 be given.

Then there exists a finite number of points x;, x,,.....,x_ €A such that
B (x;,€)UB,(x,,€)V....UB,(x,, €) = A, where B,(x,, €) is an open ball in A.

Further we know that an open ball is a bounded set.

Thus A is the union of a finite number of bounded sets and hence A is bounded.
Note :

The converse of the above theorem is not true.

For let M be an infinite set with discrete metric.

Clearly M is bounded.

Now B(x, ¥2) = {x}

Since M is infinite, M cannot be written as the union of a finite number of open
balls B(x, 12)

o M is not toally bounded. .

Definition :

Let (x,) be a sequence in a metric space M. Let n;<n,<......<n, <......be an
increasing sequence of positive integers. Then (xnk) is called a subsequence of (x ).
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Theorem 10 :

A metric space (M, d) is totally bounded iff every sequence in M has a Cauchy
subsequence.

Proof :
Suppose every sequence in M has a Cauchy subsequence.
We claim that M is totally bounded.
Let €>0 be given. Choose x,eM.
If B(x,, €) = M then obviously M is totally bounded.
If B(x,, €) # M, choose x,eM-B(x,, €) so that d(x,, x,)=€.
Now, if B(x,, e)UB(x,, €) =M the proof is complete.
If not choose x, = M—[B(x,, €)UB(x,, €)] and so on.
Suppose this process does not stop at a finite stage.
Then we obtain a sequence X, X,,.....,X_,.... such that d(x , x_) = € if n¥m.

Clearly this sequence (x_) cannot have a Cauchy subsequence which is a
contradiction.

Hence the above process stops at a finite stage and we get a finite set of points

oo M is totally bounded.

Conversely suppose M is totally bounded.

LetS, = {x,.l, X peennees X; yeenee } be a sequence in M.

If one term of the sequence is infinitely repeated then S, contains a constant
subsequence which is obviously a Cauchy subsequence.

Hence we assume that no term of S, is infinitely repeated so that the range of S
is infinite.

Now since M is totally bounded M can be covered by a finite number of open

. balls of radius -2-

129



Hence atleast one of these balls must contain an infinite number of terms of the

sequence S,.

¢o S, contains a subsequence S, = (le, X peeeresXg peeees ) all terms of which lie

1
within an openball of radius 7

Similarly S, contains a subsequence S; = (x3l, X3 0enes X3 peenes ) all terms of

1
which lie within an openball of radius 3

We repeat this process of forming successive subsequence and finally we take
the diagonal sequence.

We claim that S is a Cauchy subsequence of S,

If m>n, both Xm,_ and x_ lie within an open ball of radius e
n

oo d(Xmm, x“n) < ;

i 2
Hence d(xmm, xnn) <eifn,m> g

This shows that S is a Cauchy subsequence of S,.

Thus every sequence in M contains a Cauchy subsequence.

Corollarly :
A non-empty subset of a totally bounded set is totally bounded.

Proof :
Let A be a totally bounded subset of a metric space M.
Let B be a non-empty subset of A.
Let (x,) be a sequence in B.
oo (x_) is a sequence in A.
Since A is totally bounded (x_) has a Cauchy subsequence.

Thus every sequence in B has a Cauchy subsequence.

oo B is totally bounded.
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Definition :

A metric space M is said to be sequentially compact if every sequence in M
has a convergent subsequence.

Theorem 11 :

Let (x,) be a Cauchy sequence in a metric space M. If (x ) has a subsequence
(xnk) converging to X, then (x_) converges to x.

Proof :

Let €>0 be given. Since (x,) is a2 Cauchy sequence, there exists a positive

1
integer m,, such that d(x,x_ ) < > € foralln,m 2 m, -—-----(1)

Also since (xnk) — X, there exists a positive integer m, such that

d(xnk, x) < 3 € forallp,2m, = -eeeee- (2)
Let m, = max{m, m,} and fix n, 2 m,.

Then d(x, x) < d(x, xnk) + d(xnk, X)

< §+§- for all n 2 m,, (by (1) and (2))

e foralln2> m,,.

Hence (x,) = x.

Theorem 12 :
In a metric space M the following are equivalent.
(1) M is compact.
(i)  Any infinite subset of M has a limit point.
(1) M is sequentially compact.

(Iv) M is totally bounded and complete.

Proof :
(1) = (ii)
Let A be an infinite subset of M.

Suppose A has no limit point in M.
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Let xeM

Since x is not a limit point of A there exists an open ball B(x, r,) such that
B(x, r)N(A-{x}) = ¢

{{x} ifxeA

ooo B(X, I‘x)ﬁA = ¢ ifx gA

Now, {B(x, rx)/x eM} is open cover for M. Also each B(x, r,) covers atmost one

point of the infinite set A.

Hence this open cover cannot have a finite subcover which is a contradiction to (i).

Hence A has atleast one limit point.

(ii) = (iii). Let (x,) be a sequence in M. If one term of the sequence is infinitely
repeated then (x,) contains a constant subsequence which is convergent.

Otherwise (x,) has an infinite number of terms. By hypothesis this infinite set
has a limit point, say x.

For any r>0, the open ball B(x, r) contains infinite number of terms of the
sequence (X_).

Choose a positive integer n, such that xnlc-.B(x, 1). Then choose n,>n, such that

Xp, € B(x,%) :

In general for each positive integer K choose n, such that n,>n, , and

1
B| x,—

Clearly (an) is a subsequence of (x ).
o1
Also d(an, x) < X

oo (XHK) —2 X

Thus (an) 1s a convergent subsequence of (x_ ). Hence M is sequentially
compact.

(111) = (1v)
By hypothesis every sequence in M has a convergent subsequence. But every
convergent sequence is a Cauchy sequence.
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Thus every sequence in M has a Cauchy subsequence.

By theorem (10), M is totally bounded.

Now we prove that M is complete.

Let (x_) be a Cauchy sequence in M.

&% By hypothesis (x_) contains a convergent subsequence (an)
Let (an) —> X (say)

Then (x_) — x (by theorem (11))

o M is complete.

(iv) = (1)

Suppose M is not compact.

Then there exists an open cover {G_} for M which has no finite subcover.

1

Letr = —2‘5

Since M is totally bounded, M can be covered by a finite number of open balls

of radius I,.

Since M cannot be covered by a finite of Gals atleast one of these open balls,
say B(x,, r,) cannot be covered by a finite number of Gals.

Now B(x,, r,) is totally bounded.

Hence we can find x,eB(x,, r,) such that B(x,, r,) cannot be covered by a finite
number of G_'s.

Proceeding like this we obtain a sequence (x_) in M such that B(x , r|) cannot

be covercd by a finite number of G_'s and x_,,eB(x_, r,) for all n.
Now, d(x,, x, +p) < d(xp, X )HdX g X))t d(X wp1> Xn +IJ)

< rtr ottt
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L1, 1, +_1_)
- Szt

1
2n—1

<

e (x) 1s a Cauchy sequence in M.
Since M is complete there exists xeM such that (x,)—>x.
Now, xeG_, for some a.

Since G is open we can find €>0 such that B(x, €) < G, = - (1)

. 1
We have (x,)—>x and (r)) = (55‘)—)0.

Hence we can find a positive integer n, such that

d(x, x) < -;Te
and r, < 7€ foralln 2 n,.
Now fix n = n,
We claim that B(x,r) < B(x, €)
Let y € B(x,r,)
ao d(y, x)) < r,< 5 € (since n2n,)
Now d(y, x) < d(y, x Hd(x,, x)
< 'l- e+l € =€
22
& y € B(x, €)
oo B(x,,r,) c B(x, €)cG, (by (1))

Thus B(x,, r,) is covered by the single set G, which is a contradiction since
B(x,, r,) cannot be covered by a finite number of Guls.

Hence M is compact.
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Theorem 13 :

R with usual metric is complete.

Proof :

Let (x,) be a Cauchy sequence in R. Then (x) is a bounded sequence and hence
is contained in a closed interval [a, b].

Now [a, b] is compact and hence is complete.

Hence (x ) converges to some point x€[a, b]. Thus every Cauchy sequence (x,)
in R converges to some point x in R and hence R is complete.

Solved Problems :

Problem 1 :

Give an example of a closed and bounded subset of /, which is not compact.

Solution :
Consider 0 = (0, 0, O, ......... )el,
Consider the closed ball B[O, 1]
Clearly B0, 1] is a closed set.
We claim that B[O, 1] is not compact.
Consider ¢, = (1, 0, 0,....); e, = (0, 1, 0,....);....... e =(0,0,0,....,1,0,
Now, d(0, ¢ ) = 1 and hence e €B[0, 1] for all n.
Thus (e,) is a sequence in B[0, 1] |
Also d(e , € ) = .2 if n#m |
Hence the sequence (¢,) does not contain a Cauchy subsequence.
 B[0, 1] is not totally bounded.

o B[O, 1] is not compact.

Problem 2 :

Prove that any totally bounded metric space is separable.
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Solution :

Let M be a totally bounded metric space.

ny?

EB(xni,-l—) -M e (1)

i=1 n

For each natural number n let A_ = {xﬂx’ X

I
C8
>

=

Let A

Since each A_ is finite, A is a countable subset of M.
We claim that A is dense in M.
Let B(x, €) be any open ball.

1
Choose a natural number n such that -;<e.

Now, X € B(Xnia%) for some i (by (1)).
& d(x , x) < 1 <e€
i n
oo (xni) e B(x, €)
oo B(x,e) n A=

Thus every open ball in M has non-empty intersection with A. Hence A is dense
in M. Thus A is a countable dense subset of M. Hence M is separable.

Problem 3 :

Prove that any bounded sequence in R has a convergent subsequence.

Solution :

Let (x_) be a bounded sequence in R. Then there exists a closed interval [a, b]

such that x_e[a, b] for all n.
Thus (x ) is a sequence in the compact metric space [a,b].

Hence by theorem (12), (x,) has a convergent sub-sequence.
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Problem 4 :

Prove that the closure of a totally bounded set is totally bounded.

Solution :
Let A be a totally bounded subset of a metric space M.
We claim that A is totally bounded.
We show that every sequence in A contains a Cauchy subsequence.
Let (x,_) be a sequence in A. |

Let €>0 be given.

— 1
Then since x_€A, B(xnrg E)r\A # ¢.

1
Choose Y, € B(Xn,g G)mA
1
& d@px) < 3¢ e )

(y,) is a sequence in A. Since A is totally bounded (y,) contains a Cauchy
sequence say (ynK).

Hence there exists a natural number m such that

1
d(yni, ynj) < 3€ for all n,, nz2m e (2)
oo d(x,. xnj) < dx,, y, )y, y,,j)+d(y,,j, xnj)
1 1 1 oo
< §e+§e+-§e =e for all ni, nj 2m by (1) and (2).

Hence (an) is a Cauchy subsequence of (x ).

¢ A is totally bounded.

Problem 5 :

Let A be a totally bounded subset of R. Prove that A is compact.

Solution :

Since A is totally bounded A is also totally bounded.
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Also since A is a closed subset of R and R is complete A is complete.
Hence A is totally bounded and complete.

¢ A is compact.

Exercise :

1.

Ll ol O

Let M be a complete metric space. Prove that a closed subset A of M is compact
iff A is totally bounded.

Prove that a compact metric space is separable.
Prove that a connected subset of a discrete metric space M is compact.
Give an example of a complete metric space which is not compact.

Prove that any Cauchy sequence in a metric space is totally bounded.

COMPACTNESS AND CONTINUITY

Theorem 14 ;:

Let f be a continuous mapping from a compact metric space M, to any metric

space M,. Then f(M,) is compact. i.e., continuous image of a compact metric space is
compact.

Proof :

Without loss of generality we assume that fM,) =M,

Let {G,} be a family of open sets in M, such that NG, = M,.

UG, = f(M,)
oo f“l(UGa) = Ml
UG = M,

Also since f is continuous f“(Ga) is open in M, for each «.

& {f1(G,)} is an open cover for M;.

— n
> f I(U Gal) = M1

1=1
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n
& _UlGai =f(M,) =M,

1=

co Gal, Gaz""'Gan is a cover for M,. Thus the given open cover {G,} for M,

has a finite subcover.

oo M, is compact.

Corolarly 1:

Let f be a continuous map from a compact metric space M, into any metric M,
Then f(M,) is closed and bounded.

Proof :

f(M,) is compact and hence is closed and bounded.

Corollary 2 :

Any continuous real valued function f defined on a compact metric space is
bounded and attains its bounds.

Proof :
Let M be a compact metric space.

Let :M—R be a continuous real valued function. Then f(M) is a compact subset
of R.

% f(M) is a closed and bounded subset of R.
Since f(M) is bounded f is a bounded function.
Let a =lLu.b of f(M) and b = g.lb. of f(M).

By definition of l.u.b. and g.1.b. a, be f(M)
But f(M) is closed. Hence f{M) = f(M)

oo a,b e f(M)

o There exist x, y € M such that f(x) = a and f(y) =b.

Hence f attains its bounds.
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Note :

Corollary (2) 1s not true if M is not compact.

1 :
The function f:(0, 1) R defined by f(x) = " is continuous but not bounded.

The function g : (0, 1)—=>R defined by g(x) = x is bounded having /.ub = 1 and
g.l.b. = 0. However this function never attains these bounds at any point in (0, 1).

Theorem 15 :

Any continuous mapping f defined on a compact metric space (M,, d,) into any
other metric space (M,, d,) is uniformly continuous on M,.

Proof :
Let €>0 be given. Let xeM,.

Since f is continuuos at x there exists Sx > 0 such that

1
d,(y, <0, = d,{fy), fx))<5¢ - (1)

1
The family of open balls {B(Xs“i 5)() / X EMI} is an open cover for M.

Since M, is compact this open cover has a finite subcover say

1 1
B(XI,‘:}:&X] ),..., B(XB,ES}(H)

1

.11
Letd = mm{-z-le,....—z-&xn}

We claim that d,(p, q)<6 = d,(f(p), f(g))<e.

1 . .
LetP € B(Xir2-5xi) for some i where 1si<n.

Fo d,(p, x;) < '21"5xi
aff), o)) < 5 by() e @
Now, d(q, x;)) = di(q, p)+d,(p, x)

< 5"'%5):,-
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1 1
Thus d,(q, x)) < SXi
1
4,(f@), fx)) < e @y®) - 3)

2
d,(f(p), f(@)) < d,(f(p), f(x))+d,(f(x,), ()

< Setze=c (by (@) and 3)

Thus d,(p,q) <8 = dy(f(p), l@)<e.
This proves that f is uniformly continuous on M;.

Note : The above theorem is not true if M, is not compact.

Theorem 16 :

Let f be a 1-1 continuous function from a compact metric space M, onto any
metric space M,. Then f-! is continuous on M,. Hence f is a homeomorphism from M,
onto M,

Proof :

We shall show that f! is continuous by proving that F is a closed set in
M, = (F1)I(F) = f(F)is a closed set in M,,.

Let F be a closed set in M,.
Since M, is compact F is compact.

Since f is continuous f(F) is a compact subset of M,
& f(F) is a closed subset of M,

& 1 is continuous on M,. -
Solved Problems :

Problems 1 :

Prove that the range of a continuous real valued function f on a compact
connected metric space M must be either a single point or a closed and bounded
interval.
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Solution :

Let f: M—)R be a continuous function.

Case (i) :

Suppose f is a constant function. Then the range of f is a single point.

Case (ii) :

Suppose f is not a constant function. Then the range of f contains more than one
point. Since M is connected f(M) is a connected subset of R.

os f(M) is an interval in R.

Also since M is compact and f is continuous
f(M) is a compact subset of R.

& f(M) is a closed and bounded subset of R.

Thus f(M) is a closed and bounded interval of R.

Problem 2 :

Prove that any continuous function f:[é, b]—R is not onto.

Solution :

Suppose f is onto. Then f([a, b]) = R. Since [a, b] is compact and f is
continuous, f([a, b])=R is compact which is a contradiction.

o f is not onto.

Exercise :

1. Prove that any continuous function from a compact metric space to any other
metric space is a closed map.

2. Does there exist a continuous function f from [a, b] onto (a, b)?

3. Prove that any continuous -function defined cn a closed interval [a, b] is
bounded and attains its bounds and also prove that f is uniformly continuous.
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COMPLEX ANALYSIS UNIT - 6 -

COMPLEX NUMBERS

We observe that in the real number system the equation x2+1 = 0 has no
solution. This leads to the definition of complex numbers in which equations of the
form x2+a=0 where a>0, have solutions.

Definition :

A complex number Z is of the form x+iy where x and y are real numbers and i
an imaginary unit with the property i = —1. x and y are called the real and imaginary
parts of z and we write X =Re z and y = Im z.

If x = 0 the complex number z is called purely imaginary. If y = O then z is real.

Two complex numbers are said to be equal if and only if they have the same real
parts and the same imaginary parts.

Let C denote the set of all complex numbers. Thus C = {x+iy/x,yeR}

The complex number x-ty is said to be the conjugate of x+iy.

ALGEBRAIC OPERATIONS
Complex numbers are assumed to obey the following laws of Algebra.
1. Addition :
z+z, = (X Hy ) (X Hy,) = (X Hxp) iy, +y,)
2. Subtraction :
22, = (X, Hy (X, Hy,) = (=X )H(Y,-Y,)
We note that
z+z = (x+iy) + (x-1y) = 2x

z—z = (x+1y)—-(x~iy) = 2iy

Z+2Z

sothat x=Rez= 3
- I _z—E
y=mz==,
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3. Multiplication :
2,2y = (x1+iyl)(xz+iY2)
= XX HX, Y, Xy, +HY Y,

= (xlxz_ylyZ)+i(x1Y2+xzyl) ¢ i2=-1)

zz = (xHy)(x-iy) = x>y’
4.  Division
2] X] +iy] : (x2 —iy,)
—_— = " = xl +IY1 . .
z3  Xp+iys ( ) (x2 +iy2)(x2 —iy2)
(x1+iy1)(x2 —iy2)
= 2
X3+Y)
(x1x2 +y1y2) +i(x2y1 — X152)
- x% + y%
Results :
1. 2=-1, #¥=4, =1, =1, (@(@)'=i, @H"?=-1, @O =4
2, If z, and z, are two complex numbers, then
() z1+2z3 =71+ 23
(i) z1z; =21 2
3. z = z iff z is real and z = —z iff z is imaginary.
4. If the coefficients in a polynomial equation are real, then its complex roots form
pairs of complex conjugate.
Worked Examples :
Example 1 :
Express the following in the form (a+ib)
1 -1 2-i
@37 O O3
) 1 2-2i 1-i 1 i
8 2421 4+4 4 4 4
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®) = —(1+2i) _ —(1+2i) 1 2i

— — —

1-2i 1+4 5 5 5

©) 2-1 _ (2-i)(3-2i) _ (6-2)-i(3+4)

3+2i1 9+4 13

4-7i 4 7.

= — ——i

13 13 13

It

Example 2 :

Show that if the equation z2+az+B = 0 has a pair of complex conjugate roots,
then o and B are both real and a2<4.

Solution :

Let z, = Xxitiy, be a root.

Then z; = Xx,-iy, is also a root.

So, z>taz+p = 0 —
and z“+azg+p = 0 e (2)

) -@) = 22 -7% +a(z-7) = 0

. - 4-7° __(a+@)fa-z)
21— 21 z] -z}
= —(zl+_z_1)=—-2x,.

(D+@Q) = 22 +7 +azy+2))+2p =0
i.e., (x,Hy,)+(x,-iy,)2-2x,(2x,)+2B = 0
ie, 2x,2-2y24x2+28 = 0
i.e., B = x2+y?
o =-2x,, p =x,2+y,> = o and B are real.
o’—4p = 4x,2-(4x,2+4y?)
= —4y?<0

i.e., a? < 4.
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Example 3 :

The sum and the product of two complex numbers are real. Show that the two
numbers are either both real or complex conjugates.
Solution :

Let z, = a+ib, z, = c+id be the two complex numbers.

z,+z, = (atc)+i(b+d)
z,z, = (ac-bd)+i(ad+bc)
z,+z, = real=>b+d=0,ie,b=-d
Z,2, = real = ad+bc =0
i.e., adcd = 0 (. b=-qd)
ie., (a—¢c)d = O

cdod=0ora-c=0 ie,a=c

Ifd =0, b =0 and so, the two numbers are real
If a=c then b = —d gives

z, = atib, z, = a—ib

i.e., z, and z, are complex conjugates.

MODULUS AND AMPLITUDE OF A COMPLEX NUMBER

If z = x+iy, then zz=x2+y? is a positive real number.

We define the modulus or the absolute value of a complex number z to be the

non negative real number (\/ X%+ Y2) and dengte it as |z|.
ie. Izl = [x+yl = 2 +y? = Jzz

Note :

If z is real, i.e., if Im z = y = 0 so that z = x, |z| = ./,2 non negative square root
X q

of x2.
‘ = xifx20
= xifx<0
. X Y
The angle 0 satisfying the equation cos 0 = -I;l’ sin 0 =‘|';| ------- (A)

is defined as the argument or the amplitude of the complex number z.
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We know that if O is a solution (2nm+0) is also a solution for every integer n.
Thus there are infinite number of solutions to the above equation (A). The value of 0
satisfying the inequality —n<0<m is called the principal value of the argument and
(2nn+0) its general value.

Note 1 :

If z is real, i.e., if z = x and y = 0 then the principal value of the argument of z
is 0 or m according as X is positive or negative.

If z is imaginary, i.e., if z = iy and x = 0 then the principal value of the
argument of z is (= n/2) according as y is positive or negative.

Note 2 :

X
If for z = x+iy, |zJ=r and 0O is teh argument, then T =cos 0, %— = sin 0

So z = xtiy=rcos 0 +ir sin O
= r{(cos O +1-sin 0)

called the polar form of the complex number.

rcis 6 — a convenient notation

r ¢ i® — Euler's notation.

Example :

Find the moduli and principal values of arguments of the following complex
numbers.

() Z = 1443
2l = Jiz3 =2
1
Cos 6 = 2
Sinf = I:i
2
T
00 9 - -
3
T
00 = 2, = -
|z| argz= 3
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(i1) ‘ z = 1
o iz| = 1
CosB6 = 1, sin6=0
o 0 = 0
oo lz}] = 1l,argz=20
(111) - z = —i
oo lz} =
Cos® = 0
sin9 = -1
oo 6 = —m/2
Izl = 1
argz = —m/2
(iv) | z = 243i-2
2l = Jiz+a =4
cos 6 = --g-'=—-—l'-,sine=2‘/-5=‘/5
4 2 4 2
v} 27
6= " 3=7%
lz] = 4,
27
argz = -

PROPERTIES OF MODULUS OF A COMPLEX NUMBER

Result 1 :

If z, z,, z, are any three complex numbers then
(1) |-zl = |z
(i) |zl =1z
(iii) zz = |z}?
(V)  |z; z,| = |z,] |z,]
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Proof of (iv) iz, z,? = (z122Xz122)
= (z122X=z1 22)

= (z1z1)(z2 22)

= |z, Iz,P
oo : Iz, z,| = lz,| Iz,
Corollary :
© z| |z
z2 IZZI
(i1) Iz, z,........ z| = Izl 1z,l--....clz,)
lz° = |z
Result 2 :

If z, z,, z, are any three complex numbers
(1) —jz] < Re z < |z]
(i) —zl<sImz<|zf
(iii) |z} < |Re z| + |Im z|
(V) 2,2, < Iz, |+,

v) |Zl"zzl = l‘zl l_lzzll

Proof :

i) |z|=‘/x2+y2 Rez=x,Imz=y
Clearly -—\/xz +y2 <x=< \/xz +y2
(i1) Also —\/ x2 +y2 <y< \/ x2 + y2
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(i11)
ooo
1.e.,
Gv)
O°°
v)
i.e.,
1.€.,
Hence

Corollary :

(x| +lyD?

