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MECHANICS
STATICS
_ UNIT - |
FORCES ACTING AT A POINT

1.1 Resultant and Components:

Definition: 1.1

If two or more forces Fq, F,, F5 . ... etc act on a rigid body and if a single
force R can be found whose effect on the body is the same as that of all the
forces F4, F,, F3 .. .. etc. and the forces F,, F,, F3; etc. are called the components

of the force R,

2. Simple cases of finding the Resultant:

If two forces P and Q act in the same direction simultaneously on a
particie, the resultant is clearly equal to a force, P+Q acting in the same direction
on it. If however P and Q act in opposite directions, their resultant is clearly equal
to P~Q and acts in direction of the greater force.

When two forces acting at a point are in different directions (ie.) are
inclined to each other their resuitant can be found with help of a fundamental
theorem in statics known as the law of the parallelogram of Forces.

1.2 Parallelogram law of Forces:

Theorem:

If two forces acting at a point be represented in magnitude and direction,
by the sides of a paralielogram drawn from the point their resultant is represented
both in magnitude and direction by the diagonal of the parallelogram drawn

through that point. '
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If the two forces P and Q acting at A are represented in magnitude and
direction by the straight lines AB and AD and if the Parallelogram DAB be
completed, then the diagonal AC will represent in magnitude and direction the
resultant of P and Q.

In the language of vectors, the above law can be put as

AB + AD = AC.

4. Analytical Expression for the Resultant of two forces acting at a point::-

| - C

Fig.2

Let the two forces P and Q acting at A be represented by AB and AD and
let the angle between them be «.

(ie) £BAD=a
Complete the Parallelogram BAD.

Then the diagonal AC will represent the resuitant. Let R be the magnitude
of the result and let it make an angle ¢ with P.

Draw CE L to AB.
BC=AD=Q

From the right angled ACBE



Siry CBE = —g—g—

CE

i0) Si _ CE
(ie) Sin o 3

~.CE=Q Sina (i)

BE BE
Cos a=—=—
BC Q

~BE=QCosa —_— (ii)
Now, R? = AC? = AE? + CE? = (AB + BE)? + CE?
=(P+QCos a)®*+ (Q Sin a)?

= P2 + 2PQ Cos a + Q?

R = ,/P?+2PQCos o+ Q?
(1)

) CE Q Sin o
Also t = —— = 2
sotan ¢ = = P+ Q Cosa (2)

(1) gives the magnitude and (2) the direction of the resultant in terms of P, Q
and o .

Corollary 1:

If the forces P and Q are at right angles to each other, then a = 90°,
Cos oo = Cos 90° =0 and

Sin a = Sin 90° = 1.

The above results become simpler & we have R = 1/Pz +Q? and tan¢=-§-

”
-

These results may be easily inferred.

Since the parallelogram becomes a rectangle.



Corollary 2:

If the forces are equal (ie) Q = P, then

R = P2 +2PjCosoc+P2 =/2P?(1+ Cos )

= \/2P2.2cOs2-°i = 2P Cos <.
2 2

and tan ¢ = P Sina _ Sina
P+PCosa 1+ Cosa
2Sin%, Cos
2Cos A
. o
ie = —,
(ie) ¢ >

§ .
Thus the resultant of two equal forces P, P at an angle a.is 2P Cos —2— in

a direction bisecting the angle between them.

This fact (that ¢ = %)-is obvious otherwise, as the parallelogram becomes

a rhombus.

Corollary: 3

Let the magnitudes P and Q of two forces acting at an angle o be given.

Then their resuitant R is greatest when Cos o is greatest.

(ie) When Cos a=1 or oa=0°

In this case, the forces act along the same line in the same direction and

R=P+Q.

The least value of R occurs when Cos ais least.

(ie) When Cos o =-1or a= 180°



In this case, the forces act along the same line but in opposite directions
and R=P ~ Q. ‘

Example: -1

The resultant of two forces P,Q acting at a certain angle X and that of P,R
acting at the same angle is also X. The resultant of Q,R again acting at the same
angle is Y. Prove that '

QR(Q +R)

P = (X?+QR)2 =
(X*+QR) Q% +R? -Y*?

Prove also that, if P+ Q + R =0, Y = X.

Solution:-
Let P and Q act at an anglea- From the given data.

We have the following results

X?=P?+Q?+2PQ Cosa (1)
X?=P2+R%2+2PR Cos @& (2)
and Y?=Q%?+ R%?+ 2QR Cos @ (3)

(1) - (2) gives 0 =Q?-R?+2p Cosa (Q-R)
(ie)0=(Q-R)(Q+R + 2P Cos o)

ButQ R and So Q- Ris #0.

L Q+R+2PCos a =0

Q+R

2P )

or Cos a =(—)

-~ Substituting (4) in (1)

We have
X?= P2 + Q%+ 2PQ — (Q;R):Pz Q@ -Q"-QR

10



(o) P?=X?+QR, (ie) P = (X* + QR)”

Substituting (4) in (3)

We have Y2 = Q2 + R? + 2QR — (Q*”R)

2P
- Qz + Rz _ QR(Q+R)
P
QR(Q+R) Q2 +R2 _ Y2
P
- _QR(Q+R)
Q2 +R%2-Y?

If PrQ+R=0. ThenQ+R=-P

Q+R P _

1
R 4), C = — —
rom (4), Cos « >p 55 =3

Putting Cos a = é— in (2) and (3)

We have X? = P2 + R? + PR.
& Y?’=Q*+R?+ QR

(5) — () gives

X2-Y2=pP?-Q*+PR-QR

=(P-Q)(P+Q+R)

11
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Example: 2
If the resultant R of two forces P and Q inclined to one another at any
given angle makes an angle ¢ with the direction of P, Show that the resultant of

forces (P + R) and Q acting at the same angle will make an angle %with the

direction of P + R.

Solution: First Method:
D C F

Let AB= P and K13= (\)

From | |gm ABCD

AB+ AD = AC =R.
To mark the force P + R, Produce AB to E so that BE = AC.

In the ||om DAEF

AF gives the new resultant.
In A CAF, CA =CF (each representing R in magnitude)

= ZFAE (alternate angles)

(ie) AF bisects ZCAB

12



Second Method:

The resultant of P + R and Q can be found in two stages. First the
resultant of P along AB and Q along AD is a force R along AC. Secondly; we have
to find the resultant of the forces R along AC with an exira force R along AB. As
there are equal, the final resultant bisects the angle BAC.

Example: (U.Q)

Two forces P and Q acting at a point have a resultant R. If Q is doubled, R
is doubled. Again if Q be reversed in direction, then also R is doubled. Show that
P? Q2% R?=2:3:2.

Solution