Sy

|z]
IZI+Z2|2
IZ1+Zzl
|le

|z 1 |_lzzl
Izzl
|Z2|—lzl I
“Z1 I“Izz'l

|z, +z,+....+z |

v o

IA

IA

IA

IA

IA

IA

I

IA

IA

IA

IA

IA

A

IxPHHyP+21x]lyl
x2+y?+2x|ly|
x2+y?

i+l

[Re z|+|{Im z|

(z1+22)(z1 +22)
(z1+22)(z1 +22)

(z121 + 2222) +(z122 + 2122)

(121 +z2f*) + 2 Re(2172)

121 +Hzaf +2121 73] by ()
|z, P+z,P+2lz ||z,
(z 1‘|+|Zzl)2

1z, 1+z,|
I(z,—2z,)+2,)
|z,—2,]+|z,)|

|z 1"Z2|

|2,—2,+2]

1z,—2, [ Hz,]

|z, —2Z,l+z,]

|z, —2,]

IZI—Zzl

150



PROPERTIES OF ARGUMENTS OF A COMPLEX NUMBER

Result 1 :
(1) v arg z
(i) arg z, z,

Proof :

(1) Let Z
Then P
g arg z
(i1) Let z,
Zy
Z,Z,
Hence arg z,z,

We note that we may have to

Cbrollary :

arg (z, z,....-.. z )+2nn

Result 2 :

H

—arg z

arg z, + arg z,

r(cos O + 1 sin )
r(cos O — i sin 0)
r(cos (—0) + 1 sin (-9))
-0 = —'arg z.
r,(cos 0, +1i sin 615
r,(cos 0, +i sin 0,)
1,r,(cos 0, + i sin 8,)(cos 8, + i sin 6,)
r,r,[(cos ©; cos 6, — sin 0, sin 0,)]
+ i(cas 0, + sin 6, + sin 0, cos 6,)]
r,r,[cos(0, + 6,)+i sin (6,+6,)]
914—92=argzl+.argz2

add 2n to L.H.S. if necessary.

arg z, + arg z, +...... + arg z_ for a suitable n.

Ifz, z,, z, are complex numbers, then

_ 1
@) arg —
. Z

I

—arg z

arg z, — arg z,
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Proof :

(i) Let z = r(cos 0 +1isin 0)
1 1 1 .
z  1(cos®+isin@) ;(cose_l sin6)
= l[cos(—9)+i sin(~0)]
r
1
oo _ arg 7 (-0) = —arg z.
s 4 argz) +arg 1
(i1) arg 2z 821 Z2
= argz, —argz,
1 . .
Note : cosO+isin® - cos 0 —isin O

Result 3 : De Moiore's Theorem

(i) For any integer n, (cos 0 + i sin O)" = cos nO + i sin nO

(i) Cos nO + i sin nO is one of the values of (cos © + i sin 0)" for a rational
number n.

Note :
1, ®, 0,......,0"! are n roots of 1 where

. &N
® = Cls—
nA

.2\
0! = (CIS—I—:-E) =cis2n=1

Example 1 :

Evaluate (i)!/7

. T .. ™. T
i = lcos—+isin— = cis—
2 2 2

152



O

. T . 5 .
Cis—-, cis—, cis

14 14 1S

Example 2 :
Show that

|z1-|~z2|2+|zl—zzl2

Proof :

Izl—l—zzlzﬂzl—zzl2

Example 3 :

If one of |a| and }b] is equal to 1, show that

Proof :

a-b 2

1—-ab

If |af or |b| is equal to 1,

a-b 2
1—-ab

2(1z1 ?rlzzF)

(z1+22)(z1 +22) + (21— 22 )(z1 — 22)
(z1+22)(21 +22) + (21 — 22 /(21 — 23)

(121 + 2223) + (2122 + Z123) + (2171 + 22 23)

~(z122 +2123)
2A|zaf Hza)
1:51) =L
a-b2  (a-b)a-b)

1-abf ~ (1-ab)(1-ab)
aa+bb-ab-ab
1+aabb—ab—-ab

laf® +|b[> —(ab + ab)

1+/af? |bf —(ab + ab)
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| Example 4 :
Show that

i-zzaf -z = (Haf)1-zf)
-z2zof —| -2 = (1-zZ2)(1-2172)~(21-22)(21-22)
= (1-zz3-2123 + 112122 2))
~(z121- 2122 - 7122 + 2222)
= ol Pl Pl

(-2, (1-z,P)

'EQUATION OF STRAIGHT LINE

Let A, B, P be the points in the complex plane representing the complex
numbers a, b, z respectively. Then the complex number z—a, z-b are represented by the

_— = Z—a :
vectors AP and BP respectively. ¢% The principal value of arg(z_b) gives the angle

between the line segment AP and BP taken in the appropriate sense.

Z—a
If z, a, b are collinear then arg(z_b) =0 or m.

Z—a

o S 1s real.
z—a _ (z-a
o0 z_b - Z—b
. z-a _ z—a
°° z—b z-b :
&  (z—-a)(z-b)-(z-b)(z-a) = O
(3-B)z—(a—b)z+(ab-ab) = 0
o0 (E—E)z—(a—b)2+2i Im(aE) = (

&% i(a-b)z—i(a-b)z-2Im(adb) = 0

This equation is of the form az+az+p = 0 where o # 0 and B is real.
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Any equation of the above form represents a straight line. This can be easily
seen by changing the above equatién into cartesian form. ¢ The general equationof a
straight line is given by az+oaz+B = 0 where a # 0 and B is real.

Theorem 1 :

Equation of the line joining a and b is (a—b)z+(b—a)z+(ab—ab) = 0.

Theorem 2 :

If a and b are two distinct complex numbers where b0, then the equation
z = a+tb where t is a real parameter represents a straight line passing through a point a
and parallel to b.

Proof :
Let z be any point on the line passing through a and parallel to b.
The vectors represented by z—a and b are parallel.

Hence z—a = tb for some real number t.

¢ z = a+tb, which is the equation of the required straight line.

Definition :

Two points P and Q are called reflection points for a given straight line / iff / is
the perpendicular bisector of the segment PQ.

Theorem 3 : -

| The points z, and z, are reflection points for the line az+az+p = 0 iff
azj+azy + = 0.

Proof :

Let z, and z, be reflection points for the straight line az+az+p =0 ---—c—-- (1)

do For any point z on the line we have

lz—z,| = |z-z,)|
% lz-z,* = |-z,
8 (z-z1)(z-271) = (z2-23)(z~723)
® Az2-2)+ 2z -z)+zmz-2z, = 0 )
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Since the equation is true for any point z on the given line it must be regarded
as the equation of the given line.

oo From (1) and (2) we get
o a B
. 3-7

-7 nz-2325 X 5Y)

&% a=K(zy-2z1); a =K(zp - 7)) and B=K(z12] — 2273)

S azj+azz+p = Kz(zz-71)+7%(zz - 21) +(z171 ~ 222
= 0
Conversely, suppose az; +az; + =0 cmeeen (3)

Subtracting (3) from (1) we get a(z—z;)+a(z-73) =0

ie., a(z—z)) = -a(z-2z3)
co r&, )Z - Zl, = (1”2 - Ez—l
0o IZ—ZIl = 2—5

= |z—12y| = |z—z,| for any point z on the given line.
oo Z; and z, are reflection points for the line (1).
GENERAL EQUATION OF CIRCLES
Equation of the circle with centre a and radius r is given by |z—a] = r.
ie., (z—a)(z—a) =r?
ie., zz—az—az+aa—12 =0
This equation is of the form zz+az +‘0c2+]3 = 0 where B is a real number.

Any equation of the above form can be rewritten as |z+a|?> = a.a—B and hence

represent a circle provided oo —B>0,

Thus the general equation of a circle is given by zz+az+az+B = 0 where B is

real and oo — >0,
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Definition :

Two points P and Q are said to be inverse points with respect to a circle with
centre O and radius r if Q lies on the ray OP and OP. OQ = r2.

Theorem 4 :

z, and z, are inverse pionts with respect to a circle zz+oaz+az+p = 0 iff

z15+6z1+a5+[3 = 0.

Proof :

Suppose z, and z, are inverse points with respect to the circle
zz+oz+az+fp = 0 e (1)
(1) can be rewritten as |z+af? = aa—f

& The centre of the circle is —a and radius is 1/(oca—ﬂ) :

Since z, and z, are inverse points with respect to (1) we have

arg(z,ta) = arg(z,¥¢) @ eme—e (2)
and lz,*a| |z,7a| = aax-Bp 20000 mee (3)
& arg(zp+a)zp+a) = arg(z)+o)+arg(zy +a)

= arg(z;+a)-arg(z; +a)

= 0 by(2)

o (z1+a)(zz +a) is a positive real number

Hence using (3) we get (zj+a)(z3+a) = aa—B.
co ZIZ'*'EZI +(15+B =0
Converse can be similarly proved.

Note 1 :

Let z,, z,, z; and z, be four distinct points which are either concyclic or
collinear.

- (21— 23)(z2 —24)

o HB (21 —24)(22 - 23)

is either 0 or n depending on the relative positions of

the points.
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(z1-23)(22 ~24)
(z1-24)(2z2 - 23)

Hence is purely real.

Note 2 :

The equation pzz+az+az+g=0 - (1)
where p and B are real and oo — pp > 0 can be taken as the joint equation of the family
of circles and straight lines.

When p # O it represents a circle.

When p = 0 it represents a straight line.

Further z, and z, are inverse points or reflection points w.r.t. (1) iff
pzizg +azy+azy +B = 0.

Worked Examples :
Example 1 :

Z—17

Prove that the equation = A where A is a non negative parameter

represents a family of circles such that z, and z, are inverse points for every memberof
the family.

Solution :
z-z1|
z-17p|
Z—-71 2——2_1
- ()R
= (1—12)z§+(25?»2 ~§I)z+(zzk2 —ZI)E+(ZIEI—AZZZZ) =  — (1)

o% (1) represents a circle when A # 1.
Using theorem (4) it can be verified that z, and z, are inverse points w.r.t. (1).

When A = 1, the given equation represents a straight line which is the
perpendicular bisector of the line segment joining z, and z,.

Clearly z, and z, are reflections points for this line.
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Example 2 :

Z—a
z-b
circles every member of which passes thruogh a and b.

Prove that arg( ) = u where p is a real parameter, represents a familyof

Solution :

zZ—a
z-b
angle between the lines joining a to z and b to z is p.

For any fixed value p, arg( ) = u is the locus of a point z such that the

Clearly this locus is the arc of a circle passing through a and b. The-remaining

zZ—a
z—b

part of the circle is represented by the equation arg( ) = u+n. Hence the result

follows.

Exercise :

. -2
1. Find one value of arg z where z = 17173
2. Show that the inverse point of any point o with respect to the unit circle |z| = 1
is 1/a.
3. Find the inverse point of —i with respect to the circle 2zz+(i—1)z—(i+1)z = 0.
4, Find the equation of the circle passing through the points 1, i, 1-H.
5. Prove that the equation of the circle passing through three points z,, z,, z, is
given by

(z-z)(z3-23) (z-2z1)(z3-7))

(z-z2)(z3-21) ~ (z-22)(z3~ 1)

(z-z1)(z3~23) |
(z-23)(z3-21) is purely real.

Hint : If z is any point on the circle then
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COMPLEX ANALYSIS UNIT -7

ANALYTIC FUNCTIONS

We know that the distance between two points z, and z, in the complex plane is
|z,~z,|. Hence the set C of complex numbers becomes a metric space with the metric d
defined by d(z,, z,) = |z,—z,|. So we can talk about neighbourhood, interior point, open

set, closed set, limit point, connected set etc. in the complex plane.

Definition :

Let z, be any complex number. Let € be a positive real number. Then the set of
all points z satisfying |z—zj|<e is called a neighbourhood of z, and is represented by

N_(z,) or S(z,, €).

& N_(z,) = {zllz—z,l<e}

Note :

|z—z,| < € represents the set of points on and inside the circle with centre z; and

radius € and is called the closed circular disc with centre z, and radius €.

Definition :

Let ScC. Let z,eS. Then z is said to be an interior point of S if there exists a
neighbourhood N_(z,) such that N_(z,)c<S.

S is called an open set if every point of S is an interior point of S.

Definition :

Let ScC. Let z,eC. Then z, is called a limit point of S if every neighbourhood

of z, contain infinitely many points of S.

S is called a closed set if it contains all its limit points.

Definition :

Let ScC. Let z,€C. Then z, is called a boundary point of S if z, is a limit
point of both S and C-S. Thus z, is a boundary point of S iff evry neighbourhood of z,
contains infinitely many pionts of S and infinitely many points of C-S.
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Definition :

Let ScC. Then S is called a bounded set if there exists a real number K such
that |z|<K for all zeS.

Definition :

Let ScC. Then S is called a connected set if every pair of points in S can be
joined by a polygon which lies in S.

Definition :

A non empty open connected subset of C is called a region in C.

Functions of a complex variable :

We use the letters z and ® to denote complex variables. Thus to denote a
complex valued function of & complex variable we use the notation w = (z).

The function w = iz+3 is defined in the entire complex plane.

The function w = -2 1 is defined at all points of the complex plane except at
7 ;

Z = %,

The function w = |z] is defined in the entire complex plane and this is a real
valued function of the complex variable z.

If a,, a,, a,,.....,a are complex constants the function P(z) = a +a,z+....+a z" is
defined in the entire complex plane and is called a polynomial in z. If P(z) and Q(z)

P(z .
are polynomials the quotient 6(5)5 is called a rational function and it is defined for all

z wtih Q(z) # 0.
The function f(z) = x*+y*+i(x2+y?) is defined over the entire complex plane.

In general if u(x, y) and v(x, y) are real valued functions of two variables both
defined on a region S of the complex plane then

f(z) = u(x, y)+iv(x,y) is a complex valued function defined on S.

Conversely each complex function w={(z) can be put in the form w=f(z) =
u(x,y)+iv(x,y) where u and v are real valued functions of the real variables x and
y-.u(x,y) is called the real part and v(x,y) is called the imaginary part of the function

f(z).
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For example f(z) = z2= (x+iy)?
= (x2—yH)+i(2xy) so that
u(x,y) = x>y

and v(x,y) = 2xy
Limits

Let w = f(z) be a function defined in some region containing a point z; except at
the point z,. As z approaches z, the value f(z) of the function is arbitrarily close to a
complex number /. Then we say that the limit of the function f(z) as z approaches z, is /.
Definition :

A function w=f(z) is said to have the limit / as z tends to z, if given €>0 there

Lt f(z)

VA &) =1L

exists 8>0 such that 0<|z—z,|<6 = [f(z)-l|<e. We write

Lemma :
When the limit of a function f(z) exists as z tends to z, then the limit has a

unique value.

Proof :

Lt f(z)

Suppose that , 7

has two values /; and ,. Then given €>0 there exists ,

€
and 8,>0 such that 0<|z2,|<8, = [f(z}-},| < > and 0<|z2,|<8, = |f2}-1;| < —26-

Let 8 =min{d,, d,}
If 0<|z—z,|<d we have
1~ = | —f(z)+f(z)-1,)
< |f(2)-, [Hi(2)-

. €&
272 €

Since €>0 is arbitrary |/,—/,| = 0 so that [, = L,
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Example 1 :
z2 -4

Lt =4
z—>2 2—2

Solution :

2
Let f(z) = z _4. f(z) is not defined at z = 2 and when z # 2 we have
(z+2)(z-2)
f(z) = _— y/
oo If(z)-4| = |z+2-4|=|z-2| when z # 2

Given €>0, we choose d = €

Then 0<|z-2|<8 = |f(z)—4|<€.

o Lt f(z)=4

)

Example 2 :

The function f(z)= % does not have a limit as z—0.

Solution :

Suppose z—0 along the path y = mx

X—1 1-i
Along this path f(z) = x+1$xx = 1+;$ asx # 0,

1+1m

Hence if z—0 along the path y=mx, f(z) tends to which is different for

different values of m.

Hence f(z) does not have a limit as z—0.
Definition :

We say ZI":OC f(z) = [ if given €>0 there exists a number m>0 such that |z| > m
= |f(z)-l|<e.

163



Lt f(z) = o if for given n>0 there exists m>0 such that {z[>m =

We say that Zyom

[f(z)>n.

Theorems on Limit :

Let f and g be two functions whose limits at z,; exist.
Lt f(z)

Let z>2g = [
Lt Z
and Z->2 g( ) = m
Then
(i) S f(z)g(z) = 5
f(z)
Lt AL O .
(a11) 22 g( 2) m provided m # 0.
. f -
(iv) If zl';tz 0 (2) - [ then Z_I;tzom = J
Proof :

Let €>0 be given. Then there exists 3>0 such that 0<|z—z|<d = |f(z)-/|<e.

f@)-1 = [f(2)-] = if2)~

0<|z~2,|<6 = f(z)-1| < e so that Z_Etz()?(z—) = 7.

v 1 Y (Do jhen U Olf(z)l = |l

Z—>2Zg ZZ
Proof :
If@)i~t] < [f(z)-I| and hence
0<|z~z,<8 = [[f(2)}-ll<e
o Lt |f(z)] _
oo Z——)ZOI ( )I - m
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(vi) Z_I;‘Zof(z)=liff Lt Ref(z) _Re;ana Lt 1 f(2) - m ).

Z—r2) Z—>Z
Proof :
Lt f(z
Let 252 (z) - /
since Re f(z) = -;-[f(z)+f(5) we have
Lt Ref(z) _ l[ Lt f(z)+ Lt f(E)}
Z—120 2} z2g zZ—>Z
1 <
= —(I+!
L)
= Rel.
Simi Lt Imf(z) _
imilarly 7 = Iml

Lt Ref(z)_pejandiet Lt M1 (2)—tm 1. Since f(z)=Re (z)

Conversely, let , 7 252

+iIm f(2) it follows that | =t T2 —Re/+im1=1

Z—>Z)

Exercise :

1. Express each of the following functions in the form u(x, y)+Hiv(x, y)

- Z
Gyw=z, (ii)w=22+1, (iii) W=7

2. Use the definition of limit to prove

It az+b

732 = az,+ b.

Xy
3. Prove that f(z) = 24 y2 , z#0 does not have a limit as z—0.

4. Evaluate the following limits.

2
: Lt (2x+i
(1) z_’tZi( X+ly2)
. (z+3)(z-4)
Lt
(i) z—>—21 zz+52+9
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CONTINUOUS FUNCTIONS

Definition :

Let f be a complex valued function defined on a region D of the complex plane.

Let z,eD. Then f is said to be continuous at z, if Z_I_;tZO f(z) - 1(z,).

Thus f is continuous at z, if given €>0 there exists a >0 such that |z—z|<6 =
f(z)-f(zp)l<e.

f is said to be continuous in D if it is continuous at each piont of D.

Theorems :

- f
(i) If f and g are continuous at z, then f+g, fg and f are continuous at z, and E is

continuous at z, if g(z,)#0.
(i)  If fis continuous at z,, then [f] is also continuous at z,.
(iii)) If fis continuous at z, iff Re f and Im f are continuous at z,.
(iv) Any polynomial P(z) is continuous at eacih point of the complex plane and any

P(z
rational function QE z)) is continuous at all points where Q(z) = 0.

DIFFERENTIABILITY

Definition :

Let f be a complex function defined in a region D and let zeD. Then f is said to

f(z+h)-f
be differentiable at z if Lt (z+h)-f(z)
h—0 h

exists and is finite. This limit is denoted by

df
f'(z) or-&; and is called the derivative of f(z) at z.

The function is said to be differentiable in D if it is differentiable at all points of
D.

Example 1 :
The function f(z) = z2 is differentiable at every point and f'(z) = 2z.
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Proof :

f(z+h)-f(z) _ (z+h)2 ~72

h h
= 2z+h
. f(z+h)-f(z) Lt (2z+h
o0 hI—J:O h = h—>0( ) =2z
oo f’(Z) = 2z

Example 2 :

The function f(z) = z is nowhere differentiable.

Proof :

f(z+h)-f(z) _ (z¥h)-Z
. =

=

N
4+
= S:II"I
NI
= | =

Lt — dées not exist.
h—0h

f(z) = z is nowhere differentiable.

Example 3 :

If f(z) is differentiative at a point z then it is continuous at that point.

Proof :

z4+h)~f(z f(z+h)-1(z)
L] - [T 4

= f(z) x0
= 0

& th f(z+h) - f(z) so that f is continuous at z.
—0

The converse of the above result is-not true. For example, f(z) = z is continuous
everywhere but it is nowhere differentiable.
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Theorems :

()
(i)

(iii)

(iv)

v)

(vi)

(vii)

Let f(z) and g(z) be differentiable at a point z. Then
(f+g)' (z) = f'(2) + g'(2)
(fg)' (2) = f(z)g'(2) + f'(z)g(2)

( _f_]' () - f'(z)g(z) - f(z)g'(2)
g

[g,(z)]z provided g(z) # 0.

Suppose g is differentiable at z and f is differentiable at g(z). Let F(z) = f(g(z)_).
Then F'(z) = 1'(g(2)) g'(2).

Let n be any positive integer. The function f(z) = z" is differentiable at every

point and f'(z) = n z™!.

The polynomial P(z) = a0+alz+azzz+ ..... +a_z" is differentiable at every point and -

! = n—1
P'(z) = a,*2a,z+....tna z

If n is a negative integer f(z) = z" is differentiable at every point z#0 and f'(z) =

n zo-1,

Exercise :

1. Find the derivative of the following functions

() z2+3z+1 i 2

2z+3
z-1., : :
2. Prove that f(z) = 71 is differentiable at every point z # —1 and find f(z).
3. Prove that f(z) = Re z is not differentiable at any point.
THE CAUCHY - RIEMANN EQUATIONS

Theorem :

Let f(z) = u(x, y)+iv(x, y) be differentiable at a point z, = x +iy,. Then u(x, y)

and v(x, y) have first order partial derivatives u,(x,,y,), u (Xg, ¥o)s Vi(X4Y,) and
v(Xq, ¥y) at (X,> ¥,) and these partial derivatives satisfy the Cauchy-Riemann equations

(C.R.equations) given by
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u(Xe, Yo) = V(X5 ¥p)
and uy(xo, Yo) = Vi (Xg ¥p)
Also f'(zy)) = v, (X yo) + 1V, (Xg5 ¥o)

= Vy(XO, Y()) —1i uy(x(), y())

Proof :
Since f(z) = u(x, y)+iv(x,- y) is differentiable at z, = x,tiy,,
f(zg +h)-1(z0) . . —
hI—J:O b exists and hence the limit is independent of the path in which h

approaches zero.

Let h=h,+ih,

f(zg +h) - f(zo)
h

Now

u(xg +hy,yo +hp) +iv(xg + hy, yo + ha ) —u(xg,yo) —iv(x0, ¥o)
h1+ih2

u(xg +hi,yg+ha)-u(xg,y0) |, | v(xo+hy,yo+ hy ) - v(x9,y0)
hy +1ihy h; +1hy

Suppose h—0 along the real axis so that h=h,.

Lt [f(zo +hy) - f(Zo)]

hy—0 |

Then f'(z)) =

L |:u(X0+hleO)‘u(X0,YO)]+i Lt [v(x0+h1,y0)—v(x0,y0)]
h;—0 h h;—0 hy

= ux(xo’ Y()) +1 VK(XO, Y()) ““““ (1)

Now, suppose h—0 along the imaginary axis so that h =1 h,,.

Lt [f(zo +hy) - f(Zo)]

ihy —0 ihy

oo f '(ZO) =

.y [u(xo,yo+T}2)~‘1(Xo,yo)]+i Ls [V(Xo,ymﬁz)-"(xwm)]
hy—0 ihy hy—0 ihy
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1

_ [ “y(xp,}'o)} +i[ Vy(xp,YO)J

1

= T, (Xg> Yo) + V(%4 ¥p)

B R 1) —— )
From (1) and (2) we get
f(zo) = u(xg yH v, (x4 ¥y)
= Vy(Xgs Yo)i u(xy, ¥o)

Equating real and imaginary parts we get

0, Yo) = V(Xp» ¥p)
uy(xo’ yo) = "Vx(xo: yo)
Remark 1 :
Since f(z) = uHv, = vy—i u, we have
lfr(z)lz = ux2+vx2 = uy2+vy2
Also If'(2))? = ux2+uy2= vx2+vy2
Further f@P? = u, vy~ u v,
Ux Uyl 8(u,v)
O vx vyl a(x,y)
Remark 2 :

The Cauchy-Riemann equations provide a necessary condition for
differentiability at a point. Hence if the C.R. equations are not satisfied for a complex
function at any point then we can conclude that the function is not differentiable. For

example, consider the function.

fz) = z=x-iy
X

u(x,y) =
and viX,y) = -y
oo ux,y) = 1
and vy(x, y) = -1

co u, # v, so that C.R. equations are not satisfied at any point z,
Hence the function f(z) = z is nowhere differentiable.
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Remarks 3 :

The C.R. equations are not sufficient for differentiability at a point.

Example :
Let f(z)
u(x, y)
v(x, y)
u, (0, 0)
Similarly uy(O, 0)

Also v (0,0) =0 and vy(O,

Xy
ifz#0
*x2+y2
| 0 ifz=0
——— if (x,y) #(0,0)

‘<~

O if (x,y)=(0,0)

= 0

L u(h,O)—u(0,0)]
h—>0[ _ h

= Lt 0- O:l =0
h—»>oL h

= 0

0) = 0.

Hence the C.R. equations are satisfied at z=0.

Now, along the path y = mx

f(z) =

Hence if z—0 along the path y = mx, f(z)>

different values of m.

Hence f(z) does not have a limit as z—0 so that f(z) is not even continuous at

z=0.

In the following theorem we prove that C.R. equations together with the
continuity of partial derivatives give a sufficient condition for differentiability of

complex functions.

Xmx m " 0
= ifx =
x2 +m?x%  1+m?2
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Theorem :

Let f(z) = u(x, y)+i v(X, y) be a function defined in a region D such that u, v and
their first order partial derivatives are continuous in D. If the first order partial
derivatives of u, v satisfy the Cauchy-Riemann equations at a point (x, y)eD then f is

differentiable at z = x+iy.

Proof :

Since u(x, y) and its first order partial derivatives are continuous at (x, y) we
have by the mean value theorem for functions of two variables.

u(x+h;, ythy)-u(x, y) = h, u,(x,y)th, u(x, y)+h e, +he,  --oomm- (1)
where €, and €, > 0 as h, and h,—0

Similarly

v(x+h,, yth,)-v(x,y) = h, v (x, y)+h, vy(x, y)yth,e,+h,e, e (2)

where €,, €,—0 as h; and h,—»0
Leth=h, +ih,

z+h)—f(z)

f(
Then N

1 .
= E[u(x+h1’ y+h,)-u(x, y)+iv(x+h,, y+h,))-v(x, y)]

1 .
= 3 [,y +hou Goy)+hy e thyey} +ifh v, () thyv (x,y)th e +hy e, }]
using (1) and (2)

1
= E[hl {u (x, )+ivx(x,y)}+h2{uy(x, )+ivy(x,y)} + h (e, +i€,)th,(e,+ie,)]

1 : s : :
=1 [(hl+1h2)ux(x,y)—1(h1+1h2)uy(x,y) +h, (e +He,)th,(e,tie))]

(using C.R. equations)

1 : ' : :
= E[hux(x,y)—lhuy(x,y)+h1(e1+1e3) + hy(e,tie,)]

) h ) h )
= ux(x,y)—1uy(x,y)+—hl(el +i 63)+T2(€2 +i )

h
—l'SI,%(el +igg)—>0ash—>0

Since h
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h .
Similarly, —ﬁz—(% +igq)—>0 ash—>0
o fzh)-1()

h—0 h

Hence f is differentiable.

Example 1:

Let f(z) = e* (cos y + i siny)
oo u(X, y) =e*cos yand v(x, y) =e*siny
Then u (x,y) =e*cosy= \A (x, y)

and uy(x, y) =—e*siny =-v (X, y)

Thus the first order partial derivaties of u and v satisfy the C.R. equations at
every point. ‘

Further u(x, y) and v(x,y) and their first order partial derivatives are continuous

at every point. Hence f is differentiable at every point of the complex plane.

Example 2 :

Let fz) = |z]?
& f(z) = ux,y)+iv(x, y) = x2+y?
&% u(x,y) = x*y?and v(x,y)=0
So u(x,y) = 2x;

u(xy) = 2y

V(& y) = 0=v/(xy)

Clearly the C.R. equations are satisfied at z = 0.

u and v and their first order partial derivatives are continuous and hence f is
differentiable at z = 0.

Also, the C.R. equations are not satisfied at any point z # 0 and hence f is not

differentiable at z # 0. Thus f is differentiable only at z = 0.

Complex forms of C.R. equations

Let f(z) = u(x, y) + iv(x,y) be differentiable. Then the C.R. equations ¢an be put
in the complex form as f = —ify
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Proof :
Let
Then
and
Hence
<
=
=

and

u(x,y) +iv (x, y)
u +Hiv,

uy—i—ivy

—i fy

—i(uy+ivy)

vy—iuy

\'%
y

Thus the two C.R. equations are equivalent to the equation f = ——ify.

C.R. equations in polar coordinates :

Let f(z) = u(r, ©)+iv(r, 0) be differentiable at z = re*® = 0.

Then

and

Further

Proof :

ou

o
o
or

f'(z)

| -

42
29

| =

ou
29

r(au 6v)
J— —+l""—"'
z\ or or

We know that x =r cos 0 and y =r sin 0.

Hence

ou

or

o
o9

u ox  ou dy
ox or oy or

-aﬁ.cos9+-a—usin9
[5).4

ov dx v dy
ox 00 0Oy 09

%(—r sin@) + %(r cos0)
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o 1ov - —iv-sin9+-a—v—cosﬁ
r 00 ox
= zu-sin9+§il-cos9 i i
= % % (using C.R. equation)
ou
= 3 (using (1))
. u _ 1%
o0 ar r %
ov 1 ou
- A bt
Similarly we can prove that . 10

(Bu .av) '(auax auay) (av ox avayﬂ
| —+i—| = 1 + +1 +
or oOr \&x or Jdyeor \Ox Or Oy or
i 3\
= T (éu—cos9+§-gsin6 +i(§1cosﬁ+—a—v-sinﬁﬂ
| &x oy ) \ox oy
(au .av) . (8u .é‘v)
= rcosf| —+1i— |{+rsinf| —+1—
ox 0Ox oy oy
(8u .av) .(8v .Gu)
= X| —+i— |[+iy| ——1—
ox oOx oy 0oy
= xf'(z)+iyf'(z)
= (x+iy)f'(z)
= zf'(z)
r{ou .ov
co f'(Z) = ;(E"'IEJ

Theorem :

If f(z) is a differentiable function, the C.R. equations can be put in the form

2

oz

Proof :
Let f(Z) = U(X, y)+iV(x,Y)
Sinc X = “Z—-tz
ince >
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Z—Z

i

and y

21
" Z+Z Z—2Z v Z+zZ z—Z
We have f(z) = > o 5 "2
o of 6f6x+6f6y
°° 9z  Oxo0z 0oyoz
L A1),
T ox\2) oy\ 2i
1{of .of
2\ox Oy
So, & =0 O _ 2 hich is th lex f f C.R ti
0, 5 = e aywm is the complex form of C.R. equations.
, _ of
Thus the C.R. equation can be put in the form - 0.

Worked Examples :

Example 1 :

Verify Cauchy - Riemann equation for the function f(z) = z°

Solution :
f(z) = z*=(xtiy)’
= (x3-3xy?)+i(3x%y-y?)

o ux,y) = x3-3xy?
and v(x,y) = 3x%y-y’
o u, = 3x2-3y?
and v, = 0xy
u, = —6xy
and v, = 3x2-3y?
u = vy
and u, = -vx

Hence the Cauchy-Riemann equations are satisfied.
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Example 2 :

Prove that the function f(z) = e*(cos y — i sin y) is nowhere differentiable.

Solution :

f(z)
oo u(x, y)
and v(X, y)
oo u,
and v,
Yy

and v

C.R. equations are not
differentiable.

Example 3 :

e* (cosy—1isiny)
e*cosy—ie*siny
e* cosy |

—e* siny

e*cosy

—e*siny

—e*siny

—eX cos y

satisfied at any point and hence f(z) is nowhere

Prove that f(z) = z Im z is differentiable only at z = 0 and find f'(0).

Solution :

f(z)
0o U(X » y)
and v(x, y)

zImz
(x+iy)y
Xy

y2

oo U =Y, u, =X; v, =0 andvy=2y.

Clearly the C.R. equations are satisfied only at z = 0.

All the first order partial derivatives are continuous.
Hence {(z) 1s differentiable at z = 0.
Also f'(0) =u (0, 0) +iv (0,0)=0

Example 4 :

Prove that the function f(z)=

at the origin but f'(0) does not exist.

C(1+i) -y (1-i)

2y

0
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Solution :

f(z)

Here u(x, y)

and v(x, y)

u(0, 0)

u (0, 0)

Similarly uy(O, 0)
u (0, 0)

uy(O, 0)

f(z) - £(0)

z—0

and

x3(1+i)—y3(1—i) PP

x% +y?

0 if z=0

3 —y3
X2 +

X3+y3

Ziy2 0N =0,0

v(0,0)=0
Lt u(h,0)—u(0,0)
h—0 h
13
— =0
Lt h = 1
h—»0 h
1
1
1
x> — y3 . x>+ y3

(x2 +y2)(x+iy) +l(x2 +y2)(x+iy)

Along the path y = mx we have

f(z)—£(0)

z—0

3_ m3x3 . X3 + m3x3
+1

)(x + imx) (x2 + m2x?

X

(x2 +m2x2

)(x +imx)

1—m3

(1+m2)(1+im) i

1-%-m3

(1 + mz)(l +im)

Hence the value of the limit depends on the path along which z—0.

f(z) - £(0)

z—0

Thus Lt
z—0

does not exist. Hence f 1s not differentiable at 0.
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Example § :

Find constants a and b so that the function f(z) = a(x2-y?)+i bxy+c is
differentiable at every point.

Solution :

f(z) = a(x2-y?)+i bxy+c

Here ux, y) = a(x2-y¥+c
and v(x,y) = bxy
u, = 2ax; u, = —2ay; v, = by and v, = bx.

Clearly u, = v, and u, = -v, iff 2a=b.
o C.R. equations are satisfied at all points iff 2a = b.

o The function f(z) is differentiable for all values of a, b with 2a = b.

Example 6 :

0 .. 0
Show that f(z) = Jr (COSE'HSIH;Z) where r>0 and 0<0<2n is differentiable and
find f(z).

Solution :

f(z) = Jr (cos%+ising—)
3\
u = J;CO{"B-
2)
\
and vV = ‘\[;Slﬂ(g
2,
2 @ = 1 cosg
°° o ZJr 2
d & _ .1 sin9
an o ZJr 2
o = -—‘/-l_'--sing
00 2 2
and _Qv__ = £cosg
00 2 2
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r 00 2 2
= ! cos—e-
24 T2
_ Oou
or
o Ou _ 1lov
°e or r 00
ov 1 8u
Similarly a - Tl
= 1 sin9—
24 T2

Hence the C.R. equations in polar form are satisfied.
Further all the first order partial derivatives are continuous.

Hence f'(z) exists.

rfou .oOv
f’(z) = ;(——“}'1——)

[
N[~
~
N
ok
=y
o
o
n
N|D
+
(]
=
2
=]
N
—

I
|
N

I
N
3

f'(Z) = 2‘/;
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Exercise :

1.

Verify C.R. equations for the following functions.
(i) f(z) = e?

(i) f(2) = iz+2

(i) f(z) =sinz

Prove that the following are nowhere differentiable.
(i) f(z) =z

(ii)) f(z) = xy+iy

(iii) f(z) = 2x+ixy2

(iv) f(z)=zz

Prove that for the following functions the C.R. equations are satisfied at z=0 but
the function is not differentiable at z=0.

xy?
. ifz+0
@) f2)={x2sy?
0 if z=0
4 3 .
x’y(y—ix) .
.. if z0
() f(z)= x6+y2
0 S ifz=0
X2y (x +iy) .
7 10 ifz+0
(i) f(z)=] x +y
0 if z=0

Prove that the following functions are differentiable at every point.
(1) f(z) = iz+2

(i)  f(2) = x2-y>-2xy+i(x2-y*+2xy)

(i)  f(z) = (°-3xy?)+(3x%y-y?)

(iv) 1(z) = 2x-3y+i(3x+2y)

Find constants, a, b and ¢ so that the following functions are differentiable at..
every point.

(i) f(z) = x+ay-i(bx+cy) Ans. (a=b; c=-1)
(i) f(z) = ax>-by+icxy Ans. (a= ¢/2 =b)
(ili)  f(z) = cos x(cos h y+a sin h y)+i sin x(cos h y+b sin h y) Ans.(a=b=-1)
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ANALYTIC FUNCTIONS

Definition :

A function f defined in a region D of the complex plane is said to be analytic at
a point aeD if f is differentiable at every point of some neighbourhood of a. Thus f is
analytic at a if there exists €>0 such that f is differentiable at every point of the disc

S(a, €) = {z/lz—a|<e}.

If f is analytic at every point of a region D then f is said to be analytic in D. A
function which is analytic at every point of the complex plane is called an entire
function or integral function.

Example :

Any polynomial is an entire function.

Remark 1

If f is analytic at a point a then f is differentiable at a.

But the converse is not true. |

For example, f(z) = |z? is differentiable only at z=0. Hence f is differentiable at
z=0 but not analytic at z=0.
Remark 2 :

If f(z) is analytic at a then there exists €>0 such that f(z) is differentiable at
each point of S(a, €). Let zeS(a, €). Then we can find >0 such that S(z, 6)cS(a, €).
Hence f is differentiable at every point of S(z, 8) so that f is analytic at z.

Theorem ;

An analytic function in a region D with its derivative zero at every point of the
domain is a constant.

Proof :
Let f(z) = u(x, y)+iv(x, y) be analytic in D and f'(z) = 0 for all zeD.
Since f(z) = u +iv, = vy—-iuy we have u = u =v,=v = 0

ob u(x, y) and v(x, y) are constant functions and hence f(z) is constant.
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Remark :
The above theorem is not true if the domain of f(z) is not a region.
For example led D = {z/]z|<1 }u{z/|z|>2}
D is not a connected subset of C so that D is not a region.

Let f:D—C be defined by

1if |z]<1
02) =12 if 12> 2

Clearly f'(z) = O for all points zeD and f is not a constant function in D.

Worked Examples :

Example 1 :

An analytic function in a region with constant modulus is constant.

Solution :
Let f(z) = u(x, y)+iv(x,y) be analytic in a domain D.
Since |f(z)] is constant, we have u2+v2=C where C is a constant.
Differentiating partially with respect to x

we get 2uu H2vv, = 0

ie., wtv, =0 s 1D

Similarly, differentiating partially with respect to y
we get uu vy, = o  emeeeee-
Using C.R. equations in (1) and (2) we get

uu,-vv, = o e

uu tvv, = o e
Eliminating u, from (3) and (4) we get (uZ+vHu =0
Since u?+v2=C we getu, =0
Similarly we can prove that v, = 0 so that

f(z) = utiv, =0

Hence f is constant.
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Example 2 :

Any analytic function f(z) = u+iv with arg f(z) constant is itself a constant

function.

Solution :

arg f(z) =
o \
.Y - =
u
oo v =
Hence vV, =
and vV, =

v .
tan (;) = C where C is a constant

K where K is a constant.

Ku
Ku

X

Kuy

Eliminating K from the above equations

we get uyv, =

XYy
Y uv-uv, =
o0 X y y X
o 2 2 _—
oo ux +uy

Vxll

0

y

0 (using C.R. equations)

oo u, = 0 and u, = 0 and hence u is constant. Similarly we can prove that v is

y
constant.

o f = u+tiv is constant.

Example 3 :

Prove that the function f(z) and TE) are simultaneously analytic.

Solution :

Suppose f(z) = u(x, y)+iv(x,y) is analytic in a region D.

Then the first order partial derivatives of u and v are continuous and satisfy the

C.R. equations

2l 22

ov
oy e (1)

ou
By
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f(z) = u(x, —y)-iv(x, -y)

= u(x, y)t+iv,(x,y)

where L, y) = ux, -y)
and vl(xa Y) = "'"V(X, "Y)

duy Ou Ov dv; :
Hence x x| dy oy (using (1))
and Sy _ B v m

dy oy o ox

oo The first order partial derivatives of u, and v, are continuous and satisfy the
Cauchy-Riemann equations in D.

Hence -fTE_) is analytic in D.
Similarly if F(E—) is analytic in D then f(z) is also analytic in D.

Example 4 :

? P &? F P

If xBy  dyox prove that o2 ay2 46zaz

Solution :

Let z = Xx+iy
co X = -l"(Z+E) |
. 2
and y = ~(z-3)
2i
0 0 0x 0O oy
_ = ~ +
Hence o ox 0z Oyoz
1 0 ____1_ 0
T 28x 2i Oy
1{o .0
= =————-]—
2\0x oy
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L

2 _ U2, 62}+
5207 2\6x2 “oxoy )2

aizax o ;,2/2 ](%ﬂ

N

\ax2+ay2 +

1626262

(& aZJ.aZ

- {57

+
i
N

. ox%  oy? 820z

Exercise :

1.
2.

| ox? EAETN

162]
i +-
oxdy i dyox

1)

Prove that an analytic function whose real part is constant is itself a constant.

If f = u+iv is analytic in a region D and uv is constant in D then prove that f

reduces to a constant.

If f = u+iv is analytic in a region D and v = u? in D then prove that f reduces to

a constant.

Determine the constants a and b in order that the function f(z)=(x?+ay?-2xy) +

i(bx2—y?+2xy) should be analytic. Find f'(z).

HARMONIC FUNCTIONS

Definition :

u(x, y) is said to be a harmonic function if

?u

Laplace's equation :

Theorem :

* Let u(x, y) be a function of two real variables x and y defined in a region D.

+ 6y2 = 0 and this equation is called.

The real and imaginary parts of an analytic function are harmonic function.
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Proof :
Let f(z) = u(x, y)+iv(x, y) be an analytic function.

Then u and v have continuous prtial derivatives of first order which satisfy the
C.R. equations given by

du _ ov
oax oy
o
and oy ‘&
2u A
Also oxoy = Byox
4 &Pv v
an oxdy  oyox
62u+62u _ a(av)+6(_6v)
Now 2 6y2 = Bx\oy) oy ax
v
~ Bxdy oyodx
=0

So u is a harmonic function.
Similarly, we can prove that v is a harmonic function.

Note : Laplace's equation provides a necessary condition for a function to be the real or
imaginary part of an analytic function.

For example if u(x, y) = x>+y we have

&u &u Pu %
P2 =% 50 ad gt s =2

so u(X, y) is not harmonic function and hence it cannot be the real part of any
analytic function.

Definition :

Let f = u+iv be an analytic function in a region D. Then v is said to be a
conjugate harmonic function of u.
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Theorem :

Let f = u+iv be an analytic function in a region D. Then v is a harmonic

conjugate of u if and only if u is a harmonic conjugate of —v.

Proof :
Let v be a harmonic conjugate of u.
Then f = u+iv is analytic.
& if = iu—v is also analytic.
Hence u is a harmonic conjugate of —v.

The converse is similar.

Theorem :

Any two harmonic conjugates of a given harmonic function u in a region D
differ by a real constant.

Proof :
Let u be a harmonic function.
Let v and v* be two harmonic conjugates of u.
utiv and ut+iv* are analytic in D.
By the Cauchy-Riemann equations we have

n o
x 8y oy
ou ov ov *
and gy- = —a—x’=— ox
: o o
°° oy ~ oy
and A = oz
ox ox
Hence i("“’*) = 0
Oy
0
and E(V—V*) = 0
0% v = v*+C where C is a real constant.

Note : The Cauchy-Riemann equations can be used to obtain a harmonic conjugate of a
given harmonic function.
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For example, let u(x, y) = x2-y?2

Fu  u
Then Ex‘j"'ay_ = 2-2 = 0 so that u is harmonic in the whole complex plane C.

Let v(x, y) be a harmonic conjugate of u.

ov ou
~., = —=2x s 1
Then By : 2x (§))
ov Ou
— A —— =2V ] eeme—e 2
and P By 2y (2)

On integration of (1) with respect to y we get v = 2xy+¢(x) where ¢(x) is a
function of x alone.

F 2 & __ & 2y+d'(x) =2
rom ( Pl ayglves y+o'(x) = 2y

o ¢'(x) = 0 so that ¢(x) = C (a constant)
oo V = 2xy+C

Thus the harmonic conjugate of u(x, y) = x:’-—y is given by v(x, y) = 2xy+C and
the corresponding entire function is given by
fz) = (x*-y)+i(2xy+C)

= z2+C

MILNE - THOMPSON METHOD

Let u(x, y) be a given harmonic function. Let f(z) = u(x, y)+iv(x,y) be an
analytic function.

Then f'(z) = u(xy)Hv (x,y)
= U (X, y)-iu(x,y)
Let ¢ x,y) = ux,y)
and %%, ) = -u(x,y)
x = 2%z
2
7
and Yy = _'2—1E

189



Z+7 Z—17

So f'(z) = ¢1( >

T 2i

. (z+z z-2
)—’4’2( 2’20 )

Putting z = Z we obtain (z) = ¢,(z, 0)-id,(z, 0)

Hence f(z) = [[#1(z,0)-i¢2(2,0)]dz+C

Note : It can be proved in a similar way that the analytic function f(z) with a given

harmonic function v(x, y) as imaginary part is given by

Worked Examples :

Example 1 :

Prove that u = 2x—x3+3xy? is harmonic and find its harmonic conjugate. Also

f(z)

\l’l(x, Y) -

I[wi(z,0)+iys(z,0)]dz+ C where

v, and y,(x, y) = v,.

find the corresponding analytic function.

Solution :

oo

2x—x3+3xy?
2-3x2+3y?;
—6x

6xy

6x

0. Hence u is harmonic.

Let v be a harmonic conjugate of u.

oo f(z) = u+iv is the analytic function where v is to be found out.

By Cauchy-Riemann equations we have

Vv

y

u, = 2-3x%+3y?

o% Integrating with respect to y we get

v

2y—-3x2y+y3+A(x)

where A(x) is an arbitrary function of x.

(]
o0

v

X

—6xy+A(x)
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!

Ve = U gives ~6xy+A(X) = —6Xy
Hence A(x) = 0 so that A(x) = C where C is a constant
v = 2y-3x2y+y3+C (from (1))
f(z) = (@x-x3+3xy?)+Hi(Qy-3x2y+y3)+iC
= 2(x+Hy)-[(x*-3xy>)+i(3x%y-y?1+iC
= 2z-z3+iC

> f(z) = 2z-z3+iC is the required analytic function.

Example 2 :

Show that u(x, y) = sin x cosh y + 2cos x sinh y + x2-y2+4xy is harmonic. Find
an analytic function f(z) with the given u for its real part.

Solution :
u, = cosx cosh y— 2sin x sinh y +2x + 4y
u,, = -sinxcoshy-— 2cos x sinhy+ 2
u, = sinXx sinhy + 2cos x cosh y — 2y + 4x
u,. = sinxcoshy+2cosx sinhy-2
oo u,tu, = 0
Hence u is harmonic.
Let ¢, (x,y) = u,
and b y) =
oo ¢,(z, 0) = cos z cosh 0 - 2sin z sinh 0 + 2z
= coSz+2z
Similarly $(z,0) = 2cosz+ 4z
X f(z) = [[01(z.0)~id2(z.0)}dz

J[(cosz+2z)-i(2cosz + 4z))dz

—sinz+z*2isinz-2iz2+ C

Example 3 :

given v(x, y) = x*-6x2y>+y* find f(z) = u(x, y)+iv(x, y) using Milne Thomson
method such that f(z) is analytic.
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Solution :
v(x,y) = x6x?y*+y?
v, = 4x3-12xy?

Vex = 1 2x2-12y?
v, = -12x2y+4y’
= - 2 2
Vyy 12x+12y
oo Vxx+vyy = 0

Hence v is harmonic.

Let yix,y) = v,

and Wy (X, y) = v,

& v, (X, y) = -12x2y+4y3

and y,(x, ;,) = 4x3-12xy?

o y,(z,0) = 0

and v,(z, 0) = 4z°

> f(z) = | [wl(z,0)+i\|12(z,0)]dz

= ij4z3dz =12*+C

i z4+C

f(z)

Example 4 :

Find the constant a so that u(x, y) = ax?-y?+xy is harmonic. Find an analytic
function f(z) for which u is the real part. Also find its harmonic conjugate.

Solution :
u = ax?-y?+xy

Given that u is harmonic. Hence it satisfies Laplace's equation
Fu Pu
oy

ou

ox
&u

and —
6x2

i
N
&
»
+

«

i
N
b
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éu"— 2vy+
oy =~ Y™

u
and ? = -9
_ &u_ u 0o 2a2 0
oo 6)(2 ayz = = Lad—2Z =
Hence a =1
o u = x*-y*xy
Hence u, = 2xty
and u, = —2y+x
Let o, (x,y) = u =2ty
and 0%, y) = u = —2y+x
oo ¢,(z,0) = 2z
and $,(z,0) = z
& f(z) = I[61(z,0)~id2(z,0)]dz
= [(2z-iz)dz
. 2
= 2-Z ,cC
2
oo f(z) = % - l-zi +C
2
- \2
= (x+iy)2—iLx—+—2£)—+C
= (xz—y2 +2ixy)———1i—(x2—y2+2ixy)+c
2 .2
= (xz—-y2+xy)+i(2xy+y 2x }+C
2_ 2 \
o v(X,y) = 2xy+ J 5 is the harmonic conjugate of u(x,y)
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Example 5 :
Prove that the real and imaginary parts of an analytic function when expressed

62u+_1_8u+ 1 6:_zu —0
61‘2 r or r2692 ’

in polar form satisfy the equation

Solution :

We know that Cauchy-Riemann equation in polar form is given by

10v

ou

CIET ()
ov 1 0u

x re8 T )

We eliminate v from (1) and (2)

Differentiating (1) partially with respect to r and (2) partially with respect to 0
we have :

iy_ = r-a—2-£+-a—u- ....... (3)
Aro0 o2 or
?v _ 18% )
or  roe®? 7 @
. ?v v
Since —_— =
oroo 500r
. Fu w157
WwWE nave arz al‘ 1'692
6211 1ou 1 azu .
oo —+ = O

- +
arz r Or 1'2 692

Similarly, +——+ =0
Y. 6r2

Example 6 :

Show that if u and v are conjugate harmonic functions the product uv is a
harmonic function.
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Solution :

Since u and v are conjugate harmonic functions we have

u,tu =0 e (1)
2V T — @)
I 3)
u, = v, e 4)
Let ¢ = uv
| ¢, = uv t+vu,
by = W20V bvu,
Similarly ¢,, = uv,—2vau tvu (using (3) and (4))

¢xx+¢yy = u(vxx+vyy)+v(uxx+uyy)
= 0 (u_sing (1) and (2))

o ¢ = uvis a harmonic function.

Example 7 :

If f(z) is analytic prove that i + i If(z)lz = 4|f(z)]?
yuc p ax2 ayz -

Solution :

Let t(z)' = uHv
Ifz)? = u+y? = ¢(say)
and f'(z) = u, +Hiv,
g% = 2uu +2vv,

& 2

—é—xi = 2[ux+uuxx+v’2‘+vvxx] ....... 4))

52 .
Similarly "a'?‘b = Z[u;':, +Ulyy + vi + vvyy] ------- (2)

Since u and v are harmonic

Vxx + Vyy =0
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Adding (1) and (2) using (3) we get

2 o T A

= 4fu +iv |

= 4P

Exercise :

1.

Prove that the following functions are harmonic. Also find a harmonic
conjugate.

(i) u =sinh x siny (ii)u=e*cosy
Find the function f(z) = u+iv such that f(z) is analytic given that
Du=x; (@(i)u=x33xy? ({iij)u=cosxcoshy (iv) v = 3x2y-y3

Prove that the functions u(x, y) and u(x?- 2, 2xy) are simultaneously harmonic.

y
Prove that u(x,y) = x2-y? and v(x, y) = ~ Z4yP e both harmonic but u+iv is
not analytic.

' X
Find the analytic function f(z) = utiv if ut+v = 2+ ); given {(1) = 1.
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' COMPLEX ANALYSIS | . 7 UNIT-8

BILINEAR TRANSFORMATIONS

A function f:C—C can be thought of as a transformation from one complex
plane to another complex plane. Hence the nature of a complex function can be
described by the manner in which it maps regions and curves from one complex plane

to another.
Elementary Transformations :

1. Translation : Consider the transformation w = z+b. If z = x+iy, w = u+iv and
b = b, +ib, then the image of the point (x,y) in the z-plane is the point (x+b,, y+b,) in
the w-plane.

Under this transformation the image of any region is simply a translation of
that region.

Hence the two regions have the same shape, size and orientation. In particular
the image of a straight line is a straight line and the image of a circle with centre a and
radius r is a circlewith centre a+b and radius r.

We note that o is the only fixed point of this transformation when b=0.
2. Rotation : Consider the transformation w=az where |a| = 1.
Let z = re' and a= €i® so that |aj=1.
) w = az = ei%(re'%) = rei®+®)
o A point with polar coordinates (r, 8) in the z-plane is mapped to the poiht

(r, 8+a) in the w-plane. Hence this transformation represents a rotation through an
angle a=arg a about the orig:n.

Under this transformation also straight lines are mapped into straight lines and
circles are mapped into circles.

We note that 0 and o are the two fixed points of this transformation.

3. Magnification or Contraction : Consider the transformation w=bz where b is
real and b>0.

Then a point with polar coordinates (r, 8) in the z-plane is mapped into the point

(br, 8) in the w-plane. Hence this transformation represents a magnification or
contraction by the factor according as b>1 or b<l1.
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Under this transformation also straight lines are mapped into straight lines and
' circles are mapped into circles.

We note that 0 and oo are the fixed points of this transformation.

In general the transformation w=bz where b is a non-zero complex number
represents a rotation through an angle arg b followed by a magnification or a
contraction by the factor |b|. Such a transformation is called a homethatic

transformation.
. . ) 1
4, Inversion : Consider the transformation w = —z-
Put . z = re
1 s
w = e 10

This transformation can be expressed as a product of two transformations
T 2=~ and T,(z) = re# = Z
,(z)—-r and T,(z) =re™ = z.

For, (T*TP(@) = T(T,(2))
= T,(re™)

l e—ie.

_1
I A

, 1 . .
The transformation T (z) = ;ele represents the inversion with respect to the

unit circle |z}=1 and T,(z)=z represents reflection about the real axis.

] 1, ] ) .
Hence the transformation w = ; is the inversion w.r.t. the unit circle followed
by the reflection about the real axis.

Here points outside the unit circle are mapped into points inside the unit circle
and vice versa. Points on the circle are reflected abuot the real axis.

In terms of cartesian coordinates the above transformation can be expressed in
the form.

1 X —1y
w = utiv= —="75 7
X+1ly Xx +y2
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and v

i
NN
+

o

1 u , -V
Similarly from z = — tx="5—5andy="5"5 (1
imilarly from z = - we getx =37 andy =53 (D

Consider the equation a (x2+y?)+bx+cy+d=0 = —ommeemn (2)
where a, b, c, d are real.
This equation represents a circle or a straight line according as a # 0 or a = 0.
Using (1) in (2) we get _
d(u*+v?+bu—cv+ta=0 e 3)

Supposea=0;d=0

In this case both (2) and (3) represent circles not passing through the origin.
Hence circles not passing through the origin are mapped into circles not passing
through the origin.

Similarly a circle passing through the origin is mapped into a straight line not
passing through the origin.

A straight line not passing through the origin is mapped into a circle passing
through the origin.

A straight line passing thruogh the origin is again mapped into a line passing
through the origin.

. 1 : .
Thus we see that under the transformation w = > the image of a circle need not

be a circle and the image of a straight line need not be a straight line.

1
We note that the fixed points of the transformation w = S are 1 and 1.

Worked Examples :
Example 1 :
Under the transformation w = iz+i show that the half plane x>0 maps onto the

half plane v>1.
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Solution :

Let z = X+1iy
and w = u+iv

w = iz+i
= w = i(x+Hiy)+H

= -y+i(x+1)

oo utiv = —y+i(x+1)
oo u = -y
and v = x+l
oo x>0 ©v>1

oo The half plane x>0 is mapped into the half plane v>1.

Example 2 :
1
Show that by means of the inversion w = 2 the circle given by |z-3|=5 is

3
W+ —
16

S
16°

mapped into the circle

Solution :

| | 1
The circle |z-3| = 5 is mapped into -‘;-3| =5.
1 1 .
Now "—“3' =5 = —=3 =
w u+iv

= [{(1-3u)-3iv] = 5[u+iv|
= (1-3u)2+9v2 = 25(u?+v?)
= 9u2—6u+1+9v2 = 25u2+25v2

= 16(u?+v2)+6u-1 =0

2,.2,6 1
+Vit—Uu—— =
= U +v . 16u T 0
This is a circl2 with centre (""3— 0) and radius (—3—-)2 +l _ 2
’ 16° 16) 16 16
: s o : 3] S
Hence the image circle in the w-plane is given by the equation W+E “Tc
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Exercise :

1. Find the image of the strip 0<x<1 under the transformation w=iz.
2. Find the image of the region y>1 under the transformation w=(1-i)z.
1 :
3. Show that by means of the inversion w=> the circle given by |z—2|=7 is mapped
into the circle [W+-=| = —
into the circle 25| = 25
4. Find the image of the semi infinite strip x>0; 0<y<2 under the transformation
w=iz+1.
Bilinear Transforamtions :
. - az+b ,
A transformation of the form w = T(z) = osd (1)

where a, b, ¢, d are complex constants and ad-bc#0 is called a bilinear
transformation or Mobius transformation. '

d
We define T(o0) = -:— and T(—;)= . Hence T becomes a 1-1 onto map of the

extended complex plane onto itself.

—dw+b
The inverse of (1) is given by z = T-}(w) = ow—a which is also a bilinear
transformation.
Theorem :

Any bilinear transformation can be expressed as a product of translation,
rotation, magnification or contraction and inversion.

Proof :

az+b

Let w="T(z) = ——

where ad-bc 0 = ceeeeee (1)
be the given bilinear transformation.

Case (i) :
c=0.
Henced #0 (°~ ad-bc % 0)
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Let

and

(H)=>w

T,(2)

T,(2)

T, and T, are elementary transformation and

Case (ii)

Let

Then

For

(T,*T))(2)

T,(2)
T,(2)
T5(2)

T4(Z)

T(z)
(T,°T;°T,*T,)2)

i

a a b
Tyl — Nl =
2[(sz] a‘ta

T(z).
0
a[z+(é)]+b_(£)
az+b C/] ¢
cz+d c[z + (2)]
c
(%)

+ c
c cz+d
cz+d

(T,*T;*T,*T)(Z)
(T,*T;T,)(cz+d)
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1
- aen5)

N T4((b_a:)[czldn

bc—ad
c(cz+d)

a
+ —
C

bc—ad +acz+ad
- c(cz+d)

ob+az)
c(cz+d)

az+b
cz+d

= T(2)

Hence the theorem.

Corollary :

Under a bilinear transformation circles and lines are transformed into circles and
lines.

Worked Examples :

Example 1 :

5-4z :
Show that the transformation w = 47— maps the unit circle |z]=1 into a circle
of radius unity and centre R
Solution :
w = 5-4z
4z—-2
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do 4wz-2w = 5-4z
do (4w+4)z = 5+2w
542w
o0 z =
4w +4
Now lzZ|=1 = zz=1.

(5+2w) 542w
= aw+a Naw+a ) =1

= 25+4wW+10w + 10w = 16ww +16+16(w +w)

= I2WwwW+6w+6w—-9 =0

‘ 1 ,1 3
This represents the equation of the circle with centre ) and radius Z+Z = 1.

Hence the result.

Example 2 :

2z+3
z—-4

Show that the transformation w = maps the circle zz—2(z+2)=0 into a

straight line given by 2(w+w)+3 = 0.

Solution :
w = 2z+3
z—-4
do W(Z—4) = 2z+3
do z(w-2) = 3+4w
o | _ 3+4w
co YA w2

The image of the circle zz—2(z+2z)=0 is

EEES -GS
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(3+4w)(3+4w) -2 (3+4w)(W-2)+(3+4wW) (W~ 2)] =0
9+16WW +12w + 12w —2[3W +4ww ~6—8w +3w +4ww ~6-8W]=0

9+22w+2w+24 =0
2w+22w+33 =0
rw+2w+3=0

2(w+W)+3 = 0 which is obviously a straight line.

Exercise :

z—1 .
1. Express w = 1 as a product of elementary transformation.
: i~iz o :
2. Prove that the transformation w = T2 maps the unit circle {z[=1 nto the real
axis of the w-plane.
: iz+2 ..
3. Show that the transformation w= Az ri maps the real axis in the z plan¢ to 3

circle in the w-plane. Find the centre and radius of the circle.

4. Prove that if a point on a circle is mapped into o under a bilinear transformation
then this circle is transformed into a straight line.

CROSS RATIO
Definition :
Let z,, Z,, Z;, 2, be four distinct points in the extended complex plane. The

cross ratio of these four poiats denoted by (z,, Z,, Z3, z,) is defined by (2, Zgr 230 Zg) =

(21— 23)(22 — 24)
(21 - 24 )22 - 23)

if none of z,, z,, Z,, Z4 18 . /

1~ 23 :

= - if z, is
2 — 74 .

= z-74 if z, 1s ®©
Z1~-2 .

= -z if z, is o
zy — .

= -z3 ifz, 15 ®©



Theorem :

Any bilinear transformation preserves cross ratio.

Proof :

az+b
Letw =
cz+d

be four distinct points. Let their images under this transformation be w,, w,, w,, W,
respectively.

, ad—bc # 0 be the given bilinear transformation. Let z,, z,, z,, z,

We assume that all the z, and w, are different from oo.

We claim that (z,, z,, z,, z,) = (W, W,, W3, W,)

az;+b
We have w, cz; +d

i1=1,2,3,4)

azj+b az3+b
cz1+d czz3+d

(ad - bC)(Zl -~ 23)
(cz1 +d)(cz3 +d)

i

= K22y (say)
Similarly w,—w, = K(z,~z,)
(W —wy)(w-w,) = K K,(z,-2;)(2,-7,)
= K(z,~z;)(z,-2,)
Similarly we can prove that

(W—w ) (W,~w,) = K(z,~z,)(z,~2,)

(wi—wi)(wyp~wg)  (z1-23)(z3 - 24)
(wi-wg)wa~w3) — (z1-24)(z2-23)

The proof is similar if one of the z; or w; is .

Note 1 : Four distinct points z,, z,, Z,, z, are collinear or concyclic iff (2,5 25, 24, 2,) 15
real.

Note 2 : Any bilinear transformation preserves cross ratio. Hence it follows that circles
and straight lines are mapped into circles and straight lines.
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Worked Examples :
Example 1 :

Find the bilinear transformation which maps the points z = —1, 1, o respectively
onw=-, -1, 1. '

Solution :

Let the image of any point z under the required bilinear transformation be w.

Since bilinear transformation preserves cross ratio we have (z, —1; 1, o) =
(w, =15 =1, 1)

7—1 (w+1)(-i-1)
_1-1 (w—i)(-i+1)

oo (z-1)(w—iw—-i-1) = +4iw + 41

o w[z—-1-1(z—-1)-41] = 4i+(it+1)(z-1)
(i+1)z+3i-1
(1-i)z-3i-1

) -
) w =

Example 2 :

Find the bilinear transformation which maps the points z,=0, z,=—i, z,=—1 into
the points w =1, w,=1 and w,=0.

Solution :
Let the image of any point z under the required bilinear transformation be w.
Since bilinear transformation preserves cross ratio we have
(z, 0; -, -1) = (w,1; 1, 0)

(z+i)(0+1) (w-1)(i-0)

< (z+1)(0+1) ~ (w-0)i-1)
oo (zt)w(i-1) = (—w=-1)(z+1)
oo W(IZ—I) = z+]

o - 4(-i)2HL
oo W = Z-——.l

(z+ 1)
woT z—1
which is the required bilinear transformation.
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Exercise :

1. Find the bilinear transformation which maps z,, z,, z; to W, w,, W, respectively
where

(1) z2,=2;2,=1i;2,=-2
w, =1 w,=1; wy=-1

(i) z;,=,2,=1,2,=0
w,=0,w, =1, w; =00,

2. Find a bilinear transformation which maps the vertices 1+i, —i, 2—i of a triangle
of the z-plane into the points 0, 1, i of the w-plane.

FIXED POINTS OF A BILINEAR TRANSFORMATION

Definition :

az+b

Consider a bilinear transformation given by w = p—

The fixed points or invariant points of the bilinear transformation are given by

where ad—-bc # 0.

az+b
the roots of the equation z =
cz+d
ie., cz?+(d-a)z-b = 0

Case (i) :

c+0

(a—d):tJ(d—a)2 +4bc
2¢

When (d-a)?+4bc # 0, the given bilinear transformation has two finite fixed
points and when (d-a)?>+4bc = 0 it has only one finite fixed point.

In this case the fixed points are given by z =

Case (ii) :

c=0
In this case the bilinear transformation becomes
az+b
w = —Z+—
d d

Clearly o is one fixed point.
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Other fixed point is determined by the equation

— 9_24_..!.)..
27 4774
i.e., (d-a)z-b = 0

b
If d—a # 0 we get a finite fixed point —.

If d—a = 0 then oo is the only fixed point.

Thus we have

(i) c#0; (d—a)2+4bc0 = 2 finite fixed points.
(ii) c#0; (d—a)?+4bc = 0 = one finite fixed point
(ii1) c=0; a#d = o and one finite fixed point.

(iv) ¢=0; a=d => oo is the only fixed point.

Theorem :

Any bilinear transformation having two finite fixed points o and p can be

L f w-o  lz-a)
written in the form w—B ~ \z-P
Proof :

Let T be the given bilinear transformation having o and B as fixed points. Let
the image of any point r under T be d.

Then the bilinear transformation T is given by

w,8,a,B) = (z,7; a, B)
(w-a)3-B)  (z-a)y-B)

(w-B)3-a) = (z-B)r-o)
. w-o z-a (y=B)3-a)
1.€., W—ﬂ = K(Z—B) where K = (’Y“’O‘)(S"B) ----- (1)

Definition :

Let T be a bilinear transformation with two finite fixed points a, B. If K given
by (1) is real T is called hyperbeolic and if [K|=1, Tis called elliptic.
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Theorem :

Any bilinear transformation having o and o # o as fixed points can be written
in the form w—o = K(z—a). '
Proof :

Let T be the given bilinear transformation having « and a as fixed points. Let
the image of any point y under T be .

Then the bilinear transformation is given by

(W, 8; &, @) = (z,7; o, )
. w-o  Z—O
Y] 8—(1, = 'Y —o
o—a
oo w—o = K(z—a) where K="
Y—o

Definition :

A bilinear transformation with only one finite fixed point is called parabolic.

Theorem :

Any bilinear transformation having o as the only fixed point is a translation.

Proof :

Let w = be the bilinear transformation having o as the only fixed point.

+
+d
Then ¢ =0 and a = d.

& The bilinear transformation reduces to the form

az+b
w frnd
a
% w = Z+— which is a translation.
a

Theorem :

Let C be a circle or a straight line and z,, z, be inverse points or reflection
points with respect to C. Let w,, w, and C, be the images of z,, z, and C under a
bilinear transformation. Then w, and w, are inverse points or reflection points with
respect to C, i.e., a bilinear transformation preserves inverse points.
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Proof :

Let the equation of C be pzz+az+az+p=0 = -eeeeeee (1
Since z, and z, are inverse points w.r.t. C we have
pz1z3 +azp+oazg+p = 0 e (2)

Let the given bilinear transformation be

+b
w = 8z where ad-bc # 0
cz+d
dw-b
co z =
—cw+a

oo Under the given bilinear transformation (1) is transformed into

dw—b Y dw-5 dw-PB ) — dw-b

p — [+ 0| ———= |+« +Pp =0 @ e (3)
—cw+a /\ —cw+a —CW+a —CW +a

Also (2) is transformed into
dw;—b Y dw, -0 dwyr~b ) — dw;-b

p( 1 J( __2._.. _)+a(_—_2_—_]+a(-——1—]+[3=0 —cwm—— 4)
—cwi+a )\ —cwoy +a —-CW) +a —-cwi+a

Clearly (4) is the condition for w, and w, to be inverse points with respect to

(3). Hence the theorem.

Note : We shall regard the centre of the circle and « as inverse points with respect to

the circle.

Exercise :

1.

Prove that a bilinear transformation having origin as th fixed point can be

Z
cz+d

written in the form w =

Prove that a bilinear transformation having 0 and « as fixed points is of the

form w = az.

Find the fixed points and the normal form of the following bilinear
transformations. Also determine whether they are elliptic, hyperbolic or

parabolic

: . z-1 3iz+1 6z—-9
— +3 T — —_ : —
)w=z () w 1 (1ii) w _— (iv) w
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Special Bilinear Transformations
We shall determine the general form of the transformations which map
(i) the real axis onto itself
(ii) the unit circle onto itself

(iii) the real axis onto the unit circle.

Theorem 1 :

az+b

where ad-bc # 0 maps the real axis into
cz+d

A bilinear transformation w =
itself iff a, b, c, d are real.

Further this transformation maps the upper half plane Im z>0 into the upper hailf
plane Im w20 iff ad-bc>0.

Proof :
Suppose a, b, c, d, are real.
Then z is real = w is also real.
& The real axis is mapped into itself.

Conversely suppose w is a bilinear transformation that maps the real axis into
itself. :

&% There exist real numbers x,, X,, X, such that T(x,)=1, T(x,)=0 and T(x;)=co.
% The bilinear transformation is given by

(z, X35 X5, X3) = (W, 150, )

(z—x2)(x1 —x3)

o
oo = W
(z—x3)(x1-%2)
o _az+b N
o W= where a = x,—X,; b = —X,(x,X;)
c = XX,
and d = —x,(x;—x,)

Since X, X,, X, are real a, b, ¢, d are also real.

az+b_a2+b
cz+d cz+d

2ilmw=w—-w =
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(ad - bc)(z-2) | ad—bc
— 21 ———— |Imz
lcz + d|2 Icz + d|2

ad — be
lez + d|2

Imz
oo Imw =

oo The upper half plane Im z > 0 is mapped onto the upper half plane Im w > 0
< ad=bc>0.

Theorem 2 :

Any bilinear transformation which maps the unit circle |z| = 1 onto the unit

: : . A Z2—Q .
circle jw|=1 can be written in the form w = €' (o_cz—lj where A is real.

Further this transformation maps the circular disc |z|<1 onto the circular disc
[zI<1 iff |a/<1.

Proof :

az+b
cz+d

Let w = where ad-bc0 be any bilinear transformation which maps |z|=1

onto |w|=1.

0 and « are inverse points with respect to the circle [w| = 1.

b d
Hence their pre-images “(Z) and ‘(;) are inverse points with respect to lz|=1.

.-

b 1 d
oo If o = (——) then = = ——
a o C
az+b a| z—q
Y W = = -
cz+d ¢ z—(—l—)
\. (04
(e
¢ \az-1,

Let |z| = 1. Hence |w| = 1.
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Thus

1= |w|

aallz—a

¢ |laz—1

o _z—-on_l (since zz=1)
¢ |laz-zz|

aa||z—a] ) _

- a—_-EI (since |z| = 1)
ao

c

1

ei* for some real number A.

A z—o
'elx( ) where A 1is real.

az—1

(Z)e(225)-
az—1 oaz—1

(z-0)E-3) _

(az-1)(az-1)

(2-0)(z-5) - (3z1)(0z 1)

|a2 — 1|2

7Z—OLZ—OZ+ OO —OLOZZ+OZ+az—1

0z 1]

27(1 - 0) - (1~ o)

|oc§ - 1|2'

(1-aa)(zz-1)

IaE - 1|2

214



¢ The transformation maps |z| < 1 onto |w] < 1
< 1-aa>0
< aa<l
& |aj<l.

Theorem 3 :

Any bilinear transformation which maps the real axis onto unit circle jw|=1 can

A Z—o
be written in the form w = elk( —) where A is real.

Further this transformation maps the upper half plane Im z > 0 onto the unit
circular disc [w|<1 iff Im a > 0.

Proof :

az+b

cz+d
real axis onto the unit circle |w| = 1.

Letw= where ad-bc # 0 be any bilinear transformation which maps the

0 and « are inverse points with respect to the unit circle [w| = 1.

Hence their pre images —(b/a) and —(d/c) are reflection points with respect to the
real axis.
oo If a = —(b/a) then g = —(d/c)

az+b
cz+d

Now, ' w =

Suppose z is real. Hence |w| = 1.

a

C

Z—=0

= 1

z—o
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Since z is real, z = 7 and hence

z—o| = [z=q| = |’i—a| = |z—a|
o a a 7\' .
oo o = 1. Hence — = e'™ where A is real.
c
M Z—Q . . :
oo w = ¢ - where A is real is the required

transformation.

_ eﬂ(z-_z)e—ix z-a)
ww—1 Z—-q. Z—

- (=2)E=)-

—4ImzIma

[z—af?

& The bilinear transformation maps the upper half plane Im z>0 onto the disc
|w|<1iff Im o > 0. '

Worked Examples :

Example 1 :

Find the general bilinear transformation which maps the unit circle |z| = 1 onto
[w|=1and thepointsz=1tow=1and z=-1tow=-1.
Solution :

We know any bilinear transformation which maps |z|=1 onto lw|=1 is of the form

iAf Z— U .
w=¢€ = 1 where A is real.

Since 1 and —1 are again mapped to 1, —1,‘ respectively we have

(11—
iA o
= € e
! Ux—l) (1)
o —1—a A 1+a
— = elk — ) = elk(""—"_") ________
! \—a—1 I+o )
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Dividing (1) by (2) we get

=)

1 =

oo g —aO+l+o = l+o-o-oo

do 2a+2a = 0

oo «a=o T 3)

Using (3) in (1) we get 1 = —e™

oo e”“

= -1

a-—z

& The required transformation is w = z_1

Example 2 :

Prove that the transformation, given by 7w z— bw —bz+a=0 maps the unit
circle |z|=1 onto the unit circle |wl=1 if [b] # |a]. -

Solution :

awz—bw-bz+a = 0
bz—a

oo W = =
az—b

o - ()
(cz-1)([bf ~Iaf)

fz-vf

If |b| # |a| then ww—-1=0zz-1=0.

o The unit circle |z| = 1 is mapped onto the unit circle [w| = 1 if [b] # |a].

Example 3 :

Show that the bilinear transformation which maps the unit circle |z|=1 onto the

o _ ir{az+b
unit circle |z|=1 onto the umit circle |w|=1 can be put in the form w=¢' (Ez+a) where

A is real.
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Further this transformation maps the circular disc |z{<1 onto the circular disc
Iw|<1 iff |a|>|b]. '
Also if the point z = 1 is the only invariant point show that the transformation
be writt Ly here K = 1+ a
may be written as = — where K = 1+—.
Y w-l z-1 K b

Solution :

We know that any bilinear transformation which maps |z|=1 onto |w|=1 can be

inf z—o
written in the form w = elu(— ) where p is real and this maps |z|<] onto |w|<1 iff

oz —1
lo<l.

Choosea=1and b =—-a

ll’l‘ Z—O
co = € —
v (ocz—l)

B eili( az+b ) _ _eiu(az+b)
\—bz—-a bz+a

= €

ix(az+b)
\bz+a

where e = —el* and A is real.
Further lal<l < |[-b|<a
< |bl<|al
oo The transformation (1) maps |{z|<1 onto |w|<1 iff |a|>[b|.
Suppose z=1 is the only fixed point of (1).

oo Z = 1 is the only root of the equation.

_ eix(az_wj N
z bz+a

ie., 522](5 —ae* )z ~bel*

B(z—1)?

Equating the corresponding coefficient we get
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bo:evL

(2) can be written as a+b

Using (3) we get a—be'*

w-1

H

(z—1)(ae'* - )

(bz+32)

(z— lj(aeil - E)

b+a+(z—-1)b

(z-1)(a+b)

(E+E)+(z—1)'5

(a+b)+(z—-1)b

(z—1)(a +b)

1 b

-+ —=
z—1 a+b

1 1
+ W =1
Z 1 : here K +
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Exercise :

1.

Prove that any bilinear transformation which maps the imaginary axis onto the

T . . A Z-Q _
unit circle {w|=1 can be written in the form w = € [m) Further this

transformation maps the upper half plane‘Re z20 onto the unit circular disc|w|<1
iff Re a>0.

1+2z )
Show that the bilinear transformation w = —— maps the region |z|<1 onto the

half plane Re w=>0.
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COMPLEX ANALYSIS UNIT -9

COMPLEX INTEGRATION

We define the integral of a complex valued function defined on [a, b] and the
integral of a function f:D—C where D is a region in C, along a curve C lying in D. We
prove Cauchy's fundamental theorem and study the various consequences of this
theorem.

Definite Integral :

We start with the definition of definite integral for a continuous complex valued
function of a real variable.

Definition :

Let f(t) = u(t)+iv(t) be a continuous complex valued function defined on [a, b]. .

b b b
We define J f(t)dt = Ju(t)dt+i]v(t)dt
a a a

Properties of the definite integral

1. Re ?f(t)dt — ?Re[f(t)]dt
a a
b b
3 ImJf(t)dt — JEn[f(t)]dt
a a
b b b
3 H{E()+g(t)]at = TE(t)dt+Jg(t)dt
a a . a
b b
4. i Cf(t)dt - Cf(t)dt where C is any complex constant.
a
Lemma :
Pe(yad — Tj(ejat
a a
Proof :
Let ?f(t)dt = re®
a
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-ab
lj’f(t)dt _ = e Off(t)dt
a a
—igb
= Re[e 1eff(t)dt) (since r is real)
a
b i
— Re Je Vf(t)dt (using 4'" property)
a
b —i0
_ JRe||e™f(t)lat ing (1
" ([ ] ) (using (1))
< 1}’e‘*’f(t)ldt
a

|£(t)]at |

_ ?e-ie
a

- ?lf(t)ldt

Thus

1f[f(t)[dt

< Tt

Definition :

Let C be a piecewise differentiable curve given by the equation z=z(t) where
a<t<b. Let f(z) be a continuous complex valued function defined in a region containing

b
the curve C. We define (j:f(z)dz = f(z(t)) z'(t)dt
a

Example 1 :

Consider (j:f(z )dz where f(z) = > and C is the circle |z| = r described in the

positive sense. The parametric equation of the circle |z|=t is given by z=t e where
0<t<2m and z'(t) = ir e't.
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C CZ o relt
2%
= 1[dt —ong
dz :
Note : In general CI) z—a = 2ni where C is the circle with centre a radius r given by the

equation z=a+relt, 0<t<2m.

Theorem :

[f(z)dz _ - ]f(2)dz
-C C

Proof :

Suppose the equation of C is given by z=z(t) where a<t<b. We know that the
equation of —C is given by

z(t) = z(bta-t) where a<t<b.
If(2)d _ P(2(b+a 1))z (b+a-t)(-dt)
- a
Put b+ta-t = wu.
Then —dt = du

t=a=>u=bandt=b=>u=a

(£(z)dz _ Te(z(u)) 2'(u)du

-C a
_ Fe(a(w) 2(w)au
a
_ —If(z)dz
C
Remark
1. Let o be a complex constant.
jof(z)dz _ o« [f(z)dz
Then C (z)dz _ & (z)
2 J [f(z)+g(z)]dz _ [f(z)dz+ [g(z)dz
: & & s
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Definition :

Let C, be a differentiable curve with origin z, and terminus z,. Let C, be
another differentiable curve with origin z, and terminus z,. Then the curve C which
consists of C, followed by C, is a piecewise differentiable curve with origin z, and
terminus z,. This curve is denoted by C,+C,.

Note :

(I:f(z)dz= [£(z)dz+ [f(z)dz

If C = C,+C, then Ct C,

In general if C = C,+C,+......+C then

[f(2)dz _  If(2)dz+ [£(2)dz+.......t [£(2)dz
C G Cy Ch

Definition :

Let C be a piecewise differentiable curve given by the equation z = z(t) where
a<t<b. Then the length 1 of C is defined by

b
;= [z (t)at
a

Example :

Consider the circle C with centre a and radius r. We know the parametric
equation of C is given by z= a+re" where 0<t<2m.

z'(t) = ire't

t = 21',“ Z'(t)'dt

2n
dt — | rdt
0

~ T lire®
= 27r

Theorem :

< M ! where M = max {|f(z)|lzeC}and !/ is the length of C.

[ £(2)dz
C
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Proof :

Suppose C is given by the equation z = z(t) where a <t < b.

By definition of M we have [f(z())|<M for all t; ast<b ™ ------- (D)
b
[f(z)dz| = |[f(z(t))z'(t)dt
C a

< Elf (z(t))z‘(t)ldt

- Zlf(Z(t))I |z (t)|dt

IA

‘I’MIZ'(t)I'Zlt (using (1))
a

M?Iz'(t)|dt
a

MI

< M.

[f(z)dz
C

Worked Examples :

Example 1 :

where f(z) = y-x-i3x? and C is the line segment from z=0 to

Evaluate éf( z)dz

z=1+1.
Solution:

The equation of the line segment C joining z=0 and z=1+i is given by y=x.

& The parametric equation of C can be taken as x=t and y=t where 0<t<]1.

Hence 2(t) = x(ty+iy(t)
= t+it so that z'(t) = 1+i.
o f(z(t)) = t—t-i3t2 = -.'i3t2
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If(z)dz _

f(z(t))z'(t)dt

000
—i3t2(1+i)dt

3 1
_ —3i(1+i)(-t—3—)

0

O
QO . O

1-i.
Example 2 :

Prove that (j:(z—a)n = where C is a circle with centre a and radius r

dz 0 ifnzl
2niifn=1

and neZ.

Solution :

The parametric equation of the circle C is given by z—a = re", 0<t<2m.

zZ'(t) = iret
. It irail
[ dz [ _at
c(z-a)* — 0 (relt)
_ i ZI"ei(l—n)tdt
rn-—l 0
L [ PR
= 1| i(1-n) A when n=1
| 1 [ ei(l—n)21c_1]
= (1-n)! .
1 ;
B (l—n)rn"1 (1-1) - 0
dz
Ifn=1, éz—a = 2mi.

Hence the result.
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Example 3 :

[zdz
C
segment from z=0 to z=2i followed by the line segment from z=2i to z=4+21i.

Evaluate from z=0 to z=4+2i along the curve C consisting of the line
Solution :

Let C, denote the line segment joining 0 to 2i and C, denote the line segment
joining 2i to 4+2i. Then C = C,+C,.

The parametric equation of C, is given by x(t) = 0 and y(t) = t where 0<t<2.

Hence z(t) = x(t)+iy(t) = it so that z'(t) = i.

p 2, ... 2
Hence Jzdz _ J(-it)idt = Jtdt =
Ci 0 0

The parametric equation of C, is given by x(t) = t and y(t) = 2 where 0<t<4.

Hence z(t) = t+2iand Z2'(t) = 1.
P 4
2 Iz _ [(t-2i)at
Cy 0
2
t
= |=—=2it
0
= 8-8i
Jzdz _ |zdz+ [zdz
C G G
= 2+8-8i
= 10-8i.

Example 4 :

9 .
Evaluate the integral (I: (x "13'2)‘12 where C is the parabola y = 2x2 from (1, 2)
to (2, 8).

Solution :

Let f(z) = x2~iy?. The parametric equation of C is given by x=t and y=2t?> where
1<t<2.
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z(t) = x(t)+iy(t) = t+i2t? and z'(t) = 1+4it

(I: (x? —iy®)dz - T(t2 — 4it?)(1+ 4it)dt

M2 5\ L :(4¢3 44
= {[(t +16t )+1(4t 4t )]dt

r ) 2

3 6 5
— v +——16t +1 t"'——4t ,
3 6 5 )

511 _ ﬂ )
3 5
Example 5 :
z+2 _ ' :
Evaluate (I: Z dz where C is the semi circle z=2¢1® where 0<0<m.

Solution :
z'(0) = 2ie'® so that dz = 2ie® dO

i .
(2424, _ P2 *2 (2i®)d0
Cc Z 0 2¢i

i 60 "
_ 2i9+e—:I

RCX0)

fni—Z\
. 1 )

= —4+2mi.

= 2i
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Exercise :

1. Evalute (I:xdz where C is the circle |z| = r.
‘ 1+1 ) d
2. Find the vale of the integral (OI 0)(x—y+1x ) Z along the straight line from z=0
to z = 1+i.
3. Show that (I:xdz = 1211 and (I:ydz = -% where C is the semicircle |z|=1 and
O<arg z<m with initial point z=1.
z+2 : _
4. Evaluate (I: Z where C is the circle z=2¢*® where —n<0<m.
IszZ . . .. .
5. Evaluate c along C where C is the segment joining the points (1, 1) and

2, 4).
CAUCHY'S THEOREM

Definition :

Let p(x, y) and q(x, y) be two real valued functions. Then the differential
equation p(x, y)dx+q(x,y)dy = 0 is said to be exact if there exists a function u(x,y) such

ou

thtgu—" d =-=4
at — P an oy -

We assume the following theorem without proof.

Theorem :

[pdx +qdy depends only on the end points of C if and only if the integrand is
C

exact.

Note : The above thearem is true if p and q are compelx valued functions as well.

Theorem :

Let f(z) be a continuous complex valued function defined on a region D. Then

[1(z)

c dz depends only on the end points of C if and onlyif there exists an analytic
function F(z) such that F'(z) = f(z) in D.
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Proof :

[f(z)dz _ é f(z)(dx +idy) (since z = x+iy)

[ f(z)dx +if (2)dy
C

(j:f(z)dz depends only on the end points of C if and only if there exists a

OF oF .
function F(z) defined on D such that o =f (Z) and gy‘ = 1f(z).
OF 10F OF .OF o
oo 'a—x"—‘E so that ‘a—x-‘-"lg which is the complex form of the Cauchy-

Riemann equation for F(z).

Since f(z) is continuous the partial derivatives of F(z) are also continuous and
hence F(z) is analytic in D and F'(z) = f(2).

Hence the theorem.

Corollary 1 :

Let f(z) be a continuous complex valued function defined on a region D then

[f(z)dz
C
F(z) such that F'(z) = f(z) in D.

= 0 for every closed curve C lying in D iff there exists an analytic function

Corollary 2 :

n
(I: (z-2a)'dz=0 ¢, every closed curve C provided n=0.

Proof :
+1
Let F(z) = (z—a)n
n+l1
F(2) = (z-a)"=f(@)
[f(z)dz=0

o By corollary (1), C

n
Hence é(z-a) dz — ¢ for all n>0.
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Lemma :

Let C be a simple closed curve. Let D denote the closed region consisting of all
points interior to C together with the points on C. Let f be a function analytic in D.
Then given €>0 it is possible to cover D with a finite number of squares and partial
squares whose boundaries are denoted by C, such that there exists a point z; lying
inside or on each Cj satisfying

for all points z distinct from each z;, and lying inside or on C,.

Proof :

We subdivide the region D into squares and partial squares by drawing equally
spaced lines parallel to the coordinate axes. A square is a closed region consisting of
all points on and interior to it. If a particular square contains points which are not in D
we remove those points and call what remains a partial square. Here ¢ is a square -~
o' is a partial square. This gives a finite number of squares and partial squares which
cover the region D.

7 AY

]

C

Suppose the Lemma 1is false. Then in the covering constructed as above there
exists a subregion with boundary Cj such that no point z; exists satisfying (1)

Let o, denote that subregion if it is a square. If it is a partial square let G,
denote the entire square of which it is a part.
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We now subdivide o, into four smaller squares by drawing line segments
joining the mid points of the opposite sides. At least one of the four smaller squares
say o, is such that o, contains points of D and no point z satisfying (1) exists.

Continuing this process we obtain a nested infinite sequence of squares o,
G sereressOye... SUCh that for each o, no z; satisfying (1) exists.

Now there exists a point z, common to each o, such that for any >0 the
neighbourhood |z~z,|<8 contains all the squares o_ for all sufficiently large values of n.

Hence every neighbourhood of z, contains points of D distinct from z, Hence
z, is a limit point of D. Since D is closed z;eD.

Since f(z) is analytic at z, there exists 6>0 such that

LOSLONY

Z—Z(

l2-7,|<8 = 721), 2 S — (2)

Choose N such that th square oy is contained in the neighbourhood |z-zy|<8.
Then for every point z in 6,(2) holds.

& z, serves as the point zj stated in the lemma. This is a contradiction since

there 1s no z, in oy satisfying (1).

This contradiction proves the lemma.

Theorem : Cauchy's Theorem

Let f be a function which is analytic at all points inside and on a simple closed

curve C. Then (I:f(z)dz = Q.

Proof :

Let D be the closed region consisting of all points interior to C together with the
points on C.

Let €>0 be given.

Let Cj g = 1,2,......,n) denote the boundaries of the squares and partial équares
covering D such that there exists a point z, lying inside or on C; satisfying

’ﬂﬂ—dﬁ)

Z"Zj

) < e (1)

for all z distinct from z and lying within or on C..
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f(Z)— f(Zj)

Let 6,(z) = zZ—zj
0 if zZ=12;

- f’(Zj) ifz+z;

Clearly Sj(z) is a continuous function and

f(z) = f(zj)—zj f'(zj)+zf'(zj)+(z—zj)8j(z)

Cfjf(z)dz _ ({jf(zJ-)dz—ijij'(zj-)dz+éjzf'(zj-)dz-'réj(Z#Zj)ﬁj(z)dz

f(zj) jdz—zjf'(zj) fdz+ f'(zj) fzdz+ (z-—zj)Bj(z)dz

C; C; C; G
- j(Z"Zj)ﬁj(z)dz since Jdz=0and [zdz=0
C; Cj C;j

n n
5 2 @2z _ 3 [ (z-2)pi(z)dz Q—)

j=1C; J=1C;

> [f(z)d

In the sum = [ £(z)dz the integrals along the common boundary of every pair

j=1Cj
of adjacent subregions cancel each other. Since the integral is taken in one direction
along that line segment in one subregion and in the opposite direction in the other.

C

7 —I
y \
\\ *//’*-“72

Hence only the integrals along the arcs which are the parts of C remain.
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Y
sFom2) 242 - El ij(z—zj)aj(z)dz
& I(I:f(z)dz' _ EI C{j(z—zj)ﬁj(z)dz
s L femmipiege
_ El ({jlz-Zillﬁj(z)ldz
TOE IR L - @

If Cj is a square and s; is the length of its side then lz—2z;|<{/2 s, for all z on C,.

Also from (1) we have |8 j(z)l <€ and hence
| |z—z;[16;{z)|dz
le J" J( )l < -Jf(sj)(e)(%j)
= 442 A € where A, is the area of the square C,.

Similarly for a partial square With boundary C; if [ is the length of the arc of C
which forms a part of CJ-, we have

éjlz_zjnsj(z)ldz < 2sj e(4sj+1)

< 42Aje+V28, e (5)

where S is the length of a side of some square containing the entire region D as well as
all the squares originally used in covering D.

We observe that the sum of all the A.'s that occur in the right hand side of (4)
and (5) do not exceed S? and the sum of all tﬁe I's is equal to L (the length of C).
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Using (4) and (5) in (3) we obtain

[f(z)dz| < (44252 +425L)e
C \ ,
= Ke Where K=4 \/ESZ + \/ESL is a constant.
Thus CI: f(z)dzl < Ke

Since e is arbitrary we have [f(z)dz=0.
C

Definition :

A region D is said to be simply connected if every simple closed curve lying in
D encloses only points of D.

For example the interior of a simple closed curve is a simply connected region.
The annular region enclosed by two concentric circle is not simply connected.

A region which is not a simply connected is said to be a multiply connected
region.

Multiply connected region Simply connected region

Cauchy's Theorem for multiply connected regions

Let C be a simple closed curve. Let Cj(j =1,2,.....,n) be a finite number of simple
closed curves lying in the interior of C such that the intriors of Cj's are disjoint. Let D
be the closed region consisting of all points within and on C except the points interior
to each C,. Let B denote the entire oriented boundary of D consisting of C and all the
C, described in a direction such that the points of D are to the left of B. Let f be a

function which is analytic in D. Then ]gf(z)dz - O.
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Proof :

Let L, be a polygonal path joining a point of C to a point of C,; L, a polygonal

C;_; to a point of C; and L, a polygonal path joining a point of C_to a point of C
such that no two L.'s cross each other.

This divides the region D into two simply connected regions D, and D,. Let B,
and B, denote the boundaries of D, and D, respectively.

By Cauchy's theorem for simply connected region |f (z)dz =0 and | f(z)dz =0.
By By

Also Iif(z)dz+ [f(z)dz _ [f(z)dz
1 B

B,
the opposite directions and cancel each other.

o jdeZ_
Jfz)dz _ g

since the integrals along L; are taken twice in

o0

We observe that B = C—CI—CZ— ...... —Cn and hence the above theorem can also be
written in the form

[f(z)dz _ [f(z)dz+ [f(z)dz+.....+ jf(z)dz'

C C Gy Ch

In particular if C is a simple closed curve and C, 1s another simple closed curve
lying in the interior of C and f is analytic in the region D consisting of all points inside
[f(z)dz

and on C excluding the points interior to C, then (J:f(z)dz = Co
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CAUCHY'S INTEGRAL FORMULA

Theorem :

Let f(z) be a function which is analytic inside and on a simple closed curve C.
Let z, be any point in the interior of C.

l.j f(z){1Z
2mi ~z -z

Then f(z,) =

Proof :

Choose a circle C, with centre z, and radius r, such that C, lies in the interior of
C.

flz
Z, is the only point inside C at which the function _Lz)—o is not analytic and

hence is analytic in the region D consisting of all points inside and on C except the
points interior to C,.

f(z)dz f(z)dz
Hence Comzg = cjo z~2g
- [ft),
- Co\ Z—2

{
ey
N
e
—~
N
!
bz
~—
N
(e
~—
S—e

Il
Sy
VSN
)
Fammn S
N
e’
|
|out)
~
N
()
g
N~—
oL
N
+
)
Ve
N
O
p ———
Sy
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I (f(z) — f(ZO)sz +f(z)2mi

CO Z—1Z)
Thus If(Z)dZ o [f(z)—f(z()))dz_l_z,ni f(ZO)
CcCZ—20 Co\- Z7Z%0
f(z)—f(ZO)J
; J ( dz _
We claim that Cy z—7 0.

Since f(z) is analytic inside and on C it is continuous at z,.
& Given >0 there exists >0 such that
lz—z,|<® = |f(z2)-1(z,)|<e

If we choose 1,<8, then |z—zy|<r, = [f(z)-f(zy)|<€.

(f(z)-f(ZO))dz . [f)_)(ano)

Z- 2

J

Co

Hence

Theorem :

Let f(z) be analytic in a region D bounded by two concentric circles C, and C,
and on the boundary. Let z, be any point in D. Then

1 f(z)dz 1 f(z)d
f(z,) = - | (2) -] (2)d2
0 2mc1 z—-17 21t1C2 Z—12
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Proof :

Let L, and L, be two disjoint line segments not passing through z, both joining
a point of C, to a point of C,. This divides the region D into two simply connected
region D, and D,. Let B, and B, denote the oriented boundary of D, and D,
respectively. Then B+B,=C-~C, e (1)

We assume without loss of generality that z,€D,.

«—C,

By Cauchy's integral formula,

f(z)dz
2nig, z-29 fzp e (2)

Also . is analytc in D, and hence by Cauchy's theorem
f
i S — ©
B; 2~ 20

Adding (2) and (3) and using (1) we get

1 f
f(Z ) - — I _(Z_)_dz
0 27 Cl —C2 Z—-2Z

| f(z)dz 1 f(z)
ZmCIZ—zO 27“CZZ z()

Example 1 :

dz
Consider I —3 Cis the circle |z-2| =

Let f(z) = 1.
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The point z = 3 lies inside C.

Hence by Cauchy's integral formula

[ dz _ .
cz—3 = 2mi f(3) = 2mi.
Example 2 :
o eZdz e .
Let C denote the unit circle |z]=1. Then | = | dz = 2xje® = 2ni.
C Z cz-0

THEOREM OF ARITHMETIC MEAN

Let f(z) be analytic inside and on the circle C with centre a and radius r. Then

ff (z)ds

f(a) = 0 where s is the arc length and / is the circumference of the circle. i.e.,

l
The value of the function at the centre is equal to the mean of the value of the function
on the circumference.

Proof :

By Cauchy's integral formula we have

1 iy f(z)dz
2m czZ—a

fla) =

The equation of the circle C is given by z=a+re'® where where 0<6<2n.
0o dz = ireiede
1 2n f(a+ reie)

o _ ( i0
& fa) = - (j) —5—{ire do)

51; 2([? f (a +re® )dO

Also we have s = rO and s varies from 0 to /.

ds
r

oo d9 =
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1 1 '
oo f(a) = 5;;(])f(a+rele)ds

_ Mt)as
Lo

Hence the theorem.

MAXIMUM MODULUS THEOREM

Let f(z) be continuous in a closed and bounded region D and analytic and

nonconstant in the interior of D. Then |f(z)]| attains its maximum value on the boundary
of D and never inthe interior of D.

Proof :

Since f is continuous in a closed and bounded region D, |f(z)| is bounded and
attain its bound.

oo There exists a positive real number M such that
f(z)] £ MforallzeD  ceeemee- (1)

and equality holds for at least one point z in D. Suppose that there exists an interior
point z,€D such that

fe) = M e )

Choose a circle with centre z; and radius r such that the circular disc |z—zy|<r is
contained in D. Then we have

1 2n

101 10
fzp) = 5o (j) f(zo+re1 )e1 de

1 2x i0
e < 55 ) [flzorre o (3)
Also from (1) and (2) we have |f(z,+re'®)| < |f(z,)|

27 i0

S ([) f(zo+re )de < 2nif(z,)l

27 i0
R LG — @
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From (3) and (4) we get

2 .
If(zy)] = % (I:t f(zo+rele)d9
2n i0
& 2nif(zy)| = (]) f(zo+re )d9
2I1t|f(z())|d9 = 2jﬂ f(z0+rei9)d6
0 0
& an[|f(zo)|— f(zo+reie)}d9 = 0
0

Since the integrand in the above expression is continuous and non negative we
have

f(zg)|-If(zy+re®)| = O
ie., If(zy)] = |f(z,+re'®)| for all z in the circular disc [z-z|<r.
i.e., If(z,)] = [f(z)| for all z in the circular disc.
oo f(z) is constant in a neighbourhood of z,.

Since f(z) is continuous it follows that f(z) is constant throughout D which is a
contradiction.

& The maximum of [f(z)| is not attained at any of the interior points of D.

Hence the theorem.
Worked Examples :

Example 1 :

dz

Z
Evaluate (IZ .zz _‘_1 where C is the positiely oriented circle |z| = 2.

Solution :
1 1
21  (z+1)fz-1)

_1(1_1J
— 28z-1 z+1
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1, z 1 zdz
dz o —[-2-dz——
& 2% = 2a% e

YA

f(z) = z is analytic and 1, -1 lie inthe interior of C.

oo By Cauchy's integral formula

zdz
(f: -1 = 2mi(f(1)) = 2mi
zdz _
cz+1 = 2ni(f(-1)) = 2ni
zdz 1 1 :
ooo I = — 2 1) —— —2 1 = i
I3 = 5(ami)-o(-2m) = 2xi

Example 2 :
(simt 22 +COSTt 22
Evaluate |

c (z-1)(z-2)

dz where C is the circle |z] = 3.’

Solution : _
: ] 1 1 1
By partial fractions (z-1)(z-2) “7-2 7-1

Let f(z) = sin ® 22 + cos nt z2

Then f(z) is analytic inside and on C and the points 1 and 2 lie inside C.

Hence by Cauchy's integral formula,

f(z)
C——z_ldz = 2mi(f1)
= 2ri(sin ©t + cos =)
= 27
- f(z) .
Similarly (f: szdz = 27nif(2)
= 2ni (cos 4w + 1 sin 4n)
= 2mi
f(z)
—dZ — < N — .
Hence (I: (z-—l)(z—2) 2ni—(—2ni) = 4ni
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Example 3 :

Let C denote the boundary of the square whose sides lie along the lines x = %2
COSZ

———dz
and y = +2 where C is described in the positive sense. Evaluate - z(22 +8)

Solution :

COSZ
zz+8

Let f(z) =
The points where f(z) is not analytic are +i2./2 and these points lie outside C.

Hence f(z) is analytic inside and on C.

o%» By Cauchy's integral formula.

COSZz f(

222 4 ) .
(sz(z2 +8) = | —Z—dz = 2mif(0)

Example 4 :

Evaluate | zdz

where C is the circle |z| = 2 taken in the positive sense.
2 .
C(9 -z )(z +1)

Solution :

Let f(z) = 9_2 )

Clearly f(z) is analytic within and on C.

o%» By Cauchy's integral formula

f zdz _ f(Z? iy
c(9-Z)(z+i) €2
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Exercise :

zdz
1. Prove that é 'Z‘z' i 1= 2ni where C is the positively oriented circle |z| =
1 efdz | _ ,
2. Show that =— J 5 = sin t if t>0 and C is the circle |z| =
2m oz +1
sin3z
3. Evaluate c,,®  where C is the circle |z| = 5.

3z-1 1
4. Evaluate é 3 zdz where C is (i) |z| = PE (i) |z| =

dz

5. Prove (j: 211 =0 where C is the positively oriented circle |z| =

HIGHER DERIVATIVES

Here we shall prove that an analytic function has derivatives of all orders. It
follows that the derivative of an analytic function is again an analytic function.

Consider a function f(z) which is analytic in a region D. Let zeD. Let C be any
circle with centre z such that the circle and its interior is contained in D. By Cauchy's

integra: formula weé have f(z) = -—L Iﬂd(;
2m -z
1 f(6) nt _ f(g)
We now prove that f'(z)=— | 5-d¢ and in general ﬂ“)(z)— dg
2mi C(l‘;—z) C(C )n+1
Theorem :

Let f be analytic inside and on a simple closed curve C. Let z be any point

f
inside C. Then f'(z) = (C)z dg.
e
Proof :
By Cauchy's integral formula we have f(z) = e (J: (-2 -
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. f(z+h)-f(z) 1 I( (%) f(c)]dC

h h(2ni) A\ &-z-h &
1 hf(&)
B h2nié[(c—z—h)(€—z)]dg
1 f(£)dg
T wmc--ne-g) 00 T M
[ f(6)dg Jf(c)dc | Q) @) |y
NoW c(G-2-0)&-2) cg-2P = G 2z-nE-2) (-2

(cf(g))(f; ; h ciz)dg
- C(C(-Cz)[@—z l111)( Z)}dc

)
..

PR (1 fe)e b f(g)ag
oo 27i (G —z~h)(&~ h) ch(g_z) 27tiC(C—-z—h)(C"Z)2

fla+h)-fz)_ 1 MO b ()
oo h 2mic(g-z)? T 2ni C(g-z-h)g-z)? (using (1)) ----(2)

Let M denote the maximum value of |f({)| on C. Let L be the length of C and d
be the shortest distance from z to any point on the curve C.

oo For any point { on C we have

|6—2z{>d and |—z~h|>|C~z|-h[>d—]h]

Q) | _
(6-2%(6-2-n) = d*(d-In)

Hence
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From (2) we get

|fz+h)-1(z) 1 £(€)a Ihl[ M ]

h 2mic(c—z)?| = 2n| d%(da—|n])

L [f(z+h)—-f(z)_ 1 If(g)dg\
°® h—o0

h 27 o(g - Z)Z ) = 0
) [y fz+h)-f(z) _ 1 fE)dE
°° h—0 h 2mi ¢(¢ - z)?
. , 1 £(0)dg
oo f(Z) i é(g—z)2
Remark :

By using induction on n we can prove that for any positive integer n we have

n! j (&)

X7y = . dg
f(ﬂ (Z) 21 C(C— Z)I‘H-l
Worked Examples
Example 1 :
e?dz - 2mi
(I: o = (a-1) where C is the circle |z| = 1.

Solution :
Let f(z) = €. f(z) is analytic and f®(z) = ¢* for all n.
By the formula for higher derivatives

Z

. ez € 2mi 0 27
je—dz = | dz=7—7¢ =
cz? c(z-0)" (n-1) (n-1)
Example 2 :
. 2
sin” z _ . ,
J——592 = =i where C is the circle [z] = 1.
C(z_gt_
6
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Solution :
Let f(z) = sin?z
. Then f'(z)

il

2 sin z cos Z = sin 2z

T
f"(z) = 2 cos2z. Also 3 lies inside C.

T
) 3 ._it}. " .7_t_
) C(Z—E) 21 f (6)
yi
7il 2 cos— | = i
( Y 3) 7191

CAUCHY'S INEQUALITY THEOREM

Let f(z) be analytic inside and on the circle C with centre z, and radius r. Let M

. (n) n'M
denote the maximum of |f(z)| on C. Then lf (Zo)‘ < o
Proof :
n! f(z)dz
n) = s
We have f)(z,) 27 (7 ZO)n+1
. n nl( M n!M
oo fl )(ZO)l = zn(rnﬂ)(znr) - n
n!M
Hence f(n)(Zo)l < -

LIOUVILLE'S THEOREM

A bounded entire function in the complex plane is constant.

Proof :

Let f(z) be a bounded entire function.

Since f(z) is bounded there exists a real number M such that |f(z)|<M for all z.
Let z, be any complex number and r=0 be any real number. By Cauchy's inequality we

M
< —
have lf(zo)l_ -
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Taking the limit as r—0 we get f'(z,) = 0. Since z, is arbitrary f'(z) = 0 for all z
in the complex plane.

oo f(z) is a constant function.

FUNDAMENTAL THEOREM OF ALGEBRA

Every polynomial of degree > 1 has atleast one zero (root) in C.

Proof :
Let f(z) be a polynomial of degree > 1.
Suppose f(z) has no zero in C. Then f(z) # 0 for all z.

Further f(z) is an entire function in the complex plane.

1
o ———pnep— L] - .
oo f(z) 1S also an entire function.

Also as z—w, f(z)—>o0.

1

oo f(z) -0 as z—oo,

1
oo FZ')' is a bounded function.

1 .
"Hence by Liouville's theorem f-(_z)“ is a constant function.

& f(z) is a constant function and hence it is a polynomial of degree zero which
is a contradiction.

Hence f(z) has atleast one root.

Hence the theorem.

MORERA'S THEOREM

If f(z) is continuous in a simply connected domain D and if (I:f(z)dz = 0 for
every simlpe closed curve C lying in D then f(z) is analytic in D.

(This theorem is the converse of Cauchy's theorem).
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Proof :
There exists an analytic function F(z) such that F'(z) = f(z) in D.
Also we know the derivative of an analytic function is an analytic function.
& F'(z) = f(z) is analytic in D.

Hence f'(z) is analytic in D.
Worked Examples

Example 1 :

Evaluate | ——s-n—l%dz where C is the circle |z| = 2.

C K.
z—— |
2

Solution :

Let f{(z) = sin z. Hence f'(z) = cos z. Also 7/2 lies inside [z[=2.

i o T
Hence j-_—-——-—stdz = 2mf ('2*)

T-3)

i

N

a

o
N

8

(7]
(SR
—

= 0
Example 2 :
z3
Evaluate |———— where C is the unit circle.
c(2z+i)
Solution :
3 3
z dz 1, z'dz
J = =

c(2z+i)’ SC(Z i )3
2

il
N
w

Let f(z)
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Then f(z) = 3z?

f'(z) = 6z
Also —i/2 lies inside C.
o I 2> dz _ ly.i_f"(—i)
enee c(2z+i)®> ~ 8 2!
T
= —(-6
2 (-6i)
_ 3n
-4
Example 3 :
(ez +zsinhz
Evaluate | —5—4z where C is the circle |z| = 4.
c (z-mi)

Solution :
Let f(z) = e*+zsinhz
oo f(z) = e*+zcoshz+sinhz
Also mi lies inside C.
f(z) iz

[— _dz _ s
Hence C(z—ni)2 2m1 f'(m)

= 2ni[e™+nicosh i + sin h 7]
2mi(—1-mi)

—27mi(1+7i)

i

Example 4 :

Show that when f is analytic within and on a simple closed curve C and z, 1s not
on C then

f(z)dz

I f'(z)dz I .

C 220 C(z-zo)
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Solution :
Case (i) :

Suppose z, is in the exterior of C. Then both

inside and on C.
oo By Cauchy's theorem
Lo
CZ7%0  c(z-z)

f(z)dz

Case (ii) :
z, lies in the interior of C.

Then by Cauchy's integral formula

f f'(z)dz .
o(z-1z) = 2mi f'(z,)
Also by the formula for higher derivatives
f(z)
[———%dz _ . o
C(z— 20)2 271 f'(z,) |
f'(2) f(2)
dz = dz
Hence 2=z {Go-20)
Example 5 :
in2zd
Evaluate | —SE-E-% where C is |z| = 1.
cf,_mi
4

Solution :
Let {f(z) = sin 2z.

f(z) is analytic and —Z}* lies inside C.

| sin2.z4 dz 2_7_‘_1_ £ E)
C(z—mi) 3!

- 4

252
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f(z)
(z-2p)

2

and

f'(z)
z—12(

are analytic



f'(z) 2 cos2z
'(z) ~4 sin 27
f"(z) = -8cos2z

ni 4]

f!" — ‘_8 co —
Hence ( 3 ) { 2 )
-8 cosh(zt-)

2

[Sin2z . 8m cosh(g_)
(z-ni)} T T3 \2

i

C

Exercise :

1.

%
Evaluate é —39z where C is |z| = 2.
z

Evaluate | __Ea_g_z_d_gi_ where C is |z| =1

C T
Z—.—.—.
4
I_....d._E_.._ T
Prove that ~(,2 , 42\ = — where C is |z—i| = 2.
Clz” +4 6
z tsint
Prove :hat ! ] cdz % if t>0 and C is the circle {z|=3.

2m C(22 + 1)2 2

2z .
Evaluate c (22_1)2 where C is |z] = 1.

_ e%dz .
If C is |z| = 2, prove that [— = 2nie
CZ-I

(24 + z)dz
If C is a closed curve described in the positive sense and ¢(z;) = f-i——-—“)—?;'
Clz—2zg

show that ¢(zy) = 12niz,2 when z, is inside C and ¢(z,)=0 when z; lies
outside C.
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SERIES EXPANSIONS

Here we consider the problem of representing a given function as a power series.
TAYLOR'S SERIES

Taylor's Theorem :

Let f(z) be analytic in a region D containing z,. Then f(z) canbe represented as a

power series in z—z, given by

f(n)( z0)

- (z—2zg)" +...

'(zp) "(zg 2
f(z) = f(zo)+-—1!—(z—-zo)+%(z—-zo) Foerot
The expansion is valid in the largest open disc with centre z, contained in D.

Proof :

Let r>0 be such that the disc |z—z|<r is contained in D.
Let O<r,<r. Let C, be the circle |z—zy| =1,.

By Cauchy's integral formula we have

1 f
f2) = Zaig, (@ (2) S (1)
Also by theorem on higher derivatives we have
) = nt o f()dg _
2nic, (-2 7T (2)
1 1
t-z — (§—20)-(z-2)
B 1
-] -2

-

Z—2 "
1 Z—Z Z—-2Z 2 Z—Z n-1 -z
= 1+(——Q]+(~—0) +...+(———0) + 0
1-

-1z C—2¢ C—2p

using the identity —— = 24 sl
gthei entxtym—1+oc+oc +...+0 +1
- —-Q
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-1
1, z-7  (z-z)f  (z—20)' " (z-z)"

TTn (Gmwf G-zl G-zl (G-20)(5-2)
£(8)

Multiplying thoughout by ——* 2 , integrating over C, and using (1) and (2) we get
7Tl

f(n+l)(ZO)
(n—-1)!

f"

2) = £(z0)+ /(20 )(z~ 70) + -2 (2 zg)P+...+ (- 20)" "+ Rp-3)
(z—zg)" I £(5)dg

2 ¢y (6-2z)(6-20)"
Here ¢ lies on C, and z lies in the interior of C, so that |-z | = r, and |z—z<r;.
oo |&—2z| = |(C"‘Zo)-(z_zo)|

2 |G-zol-lz-2,|

where Rn =

= 1|22,
1 1
oo |C - Z| < n- |Z ---Zol

Let M denote the maximum value of |f(z)| on C,.

|z~ zg|" M(Zﬁrl)

Then Bl = T ez
n-1
_ Mlz—zol (|z—zo|]
(1‘1 --IZ-—Z()D 1‘1 .
Also 2" %0 <1, Hence n}:an =0,

o Taking Lt as n—0 in (3) we get

f(z) = f(zg)+ f'(z 0)(2: z )+f"(ZO)(z—éo)2+ ..... +—n———(z—zo)n+...
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Note 1 : The above series is called the Taylor series of f(z) about the point z,. Thus if
f(z) is analytic at-a point z, then f(z) can be represented as a Taylor's series about z; in
non negative powers of z-z; in some neighbourhood of z,

Note 2 : TheTaylor series expansion of f(z) about the point zero is called the
Maclaurin's series. Thus the Maclaurin's series of f(z) is given by

f(z) = £(0)+—=£'(0 sz"o 2" fn
(2) ()+-1—'- ()+-5'- ()++-;'— (0)+...

Example 1 :

1
The Taylor's series for f(z) = 7 abotu z=1 is given by
L_ syt (1) £,y ] (‘)( 241 3?) (2-1)+....

f(z) = -i—=> f(1) =1

f(z) —-212- = (1) = -1

2
fz) = 3= (1)=2

| 6
'z = ~7F = {"(1) =

1 :
Hence the Taylor's series expansion for 7 about 1 is

.i_ = 1+(z-1)+(z-1)>—(z-1)3+.....

This expansion is valid in the disc |z-1|<l. Similarly the Taylor's series for

.. 2 3

l 1 — zZ—1 Z—1

f(z)= "aboutz =i is given by _z-=-i—-z-21+( : ) ..( .4)
i i i

+.... and the expansion is

valid int he disc [z-i|<l.
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Example 2 :
Let f(z) = €=
Then f®X(z) =e* for all n and hence f™(0) = 1.

. .. z 722 7 z"
Hence the Maclaurin's series for e? is given by € = 1+ —+=— 4+ +....4 =—+....

2y 3t n!
and the expansion is valid in the entire complex plane.

Maclaurin's series expansion of some of the standard functions are -

2 n
. z z z
1. c = 1—ﬁ+—2"!--" ..... +(—1)n_n_|+ ..... (IZI(GD)
3 .5 2n-1
. z Z n-1 Z
2. sinz = Z—¥+"5T"" ..... +(—l) (2n_1)!+""(lzl<°°)
2 4 2n-2
z° z -1 z
3 cosz = l=oy+o- (-1)° (2n- ),+ (2] <)
. Z Ei 25 zZn—l
4 smhz = Wttt s (1l <)
z2 z4 ZZn
5. coshz = I+5+7o+ +(2n)'+ (|2 < )
1
6. T = 1-z+22 =2+, +(-1)"2"+...(|2| < 1)
i .
7. 15 = 1+z+z2+z3+....+zn+...(|z|<1)
2 .3 | n
_ z° z “1z
8. log(1+z) = e +(-1)" e (|2l <1)
2 .3 n
9, log(1-2) = -z-—-Z—..-Z—  (4<1)

Worked Examples :

Example 1:

. . n .
Expand cos z into a Taylor's series about the point z = 3 and determine the

region of convergence.
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Solution :

Let f(z) =cos z

T
The Taylor's series for f(z) about z = — is

2
G T ) I )
Z—— zZ—— Z——
f(z) = f(3)+——2—f'(£)+ 2 f"(£]+...+ 2 ”'(E]+
2 1! 2 2 3! 2
T
f(z) = cosz= f(a') =0
N
f(z) = -sinz=1f (—2*) = -1
" s
f(z) = —(cosz)= T ["2‘) =0
T n
f'"(z) = sinz=f (‘2—) =
The Taylor's series for cos z about z = -;E is
(-3),(=3) (=3)
_ z—— Z—— Z——
cosz = 2 + 2) 2 4
1! 3t 5!

The expansion is valid throughuot the complex plane.

Example 2 :

z+1

Expand {(z) = as a Taylor's series

(1) about the point z = 0

(ii) about the point z = 1. Determine the region of convergence in each case.

Solution :

z—1

(1) f(z) = ——

z+1

(z-1) (1+z)7!

H
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The region of convergence is
(i1) f(z) =

The region of convergence
disc |z-1|<2.

Example 3 :
Show that

u M8

.

Solution :

(i)

is given by lT

(z-1D)(1-z+2z2-z3+.....) if |z|<1

..... )—( 1-z+z2-z3-

lz| < 1.
z—1
z+1

z—1
2+z-1

==
(1+ Z;IJ_l 4
[l_z;u(z;f_(z;_l)t__.]
(5 (5 -

z—1
2

z-1
2

z—1
2

<1 which is same as the circular

(n+l)(z+1)n when |z+1| < 1.

(- 1)"‘(n+1)(-75—;-3)n when |z-2|<2.

1
[1-(z+ 1)}

[1-(z+1)]"2
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= 142(z+1)+3(z+1)*+4(z+1)3+.... if |[z+1]<].

_ 1+ °§(n+l)(z+1)n when |z+1[<1.

n
_ L1 °z°(-1)n(n+1)(z 2)
4 4,1 _
. |z-2 - .
Here the region of convergence is 3 <1 which is the same as the circular
disc |z—2|<2.
Example 4 :
Expand ze?? in a Taylor's series about z = ~1 and determine the region of
convergence.
Solution :
Let f(z) = ze*2
= pe2(zt]) o2
= iz (z+1)ez_(,z‘*1’)—ez(z+l)}
c L il -_r;::‘f:_
r 2 2
_ 1 (z+1) 1+2(z+1)+4(z+1) Faop— 1+2(Z+1)+4(Z+1) +....
2 1! 2! 1! 2!
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-

1 {<z+1)+2<z+1>2+22<z+1>3+ ..... H()()}

1! 2!
° L

‘ ;l—F—1+(1—%)(z+1)+(%-—2;!-](z+1)2 +(252!———2£J(z+1)3+...}

]
(8

Ii
N

The expansion is invalid thruoghout the complex plane.
Exercise :

1 . .
1. Show that 5 = 1-2(z-1)+3(z-1)>-4(z-1)*+... for all z in |z—-1|<1.
z

z
2. Expand —— as a Taylor's series about z = 1.
3. Find the Taylor's series for ze? about z = 1.
6 10 14
4. Show that sin 22 = z2 -2+ 2 __Z +.... for |z|<eo.
31 517N

LAURENT'S SERIES

0 bn
A series of the form Z —
n=1z

can be considered as an ordinary power series in the variable —. Hence if the radius of
z

00 o b
. n . . Yn
convergence of the power series Z}’nz is r and r<oo then the series Zl“; converges
n= . n= Z
in the region |z[>r. The convergence is uniform in every region |z|2p>r and the series

represent an analytic function in |z|>r.

If the series (1) is combined with the usual power series we get a more general

®, .n
series of the form %22 ~(2)
—c0

This series is said to converge at a point if the part of the series consisting of
the negative powers of z and the part of the series consisting of non-negative powers of
z are separately convergent. We know that the series consisting of non-negative powers
of z converges in a disc |z|<r, and the series consisting of negative powers of z
converges in a region |z/>r,.
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oo If 1) <r, the series represented by (2) converges in the region r,<|z|<r, and in

this annulus region it represents as analytic function.
We shall prove that the converse situation is also true.

i.e., any function which is analytic in a region containing the annulus

«Q n
r,<|z—z|<r, can be represented in a series of the form > 2n(z—20)
—a0

LAURENT'S THEOREM

Let C,; and C, denote respectively the concentric circles |z—z|=1, and |z—z|=T,
with r,<r,. Let f(z) be analytic in a region containing the circular annulus I <|z—zyl<r,.
Then f(z) can be represented as a convergent series of positive and negative powers of
z-z, given by

oo} b o0 n
_ 2 —8 _ 4+ ¥ a(z-
f(z) = n=1(z——z0)n 2o n( ZO)
i I f(C)dC
where b, = 2mti Cy (C_ZO)—nH and
L, Q)

T 2miGy (G- o)™

Proof :

Let z be any point in the circular annulus I,<|z—z,|<r,. Then we have

1 (6 1 - f(6)eC
f(z) = 2ni(£l -z 21fticjI -z

L fede, 1 f(e)as

% @ = omic ¢z “amig z-g (1)

As in the proof of Taylor's theorem we havé

1 £(%)
27 le - qu

= agta(z-zy)tay(z-zy)*+.. ta, (z-z))" 4R (z) --(2)
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L @)
27 Cl (C _ Zo)n+1

where a, = dg and
(z—2p)" f(£)dg
2mi / n
Ci(&-20) (&-2)

1 1
z- = z-zg+zp—G

1
(z—20)-(5-20)
1

(z- Zo)[l— 5= %0

z—20 |

R (z) =

Z—Z()

£(€)

Multiplying by Si and integrating over C, we get

Ii(g—)flE b, b2 5 et bn-1 —
C; z—-G z—20 (z—zgp) (z—zo)n

SR (3«
b, = 2ni Cy ((;_ZO)—n+1;

1
n T 2mi(z—2zp)" Cy z-G

From (1), (2) and (3) we get
f(z) = ag+aj(z—29)+-..+an_1(z- zo)n"1

b1 + b2 +....+ bn-1

z-20 (z-29)°  (2—20)

-+

It Ry (z)+ sn(z)
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The required result follows if we can prove that R —0 and S —0 as n—oo.
If SeC, then |G~z| = r, and
l2—Cl = Wz—2p)—~(E-2p)| 2 [z—Zy|-1,.
If CeC, then |C-z)| = r, and
|G-z| = I(C—Zo)—(z—zo)l 2 I‘Z—IZ—ZOI
Let M denote the maximum value of |f(z)| in C,UC,. Then

|z- zoln M(27ry)

R| <
e
< MIZ—ZOl (IZ—Zol\n_l
T (m-fz-zo)\ » )
|z 2| |
Since <1, R_—0 as n—oo.
1 M 1’27y
Also IS | <

(z- Zo)nZ‘.'t (IZ — 2| ~ r1)

Mrl [ n )n
(Jz— 20| - 1) \ Jz— 2|
n

. —<1
Since IZ_ZOI , S,—>0 as n—o,

A

Hence by taking limit as n—» in (4) we get

o0 b © n
_ o Yx —I0 4+ ¥ an(z—2
fz) = n=1(z-zp)" n=0 nl )

Remark :

The formulae for the coefficients a_ and b_in the Laurent's series expansion are
given by ‘

1 | f(C)db
% T 2nig (C—Zo)n+1 -------- (1)
1 f f(C)db :
and bn = 2m C (C—ZO)_n+1 """""" (2)
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Since the integrands in the integrals of (1) and (2) are analytic functions of &

throughout the annular region, any simple closed curve C in the annulus can be used as
the path of integration in place of C, and C,.

Hence Laurent's series can be written as

flz) = _OZO An(z-29)", (1 <|z—20| <12)

L _f(6)ds
n . 2mi C(C_ZO)IH-I

Worked Examples :

Example 1 :

1
Expand z(z-l) as Laurent's series

(i) about z = 0 in powers of z and

(11) about z = 1 in powers of z—1. Also state the region of validity.

Solution :

(i) The only points where f(z) is not analytic are 0 and 1. Hence f(z) can be
expanded as a Laurent's series in the annulus 0<|z|<1.

1
f(z) = z(z-1)

-~ (1-2)"

i

2

~—l—(1+z+z‘

1
= —(—+1+z+zz+....+z"+....)
Z

This is the Laurent's series expansion of f(z) in 0<|z|<].
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(ii)  f(z) is analytic in 0<|z—1|<1 and hence can be expanded as a Laurent's series in
powers of z—1 in this region.

1 1 [ 1
z(z-1) ~ z—1_1+(z——1)J
= ZL_1:1+(Z—1)]_-1
= —[1-G-)+ (-1~ (z-1 ... ]

(since |z—1|<1)

_ _Z_1I_1+(z—1)-(z—1)2+ .....

This gives the Laurent's series expansion in O<|z—-1|<1.

Example 2 :

z
Find the Laurent's series for (z T 1)(z " 2) about z = -2.

Solution :.

z
= 1 ic in 0<|z+2/<1,
f(z) (z+1)(z+2) 1s analytic in 0<|z+2|<1. Hence f(z) canbe expanded as a

Laurent's series in powers of z+2 in this region.

Hz) = (z+1)?z+2)

(222

J1-(z+2)](z+2)

Z—_Z(—j—-;i)[l—(z+2)]_l

2-(z+2)
Z+2

]
P
+

—~
N
+
N

e
+

—_
N
+
o

S

o
+
Y

—
N
+
N

=5
+
I_:_l

(since |z+2|<1)

( 22 _1)[1+(Z+2)+(z+2)2+....+(z+2)n+...J

Z+

- Ziz +1+(z+2)+...+(z+2)"+....

This is the required Laurent's series expansion of f(z) in 0<|z+2|<1.
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Example 3 :

-1
Expand (z-1)(z-2) as a power series in z in the region

() |zl<t (i) 1<z|<2 (iid) [z[>2.

Solution :

‘ -1
Let @ = @162
By splitting into partial fraction, we have
" ' 11
(2) = z—-1 z-2

(i) The only points where f(z) is not analytic are 1 and 2. Hence f(z) is analytic in
|2i<1 and hence can be represented as a Taylor's series in |z|<1.

1 _ 1
z—1 z-2

1 1
- +

z-1 2-z

—(l-z)'1+l(l—5)—l

2 2

oo f(Z) =

ooooo

5]
n=0 2\2

o [ 1’ ] .
> ~1 2"

i
I
—
[
+
N
+
l\L)
+-
+
3
+
S
+ .
N | r—
I/
[SY
+
[
+
|N
N
..|..
+
'N
=]
+
—

Il
™8

(i)  f(z) is analytic in the annular region 1<|z|<2 and hence can be expanded as a
Laurent's series in this region.

f(z) = ~




fi
N |-
/=~
[y
|
N =
|
Jummbd
+
N | =
~
Pk
|
NN
1
[y

o Yool et (35

(since —1— <1 and 2 <1)
Z 2
0 1 o P

= nEO s +n§0 e

This gives the Laurent's series expansion in 1<|z|<2.

———

(iii)  f(z) is analytic in the domain |z[>2 and in this domain we have . <1,

]

Hence fz)

1
“-(z)] -3
| Z | Z .

| il
NIF—' Nl"—‘
-
f_""'ﬁ [
[y
I
/-—\
N |- NIH
+ i
ey, [ = Y
N |- |
— N~
+ !
v |
L 3 P
| NN
U L————-—-‘l
+ —
NN
+
N
N[N
~——
o
+
\——V-_—._J
T |

I

=

H M8
o

TN
Nl—l
-1
+1o
-l
N———

Example 4 :

eZz

Expand f(z) = (z-—l)3 about z=1 as a Laurent's series. Also indicate the region

of convergence of the series.
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Solution ;-

f(z) =

& [ 2-1), 21 Be-1P
S T O TR

2 1 2 2 4 2 ,
e + + +—+—=(z-1)+...
[(z—l)3 (z-1)° 2-1 3 37 }

This series converges for all values of z except z = 1.

Exercise :

1+2z 1 1 2 3
1. Prove that 53 = 53 +—-—1+Z-2"+2 ~..... where 0<|z|<l.
z°+z z- Z
. : 1 ..
2. Expand in Laurent's series — at the point z = 1.

z(z—1)

1
3. Expand Zz( z—3)2 as a Laurent's series at z=3 and state the region of validity.

.ooz+l . ' :
4. Represent the function —— by its Larent's series in powers of z for the region

lz|>1.
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COMPLEX ANALYSIS UNIT - 10

ZEROS OF AN ANALYTIC FUNCTION

Definition :

Let f(z) be a function which is analytic in a region D. Let aeD. Then a is said to
be a zero of order r (where 1 is a positive integer) for f(z) if f(z) = (z—a)"¢(z) where
(z) is analytic at a and ¢(a)=0.

Example 1 :

Consider f(z) = sinz
‘ : 3
We know that sinz = z—5—+-z-5——...
3t 5!
= ZIl-—4—-....
31 5!
= z¢(2)

Obviously ¢(z) is analytic and $(0)=1#0. z=0 is a zero of order 1 for sin z.

Example 2 :
Let f(z) = (z-2i)%(z+3)%¢*

2i is a zero of order 2 and 3 is a zero of order 3 for f(2).

Theorem :

Suppose f(z) is analytic in a region D and is not identically zero in D. Then the

set of all zeros of f(z) is isolated.

Proof :

Let aeD be a zero for f(z). We shall prove that there exists a neighbourhood
lz—a|<§ such that this neighbourhood does not contain any other zero for f(z).

Suppose a is a zero of order r for f(z).
Then flz) = (z-a)yfdz) 0 ememe- (1)
|(a)] > O where ¢(z) is analytic at a and ¢(a) = 0.
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Since ¢ is analytic at a ¢ is continuous at a.

oo We can find a & > 0 such that

[2-al<s = [p(@)-d(a)| < ""(;)

We claim that the neighbourhood |z—a|<3 does not contain any other zero of f(z).

Suppose b=a is another zero for f(z) in this neighbourhood.

Then lb-a] < &
and f(b) = 0
oo (b—a) (b)) = 0 (from (1))
Now since b # a, (b-a) # 0
oo ¢(b) = 0
Further lb-al<d = |¢(b)—¢(a)| < H’(Z—a)l
= |¢(a)| < ¢(23) which is a contradiction.

Thus the neighbourhood |z—a|<d contains no other zero of f(z) and hence the set
of all zeros of f(z) is isolated.

Corollary 1 :

Let f(z) be analytic in a region D. Suppose f(z) = 0 on a subset of D which has a
limit point in D. Then f(z) is identically zero in D.

Corollary 2 :

Let f(z) and g(z) be two functions which are analytic in a region D. Suppose f(z)
= g(z) on a subset of D which has a limit point in D. Then f(z) = g(z) in D.

Exercise :

1. Find all the zeros of cos z.
2. Prove that there is no analytic functions whose zeros are precisely the points
11 1
L= =™
23 n
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SINGULARITIES

Definition :

A point a is called a singular point or a singularity of a function f(z) if f(z) is
not analytic at some point of every disc |z—a|<r.
Example 1:

1

Consider the function f(z) = p

1
Then f'(z) = ——3 for all z=0
z

Thus f(z) is analytic except at z = 0

oo Z = 0 is a singular point of f(z).

Example 2 :

1
Consider the function f(z) = —z(—z-i) ; 0 and 1 are singular points for f(z).

Definition :

A point a is called an isolated singularity for f(z) if (i) f(z) is not analytic at
=a and (ii) there exists r>0 such that f(z) is analytic in 0<|z—al<r.

i.e., the neighbourhood |z—a|<r contains no singularity of f(z) except a.

Example 1 :

+1
f(z) = —z—z—z——— has three isolated singularities z = 0, i, —i.
z (z + 1)

Example 2 :

Consider the principal branch of logarithm given by log rei® = log r + i0 where
-n<0<m.

All points on the negative real axis are singular points of the function. These

singularities are not isolated.
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Example 3 :

1

Consider the function f(z) = Ssnz

The singular points are 0, tx, £2mx,..... and

these are isolated singular points.

We now classify the isolated singularities of a function.

Let a be an isolated singularity for a function f(z). Let r>0 be such that f(z) is

analytic in 0<|z-a|<r. In this domain the function f(z) can be represented as a Laurent
series given by

o b o n
1@ = 2 eyt
1 ,_f(E)de
where a, = 2 C(C—a)n+1
L Q)
and b

n = Znic(g-a)—n‘*'l

The series consisting of the negative powers of z—a in the above Laurent series

o0 bn
expansion of f(z) is given by ]E‘__l (z—a)n and is called the principal part or singular

part of f(z) at z=a.

The singular part of f(z) at z=a determines the character of the singularity.
There are three types of singularities. They are
(1) Removable singularities
(i1) Poles
(i11) Essential singularities.
Definition :

Let a be an isolated singularity for f(z). Then a is called a removable singulrity
if the principal part of f(z) at z=a has no terms.

Note : If a is a removable singularity for f(z) then the Laurent's series expansion of f(z)
about z = a is given by

flz) = Egn(z—a)“

= a,ta,(z-a)t....+a (z-a)"+.....
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Lt f(z) _

Hence 7—a

2
Hence by defining f(a) = a, the function f(z) becomes analytic at a.

Example 1 :

sinz
Let f(z) = —~ Clearly 0 is an isolated singular point for f(z).

Sinz = "1" Z_'Z_3+"Z'i—....
z z 3t 5!

2 4

=t ...
3! 5!

Here the principal part of f(z) at z=0 has no terms.

Hence z=0 is a removable singularity.

Also Lt Sinz
z—>0 Z

that the extended function becomes analytic at z=0.

=1. Hence the singularity can be removed by defining f(0)=1 so

Example 2 :

Z—-Sinz
Let f(z) = 3
z

z = 0 is an isolated singularity.

Z—Ssinzg 1 z3 z5
= —3|z- Z = —— ...
Z3 7 3t 5

oo Z = 0 is a removable singularity.

1
By defining f(0) = 5 the function becomes analytic at z = 0.

Definition :

Let a be an isolated singularity of f(z). The point a is called a pole if the
principal part of f(z) at z=a has a finite number of terms. If the principal part of f(z) at
z=a is given by
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bj by b; :
+ +..... + , . -
z-a (z- a)2 (z- a)r where b #0, we say that a is a pole of order r for f(z).

Note : A pole of order 1 is called a simplepole and a pole of Qrder2 is called a double pole..
Example 1 :
Consider f(z) = —.
Z

2

1 z z
= —4l+—+—+....

e
z Z 2! 3!

: 1
Here the principal part of f(z) at z=0 has a single term . Hence z=0 is a simple

pole of f(z).

Example 2 :

sinz

Let f(z) =tan z = cOSZ

. .. n . ...
The singularities of f(z) are -2—+n7t where nez. All the singularities are poles of

order 1.

Example 3 :

cosz
Let f(z) = 2 has a double pole at z = 0.

F COSZ 1 1 zz+z4
Or, = Rl FT—F—"—.....
72 22l 2! 4
_1_ 1.2
22 TRT
Example 4 :
2_
Let f(z) = z°-2z+3
A z—2

f(z) = 2+(z-2)+ —

Here f(z) has a simple pole at z = 2.
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Definition :

Let a be an isolated singularity of f(z). The pbint a is called an essential
singularity of f(z) at z=a if the principal part of f(z) at z=a has an infinite number of

terms.

Example 1 :

Let f(z) = e!Zz. Obviously z=0 is an isolated singularity for f(z).

l/z 1+l+ ! + !
Tz 12 318

+.... The principal part of f(z) has infinite number of

terms.

Hence €!Z has an essential singularity at z=0.
Example 2 :

. (1
Let f(z) = 72 sm(;). f(Z) has essential singularity at z=0.

Theorem :

Let f(z) be a function defined in a region D of the complex plane except
possibly at a point aeD and let a be an isolated singulrity for f(z). Then a is a
removable singularity for f(z) if and only if there exists a unique complex number a,
such that by defining f(a) = a, the extended function becomes analytic at a.

Proof :

Suppose a is a removable singularity for f(z).

© n
Then f(z) = Zgn(z_a) O<|z—a<r
n=

= a,ta,(z-a)tay(z—a)*+....

oo By defining f(z) = a), f becomes analytic at a. Conversely, suppose there
exists a unique complex number a, such that by defining f(a) = a,. f becomes analytic

in |z—al<r.

Hence f can be represented as a Taylor's series, in power of z—a in this

© n
neighbourhood, given by f(z) = § gn(z—a) . This shows that the principal part of f(z)

at z=a has no terms. Hence a is a removable singularity for f(z).
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Riemann's Theorem :

Let f be a function which is bounded and analytic throughout a domain

0<|z—z,|<6. Then either f is analytic at z, or else z; is a removable singular point of f.

Proof :

Consider the Laurent's series for the function in the given domain about z,. The

1 1 f(z)dz
coefficient b_ of — is given by b_ = o4 C( )—n+1 where C is the circle
(z-20)
|z—z,| = r where r<d.

z— 2z
Since f is bounded there exists a positive real number M such that [f(z)|<M in
0<|z—z,|<8.

1 M(2nr)
nl = 27 r—n+l

b

= Mr".
Since it is true for every r such that 0<r<§ taking limit r—0 we get b=0.

Hence the Laurent's series for f(z) has no principal part.

Theorem :

Let f(z) be a function having a as an isolated singular point. Then the following
are equivalent.

(1) a is a pole of order r for f(z).

. e 1
(1)  f(z) can be written in the form f(z) = ( )r 9(2) where 0(z) has a removable
Z—a
singularity at z=a and Z{";ae(z) =0
(i11) ' f ord fi 1
i PYIRY
a is a zero of order r for f(z)'
Proof :
(1) = (11)

Let a be a pole of order r for f(z).
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Then the Laurent's series expansion of f(z) about a is given by

r b,
f(z) = n-—l (z- a)n +n§g n(z~ a) where b 0.
& f(z) = : [br +br_1(z-—a)+...+b1(z—a)r—1 +a0(z—a)r+...]

(z—a)

= ! 8(z) where 8(z) = b, +b_,(z—a)+....

(z-a)

Clearly Lt 6(2) br #0 4nd 6(z) has a removable singularity at z = a

(il) = (iii)
1
Let f(z) = (z—-a)r 6(z)

and by suitably defining G(a) we may assume that 6(z) is analytic at a and 6(a)=0.

1 1
o f( j =(z- ) 9(z) and 77y o(z) is analytic at a and 57y G(a)

1
Hence a is a zero of order r for f(z“) .

1
(iii) = (i). Let a be a zero of order r for f(z) :

1
Then “f(;)‘ = (z—a)" g(z) where g(z) is analytic at a and g(a) # 0.

81(z)
oo f(z) = (z—a)r where g,(z) is analytic at a and g,(a)=0.

Let g,(z) = a,+a,(z-a)+.....+a (z-a)"+....

so that a, # 0.

a a
ooo f(z) = 0 + 1 +...+an +an+1(z—a)+.... in 0<|Z._a|<r_

(z-a) (z—a)"

|

a9 2
z—a and a,z0.

o%» The principal part of f(z) at z=a is (z—a)r (z-a)r—l

+...+

% a is a pole of order r for f(z).
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Theorem :

An isolated singularity a of f(z) is a pole if and only if Lt f (z) =00,
z—>a

Proof :

5(2)
If a 1s a pole of order r for f(z) then f(z) = (z-—a)r with g(a) # 0.

oo Lt f(Z)=CD.
Z—a

Conversely let a be an isolated singularity for f(z) and let Lt f(z)=oo.
' Z->a

1

f(2)

Then Lt 6(z) - ¢

Z—ra

Let 0(z)

it

Hence a is a removable singularity for 6(z) and by defining 0(z)=0, 6 becomes
analytic at a. Let a be a zero of order r for the function 8(z). Then a is a’pole of order r

for f(z).
Definition :

A function f(z) is said to be a meromorphic function if it is analytic except at a
finite number of points and these finite set of points are poles.

Examples :

‘ 1
1. Let f(z) = z(z—1)2
f(z) is analytic except at z=0 and z=1.

Also 0 and 1 are poles of order 1 and 2 respectively. Hence f(z) is a
meromorphic function.

z 2
e” 1 zZ z . . .
2. — =—+4+14—+—4+... is a meromorphic function.
z 2! 3!
3. e’z is not a meromorphic function since z=0 is an essential singularity for ez,
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Theorem (Weierstrass Theorem on an essential singularity)

Let z, be an essential singularity for a function f(z). Let ¢ be any complex

number. Then given €, 8>0 there exists a point z, such that z—z,<d and f(z)-c|<e.

(i.e.,) The function f(z) comes arbitrarily close to any complex number in every

neighbourhood of an essential singularity.

Proof :

Suppose the theorem is false. Then there exists €, >0 such that for every point
z satisfying 0<|z-z|<d we have |f(z)-c[>€.

1

Consider the function g(z) = f(z)— c

1
o |g(2)| = I—f‘(‘zT_—c—l <€

Hence g(z) is bounded and further g(z) is analytic in 0<|z—z|<3.

Hence by Riemann's theorem z=z, is a removable singularity for g(z).

1

If g(z,)#0 then g(z) = f(z)-C is analytic at z,,.

& By suitably defining g(z,), the function g(z) becomes analytic at z,.

If g(z,) = O then let z, be a zero of order r for g(z).

1
Then z, is a pole of order r for —g(z) = f(z)—c. Thus f(z) is either analytic at z; or

else z, is a pole of f(z) which is a contradiction to the hypothesis that z, is an essential
singularity for f(z).

Hence the theorem.

Worked Examples

Example 1 :

Determine and classify the singular points of f(z) = 1
e —
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Solution :

The singularities of f(z) are given by the values of z for which e*-1 = 0. Hence
z = 2nmi, ne€z, are the singularities of f(z).

22 z"
ez] = (1+z+5—+....+—+ ..... J—l

VA

000 Lt
z—>0e? -1

I

Hence 0 is a removable singularity for f(z).

Z

Also Lt

: =® if n#20 and hence 2nni, n#0 are simple poles of f(z).
z—>znme” —1

Example 2 :
. (1
Determine and classify the singularities of f(z) = sm(—z-)
Solution :

Clearly 0 1s the only singularity of f(z).

1 . 1 _
3!z3 5!z5

1
Also f(z) = 7

Thus the principal part of f(z) at z=0 has infinitely many terms and hence 0 is
an essential singularity for f(z).

Example 3 :

Determine and classify the singular points of > -
(2sinz-1)

Solution :
The singularities of f(z) are given by the values of z for which 2 sin z—1 = 0.

oo The singularities of f(z) are given by

z= %+2HT€, n €z and they are double poles.
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‘Exercise 3

1. Find the singularities of the followihg functions and classify the singularities.
22 : ( 1 ) 22 -2z+3
1) —— - (i) S| — iii
W G sin =) i Z==E
2. Show that the singular points of each of the followmg functions are poles.
Determine the order of each pole.
1 1
[} e R S
W Z.7 2,527 i) ( ( i)sin—
3. Find the order of the pole z=0 for the following functions.
. e~ .. € ..., 1-sinz
i) — i) —& iii
(1) n (i1) ) (i11)
RESIDUES

Definition :

Let a be an isolated singularity for f(z). Then the residue of f(z) at a is defined

to be the coefficietn of in the Laurent's series expansion of f(z) about a and is

Z-a
denoted by Res {f(z); a}.

Thus Res{f(z); a} = 5 _; I f(z)dz b1 where C is a circle |z—a| = r such that f is

analytic in 0<|z-a|<r.

Example :

Consider f(z) =

Yol O

Nol %
i
NN| —_

.

+
=N
+

|
+
N———

oo f(z) has a double pole at z = 0

1
oo Res{f(z); 0} = coefficient of P 1.
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Lemma 1 :

Lt (z- a)f(z)

If z = a is a simple pole for f(z) then Res{f(z); a} = 752

Proof :

Since z=a is a simple pole for f(z) the Laurent's series expansion for f(z) about
z=a is given by

f(z) = Zlila +ag+aj(z—a)+....
(z—a)f(z) = b,+ay(z—a)ta (z—a)*+.....

Lt (z-a)f(z) -

Z—>a 1

= Res{f(z); a}

Lemma 2 :

g(z)

If a is a simple pole for f(z) and f(z) = —= where g(z) is analytic at a and

g(a)=0 then Res{f(z); a}=g(a). )

Proof :

By lemma 1,

Res{f(z); a} = Lt (z-a)f(z)

Z—>a

- Lt g(z)
z—a

= g(a)

Lemma 3 :

h(z)
If a is a simple pole for f(z) and if f(z) is of the form }% where h(z) and k(z)

are analytic at a and h(a)#0 and k(a)=0 then

h(z)

Res{f(z); a} = k'(2)
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Proof :

Res{f(z); a} = Lt (z-a)f(z)

Zz—a

= B

o’

(z-a)
zga h(Z) z}‘—:a k(Z)

Z—a

k(Z) _ k(a)J (since k(a)=0)

= Lt h(z) Lt [
z—>a z—a

ol

Lemma 4 :

8(z)
Let a be a pole of order m>1 for f(z) and let f(z) = (z—a)m where g(z) is

g(m—l)(a)

analytic at a and g(a)#0. Then Res {f(z); a} = (m—1)!

Proof :

(m-1)! = g(z)dz
g(m—l)(a) = 21 é(z_a)m

(by theorem on higher derivatives) where C is a circle |z—a| = r such that f(z) is analytic
in 0<|z-a|<r.

(m-1)
o _g;@. — L Z)az
N i) = g e

= Res{f(z); a}
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Worked Examples :
Example 1 ¢

z+1
Calculate the residue of 2 5, at its poles.
Z —

Solution :

z+1 z+1
72 -2z 42‘2)

Let f(z) =

z =0 and z = 2 are simple poles for f(z).

Lt (z—O)[ z+1 ]

Res{f(z); 0}

Il

z—0 z(z—2)
= Lt z+1 _-l
z—>0Z—2 2

Res{f(z); 2} = Lt (2—2)[ 2+l :‘

z—>2 2(z—2)
Lt z+1 =§
z—2 Z 2

Aliter :

f(z) can be written as f(z) = E(;j where h(z) = z+1 and k(z) = z2-2z so that
k'(z) = 2z2-2.

h(0)
oo Res{f(z); 0} = m (by lemma 3)
- 1
2
h(2
Res{f(z); 2} = T{‘.%)j = -;—
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Example 2 :

Find the residue of cot zat z= 0

Solution :

z = 0 is a simple pole for cot z.

cosz N(z)
Let f(z) = sine k(z)
h(0)  cosO
oo Res{f(z); 0} = k'(0) = eos0 ~ 1
Example 3 :
eZ
Find the residue of at its poles.
z (22 + 9)
Solution :
Let f(2) i
e z) =
7 (22 +9)

Here z = 0 is a double pole and z = 3i and z = -3i are simple poles for f(z).

z

To find the Res{f(z); 0} let g(z) = Z; -
+

Clearly g(z) is analytic at z=0 and g(0)=0

[~ ]

(22 +9)-22

Also g'(z) = L (224-9)2 ﬂ

g'(0)

Res{f(z); 0} = ETH

(by lemma 4)

Q
°°

1

e

9
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f
To find Res{f(z); 3i}, let f(z) = % so that h(z) = e* and k(z) = z2(z>+9)

k'(z) = 4z3+18z

h(3i)
oo RCS{f(Z); 31} _lzy_(_gﬁ'

I

el

4(3i)° +18(3i)

el

—108i +541

el - eBi

54 54

i(cos3+isin3)
54

(sin3+icos3)

Similarly Res{f(z); 31} 54

it

Example 4 :

zeZ

——e.

Find the residue of ( 1)3 at its pole

Solution :

zez

Let f(z) = ’('"Z—jl)—;;

z =1 1is a pole of order 3 for f(z).
Let g(z) = ze? so that g'(z) = e*(z+1)
g'(2) = ez+2)

g"(1)

e —

2!

3
& Res{f(z); 1} = ~25°—
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Exercise ;

1. Find the order of each pole and find the residue at the poles for each of the
following functions.

_ Z N z+1 eZZ » 2z
: : 22 -2z :
2. Find the residue of ) at all its poles.
(z+1) (z + 4)
: . 1+ ¢Z
3. Find the residue of — at the pole z = 0.
Sinz+ ZCOSZ
4, Find the residue of 1 atz=1.
n
(1 + zz)
5. Prove that

(i) Res{tan Z; -;i} = -]

1-cosz 1
(ll) Re S{“—'——j—-‘—-,O} = —2‘

z
| 1
6. Show that all the singular points of z(ez—l) are poles. Find the order of poles

and find the radius at the poles.

CAUCHY'S RESIDUE THEOREM :

Let f(z) be a function which is analytic inside and on a simple closed curve C
except for a finite number of singular points z,, z,, Zs,...,Z, inside C.

Then éf(z)dz _2mi s Res{f(z);zj}.

=1
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Proof :

Let C,, C,.......,C_ be circles with centres z,, Z,,.....,Z, respectively such that all
circles are interior to C and are disjoint with each other.

By Cauchy's theorem for multiply connected regions we have

If(z)dz _ If(z)dz+ If(z)dz+....+ If(z)dz
C C Cy Ch
2niRes {f(z); z,} +2niRes {f(z); z,} +... +2niRes{f(z); z_}

(by definition of residue)

_ ZnijglRe s{f (z); zj}

Example :

24z
Evaluate |7 where C is the circle |z|=4
C(Z - 2)(Z + 3) )

Z2
f(z) = (z-2)(z+3)

Let

=2 and z=—3 are simple poles for f(z) and both of them lie inside |z|=4.

Lt (z-2) 2 4
Res(f2; 2} = 5, A e2)er3)| ™5

22 9
Res{fz); =3} = zl;t—3‘(z+3) (z-2)(z+3) | 5

|4 9
o By residue theorem éf(z)dz = 2m|:§+(_ E)]

. I 72z B _
% (z-2)(z+3) ~ ™

ARGUMENT THEOREM :

Let f be a function which is analytic inside and on a simple closed curve C
except for a finite number of poles inside C. Also let f(z) have no zeros on C. Then

1 () . .
= I dz = N—P wher N is the number of zeros of f(z) inside C and P is the
mi ¢ £(z)

number of poles of f(z) inside C (A pole or zero of order m is counted m times).
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Solution :

We observe that the singularities of the function f(z) inside C are the poles and

zeros of f(z) lying inside C.
Let z, be a zero of order n for f(z).
Let C, be a circle with centre z,, such that it is the only zero of f(z) inside C,.
Then {(z) = (z—zy)"g(z) where g(z) is analytic and non zero inside C »
Hence f'(z) = n(z—z))"! g(2)+(z—2,)"g'(2)
f'(z n_, g'(z)

. f'(z)
i fz) = z-z9 gz = 002—TTC (1)

z
Since g(z) is analytic and non zero inside C, “g_(('z‘)l 1s also analytic and hence

can be expanded as a Taylor's series about Z,.

f'{z 1
oo Res{ ((z)) } = coefficient of 20 in (1)

= n
f'(z).
Similarly if z, is a pole of order p for f(z), then Res f—(z‘)*:zl = —p.

Hence by Cauchy's residue theorem,

1 f'(z
i I ( dz = N_p where N is the number of zeros and P is the number of
ni ¢ f(z)

poles of f(z) within C.

Corollary :

1 Yz
If f(z) is analytic inside and on C and not zero on C, then i (f: f((z))dz=N where

N is the number of zeros lying inside C.

Proof :
Since the number of poles is zero we have P=0.

Hence the result.

290



Rouche's Theorem :

If f(z) and g(z) are analytic inside and on a simple closed curve C and if
|2(2)I<|f(z)| on C then f(z)+g(z) and f(z) have the same number of zeros inside C.

Proof :
&(2) L&)
fzytgz) = fl2)1+ t(7) | = (@4() where (2) = )
Hence [f(z)+g(2)]' = f(2)+g'(2)
= f(2)0(2)+f(2)¢'(2)
. f(z)+g(z)  £(2)(z)+1(2)¢'(2)
% ) el) - f@e
| 1), ()
f(z) ¢(z)
1 fEreE, 1 fE),, 1 )
°e 27tié f(z)+g(z) dz = 21ti(13f(z) dz+21tié¢(z) dZ e (1)
By hypothesis |g(z)| < |f(z)| and hence
glz)
f(z) < 1lonC
oo l6(z)-1] < 1onC.

Hence by maximum modulus theorem, |¢(z)-1|<1 for every point z inside C.

oo §(z)#0 for every point inside C.
¥(2),

Hence (J: ¢( z) = Number of zeros of ¢(z) within C.
= 0.
Hence from (1), we have
1 f'(z2)+g'(2) 1 f'(z)dz
-] dz - .
2mi o £(z)+g(z) 2nic f(z)

o N, = N, where N, and N, denote respectively the number of zeros of
f(z)+g(z) and f(z) inside C.

Note : We can deduce the Fundamental theorem of Algebra from Rouche's theorem.
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Fundamental Theorem of Algebra :

A polynomial of degree n has n zéros.

Proof :

Let aj+a z+a,z>+...+a_z", where a_#0 be a polynomial of degree n.

Let f(z) = a z"
and g(z) = ajta +..+a_,z™!
g(z)
Lt =+% _—
Clearly s f(z) 0

8(2) |
Hence there exists a positive real number r such that [ f(z) <1 for all z with

|z|>T.

Hence by Rouche's theorem f(z) and f(z)+g(z) have the same number of zeros
inside the circle |z] = r+1. But 0 is a zero of multiplicity n for f(z). Hence the given

polynomial f(z)+g(z) also has n zeros.
Worked Examples :
Example 1 :

2+3sinmtz d
Evaluate C z(z—1)2 Z where C is a square having vertex at 3+3i, 3-3i, —3+3i,

—3-3i.
Solution :

2+3sinnz
Let f(z) = z(z-—l)2 . Here z = 0 is a simple pole and-z=1 is a double pole for

f(z) and both of them lie within C.

It Z[2+3smnz}

Res{f(z); 0} = 750 z(z _-1)2
= 2
'(1) 2+3sinnz
Res{f(z); 1} = KT where g(z) = .
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z3ncosnz— (2 + 3sinnz)

oo g'(z) = 2
& | g'(1) = -3n-2
oo Res{f(z); 1} = -3n-2
& It (2)az _ rif2-37-2]
= —6mn?i
Example 2 :
Evaluate (I:tan zdz where C is |z| = 2.
Solution :
L g — _ sinz h(z)
et f(z) = tanz= oss _k(z)
4
cos z has zeros at z = (2n+1)—2-, nez.
. 0’ )’
o f(z) has simple poles at z = > and z = Py

Res{f(z);g} - h(g) sin(gn)

inside thg circle |z|=2.

| Iies{f(z);.—.g-} h(" g) ) Si“(_ %)

I
~
|
N[ A
l
I
m-
5
|
N a

& By residue theorem

jtanzdz

& = 2mi[(~1)+(-1)]

= —4m
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Example 3 :

Prove that J———592 = Y2 Chere C s Jo) = =
rove aC(z+l)3 =2 where IS|Z|—2.

Solution :

eZz

Let f(z) = (z—:_l—)?

f(z) has a pole of order 3 at z = -1.

rf_1
Res{f(z); -1} = -g-—g-'———)- where g(z) = €2

g'(z) = 2e?2and g"(z) = 4e¥*

-2 2
de
oo R f(z); -1} = = "7
es{f(z); -1} T &2
oo By residue theorem
[f(z)dz _ 21ti—2— _ Ami
C e2 62

Example 4 :
22 +1

(22 +22+2)

Let f(z) 5

1 f'(z '
Evaluate Y (f: f(( Z)ldz where C is the circle |z]| = 4.
Solution :

i and —i are zeros of order 1 and —1+i and —1-1 are poles of order 2 for f(z).

Also these zeros and poles lie inside C.

Hence number of zeros of f(z) = N = 2 and number of poles of f(z) = P = 4.
(Poles are counted according to their multiplicity)

1 f'(z)
o» By Argument theorem i (f: f( z)dz =N-P=2-4=-2,

/
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Exercise :

3z—-4
1. Evaluate CIJ mdz where C is the circle |z| = 2.
2. Prove that (I:cothzdz =0 where C is the circle |z| = 1.
jzelZdz = i : :
3. Prove that c — " where C is the circle |z| = 5.
I___.iz____
4. Evaluate cz3(z—1) where C is the circle |z| = 3.
eZdz
5. Evaluate 2 where C is the circle |z} = 2.
cz(z-1)
e—Z
6. Evaluate |—5-dz where C is the circle |z| = 1.
Cz
[ dz
7. Evaluate Cz3(z +4) where Cis (a) |z}=2 (b) |z+2]=3.
e?dz : . ]
8. Prove that | =871 where C is the circle [z| = 5.
CCOS VA

EVALUATION OF DEFINITE INTEGRALS

Typel:

2n

(I) f(cos®,sin6)d0 ypere f(cos 0, sin 0) is a rational function of cos 8 and sin 0.

To evaluate this type of integral we substitute z=e®. As 0 varies from 0 to 27, z
describes the unit circle |z} = 1.

10, —i0 -1
Also, cos® = % te = Z¥Z
2 2
i6 _ _-i6 |
and sin@ = ° ? =2 Z
21 21
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Substituting these values in the given integrand the integral is transformed into

-1 -1
dz Z4+Z Z—Z . . ;
(j: G(Z) where 06(z2) = f( 2 95 ) and C is the positively oriented unit circle

|z|=1. The integral é@(z)dz can be evaluated using the residue theorem.

Worked Examples :

Example 1 :

2 d6

Evaluate (f) m

Solution :

Zjn do
Let L= 5+4sme
Put z = e
Then dz = 1z do
Z-—- z*1
and sin@ = -
21

The given integral is transformed to

dz
I = | —1Y] Where C is the unit circle |z}=1
C. Z2—z
1z[5+4[ - H
21
dz
1 = | :
C272 +5iz -2
L fi 1
t =
© @ = S Zisiz_2
1

2(z+ 2i)(z+ —é)
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i i
co —21 and —5 are simple poles of f(z) and the pole ) lies inside C.

i 1 1
Resif(z)—t - 1t — -1
Also es{ (2) 2} T i2(z+21) 3

2

Hence by Cauchy's residue theorem

I = 21ti(—17) _2r
31 3

Example 2 :

Prove that
2t dO 27
o I+asm0 ~— Jj_g2  ¢1<a<D
Solution :
Put z = el°
z—z—1
Then sin ® = -
21
and’ dz = 1z dO
2 dO dz
(.f) 1+asind — (f: [ [z—z_l J] where C is the unit circle
1zl 1+a - '
21
2dz
__ I 1
= Cz[Zi-i—a(z—z_ )]
2dz
R

caz“+2iz—a

2
fi -
Let (2) az® +2iz—a
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The poles of f(z) are given by

24+ 4a>

“ T 2a
= “iiif:;j (v -1<a<]l)
Let z, = -1 +iw[1_--—aE
a
and z, = 'i—i\/—l—:a-z
a
We note that |z,| = +-\/l-::’j__; >1 (since ~—1‘<a<1).

Also, since |z, z,] = 1 it follows that |z,[<1. Hence there are no singular points
on C and z = z, is the only simple pole inside C.

resihal - 4,4\ )
N 2/a
z21—12)
1
B ivi-a?

By residue theorem

2nr do . 1
| ——— = 27| ———
0 1+asin® i 1-—a2

2Zn
- 1-a2
Example 3 :
ch ado
Prove that I = 032 +sin26

_ T==a;+l (a>0)
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Solution :

1It ado
1= o,2 +(1—00526)

2

1It 2ado
02a2 +1-cos20

2n adé
0 222 +1- cos

1 adz

- Ry (putting z = €'?)
Cz\:2a2 +1—-(Z+; )} |

_ 2a i dz 7
i C[Z(Zaz + 1)2 - z2 - 1]

2ai | dz
cz2 —2(2a2 +1)z+1

i

2ai [ f(z)dz
C

where f(z) = ! and C is the unit circle |z}]=1.

22 -2(2a° +1)z+1
Poles of f(z) are the roots of z>-2(2a’+1)z+1 = 0.

oo z = (2a2+1)i2a\/a2+1

Let z, = (2a2+1)+2aJa2+1;
(2a2+1)—2;x}a2+1

Clearly |z,>1 and |z, z,| = 1 so that lz,| < 1.

Z,

Hence the only pole inside C is z = z,.

1
Res {f(z); z,} = Z_I;tzz(z—ZZ)(z-*Zﬂ(Z—Zz)
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1
227

1
(—4a)\/ a?+1

[ 2at ]
27
—4a\/ a2 +1

]

From (1), I =
T
B a2 +1
Exercise :
251\; de n
1. Show that 0 5"+‘ 3' c“o_sB- 2 -
1Ir d9 (a>1)
2. Show that 02+cos0 \/;2 1
2r dO 2n [ 2
= <1
3. Show that {) Tvasind ;22 (a% <1)
n1+2cosO
4.  Showthat Iz 5——40=0
OJ‘T"fb OUSyY

Type 2 :

oo glx
J f(x)dx where f(x) = —1_1%(% and g(x), h(x) are polynomials in x and the degree

—0

of h(x) exceeds that of g(x) by atleast two.

g(2)

To evaluate this type of integral we take f(z) = ﬁ
The poles of f(z) are determined by the zeros of the equation h(z) = 0.

Case (i) No pole of f(z) lies on the real axis.

We choose the curve C consisting of the interval [-1, r] on the real axis and the

semi circle |z[=r lying in the upper half of the plane.
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Here r is chosen sufficiently large so that all the poles lying in the upper half of
the plane lie in the interior of C. Then we have

T
é f(z)dz = f(x)dx+ J f(z)dz where C, is the semi-circle.

-T G

Since deg h(x)-deg f(x)=2 it follows that |f(z)dz—> 0 and r—>w hence |f(z)dz
C C

o c,jof(x)dx can be evaluated by evaluating [f(z)dz which in turn can be
—a0 C
evaluated by using Cauchy's residue theorem.
Case (ii) :
f(z) has poles lying on the real axis

Suppose a-is a pole lying on the real axis. In this case we indent the real axis by
a semi-circle C,, of radius € with centre a lying in the upper half plane where € is
chosn to be sufficiently small. Such an indenting must be done for every pole of f(z)
lying on the real axis.

Cy

It can be proved that [f(z)dz = —ni Res{f(z);a}
C2

o0
By taking limit as r—c0 and €—>0 we obtain the rules of Jf (_x)dx.
' —o0

Worked Examples :

Example 1 :

o0 x2—x+2

Evaluate | 7] 7 dx
-0 X +10x“+9
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- Proof :

zz—z+2

722 +1022 +9

Let f(z) =

Poles of f(z) are the zeros of z4+10z2+9 = 0
z4+10z2+9 = (22+9)(z2+1)

co z = +31; +i

oo z = 3i, —31, i, —1 are the simple poles of f(z).

Choose the contour C consisting of the interval [—r, r] on the real axis and the

semi-circle C,, |z|=r lying in the upper half of the plane.

L0, 3N\&1
'(0’ 1)
-r O r
)z _ JfGgace Rz (1)
-T C

The poles of f(z) lying within C are i and 3i and both of them are simple poles.

h(i
Res{f(z); i} = k'L(1)) where h(z) = z2-z+2 and k(z) = z*+10z2+9 so that

k'(z) = 423+20z.

. Res{f(z): 1 = —1-i+2  1-i
°° esi2: 1} = o0 T 16
.y _ 7+3i
Similarly Res{f(z); 3i} = 18

oo éf(z)dz = 2ni % (sum of the residues at the poles)
- 2ni(1'_‘+7+?‘) = 2mi| —
16i  48i 48i

St

12
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- 2
r XxX“—-x+2 2742 STt
F I dx+ | _ T
rom (1), ¥ 1052 +9 c, 2 +1022 +9 12

As r—oo the integral over C,—0

o x2—x+2 ST
oo j 4 ) dx = —
—0oX +10x“+9 12

Example 2 :

4
o x dx
Prove that J e = ﬂ_i
ox -1 6
Solution :
Let f(z) 2t
e z) =
26—1

The poles of f(z) are given by the sixth roots of unity namely, e20%i/6
n=0,1,2,3,4,5.

o f(z) has 2 simple.poles on the real axis namely 1 and —1 and the two poles
e™3 and e2™/3 lie on the upper half of the plane.

G,

(]

-T _:1 O

Choose the contour C like this

If(2)dz _  [f(z)dz+ | f(x)ax+ [£(z)dz

C o) -t C2
- I
+ ] f(x)dx+ jf(z)dz+ [f(x)dx (1)
-l+q C3 I+&

Cjzf(z)dz = —mi Res{f(z);"l}
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Similarly

Also

jf(z)dz
Cs

| £(z)dz

—ni-ﬂll)—:l' h(z) = z% and k(z) = 28 -1

—ni Res{f(z);1}

(5)
6
i

s T (3)

27| Re s{f(z); einl?’} +Re s{f(z); ez"i/z’}}

[ (nin/3 i27/3
h(el"’t ) N h(el. n )
k'(em/3) k;(elzn/S)

271

271

[ i4m/3  i8n/3
6OT/3 | 6oilon/3

T (e—in/3 remi2n/3)
3

) (e/3 - &i/3)
3
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Substituting (2), (3), (4) and (1) and taking limit as €, and €,—>0 r—»o0 we get

4 X ]
[ L R < ]
4
ooo 2w 6x dx == E[é_
ox —1 3
4
°°° ? 6x dx = .1.t__.3.
ox -1 6
Example 3 :
©o dx
I 2
Evaluate I = o(x2 + a2)
Solution :
Since 1 3 is an even function we have
(x2+a2)
.00 dx o dx
2 af T ok
‘°°(x +a )
1
Let f(z)y = ————5

(2+a2)

Poles of f(z) are the roots of (z2+a2)2 = 0
Now, (z2+a2)? = (z+ai)? (z—ai)?
oo ai and —ai are double poles of f(z).

Choose the contour C consisting of the interval [-1, r] on the real axis and the
semi circle C, with centre 0 and radius that lies in the upper half plane.

o
- X~ ]

Fe(x)dx+ [£(z)dz _ [(z)dz
-r C C

The poles of f(z) lying within C is z = ai
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1
Res{f(z);ai} = —11—'g'(ai) where g(z) = (z +ai)2

g'(z) = -2(z+ai)3
O | ] - — 1
oo g'(al) = 4a3i
o Reslflaral - L
% es{ (z); al} R
[£(z)dz 2ni( L ) T
co Z = =" 7a
C 423 2a3
oo }- dx ) + If(Z)dZ = ‘2%
—T (x2 + a2) G a

When r—o the integral over C,—0

o Of dx _ T
. — (xz +aZ )2 2°

& x
o 0(x2 + az)z T 423

Exercise :

Prove the following by using Cauchy's residue theorem.

e dx m
W 0x2+1 2

C]O x2dx T
.- 2_'—
(ii) 0(x2+1) 4
OIO dx _:n\/g
(1) 0x? +x2 +1 6

2

o 2x° -1 T
iv I dx = —
(@) ox4+5x2+4 4
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(vi) _{,o (x-1)(x*+2) 6

Types 3 :

0;0 ____g(x) cosax dx or of ____g(x) sinax dx where g(x) and h(x) are real polynomials
~o0 h(x) e h(x)

such that degree of h(x) exceeds that of g(x) by atleast one and a>0.

Case (i)

h(x) has no zeros on the real axis.

. g\Z) i
In this case take f(z) = %elaz

oo f(z) has no poles on the real axies.

Choose the contour as in type 2 and proceeding as in type 2 we get the value of
ojo __g(x) ei".‘xdx_
—oo h(x)

g(x)

» Q0 :
Taking the real and imaginary parts of J h(x) ¢ dX we obtain the value

—c0
- g(x) © 8x)
__le—lz;—)cosax dx and _foo b(x) sinax dx

Case (ii)

h(x) has zeros of order one on the real axis

8(z) ;
Take f(z) = 'ﬁ(—z)‘elaz. We notice that f(z) has real poles. Suppose a is a real zero

of h(x) on the real axis. In this case we indent the real axis at a as in type 2 case (i)
and evaluate the integral.
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To prove that the integral over the upper semicircle tends to zero as r—oo, we
use the following Lemma.

Jordon's Lemma :

Let f(z) be a function of the complex variable z satisfying the following
conditions.

(i) f(z) is analytic in upper half plane except at a finite number of poles.
(1))  f(z)-—>0 uniformly as |z]—> with 0<arg z<p
(1i1) ais a positive integer.

1az 3. _ ..
Then Z_I;too (J: f(z)e™ dz=0 where C is a semi circle with centre at the origin and

radius r.

Worked Examples :

Example 1 :

ocosxdx T
Prove that I =

0 1+x% 2e
Solution :
iz
Let f(z) = —
1+
The poles of f(z) are given by i and —i. Choose the contour C as shown in the
figure.
[ (0’ 1)
-T O r

The pole of f(z) that lies within C is i. Hence by residue theorem

(f:f(z)dz = 2mi Res{f(z);i}
. . h .
_ 21t1§;((1i—)) where h(z) = e'?
and k(z) = 1+2°
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jf(z)dz _ 2mie 1 _r
C 2i e
iax iaz
o f-—%——dx+ | 3 dz_ T
—rx“+1 Cyz°+1 e

When r—>o the integral over C, tends to zero.

1ax
0 e
I ) dx = E
—o0 X +1 €

o0

Equating real parts we get

© cosx dx n
I > = —
-0 1+x c
o0
Y 2] COS); x - T (since cosz is an even function]
ol+x e 1+x .
O L PR
ol+x - 2e
Example 2 :
‘T’ sinx dx 7 sin2
Prove that . 2 axt5 o
Solution :
Let f(z) e
Z) = 55—
22 +4z+5
The poles of f(z) are the roots of the equation
z2+4z+5 = 0
~4++/16-20

They are given by z =-2+1

2

Choose the contour C as this : —2+i is the only pole of f(z) that lies within C
and it is a simple pole.
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('2’ 1)

-r O r

Hence by Cauchy's residue theorem,
f(z)dz : :
(J: (z)az _ 27i Res{f(z);—z-l-l}

- h(-2 +1) _
mm where h(z) = e?

and k(z) = z244z+5
s ff(x)dx+ [f(z)dz _ ne >
et § C] e

Since the integral over C, tends to zero as r—>o we have

00 ~2i
[f(x)dx = T _ f—(cosZ —1isin2)
—Q0 e €
Equating imaginary parts we get
<}0 sinx dx _ —msin2
—® X2 + 4% +5 e

Example 3 :

cosin X

Prove that (j) dx =

(SR

X

Solution :

12
Let f(z) = S The only singular point of f(z) is O which is a simple pole and it
z

lies on the real axis. Choose the contour C as shown in the figure.




Then (J: f(z)dz _ | f(x)dx+ [£(z)dz+ |f(x)dx+ |f(z)dz

- C, +e G
Since f(z) is analytic within C, éf(z)dz =0 e (2)
f(z)dz )
Also él (z)dz _ —m(Res{f(z); 0})
. = —mie® =-mi e )

Further the integral over C, tends to 0 as r—>co.
Hence using (2) and (3) in (1) and taking limit as r—>o we get--

0 = (}')f(x)dx—ni+‘°ff(x)dx
0

—00
o0

oo j-f(X)dX = i
—o0

Equating the imaginary pﬁrts we get

0}3 sin xdx
o X T
osIn X T ( . SINX . . ]
KN J dx = Z [since ——is an even function
0 X 2 X
Exercise :
1. Evaluate the following integration with the help of residues.
o0 sin x dx ntsinl
(1) J 5 (Ans.: > )
-0 X —2X+5 23
0}3 cosax dx
i 2 An 1+ab >0,b>0
() 032 4 1?) | ( s.: b3( ab)e™ )(a > 0)
- ox sin x dx
i) -3 Ans:
(111) 0 X2 +a2
o (acosx+xsinx)
i J dx Ans 2ne 2
(iv) S 2 + a2 ) .

0 xsinax 2 sina
v) | dx (Ans J

—00 X4+4
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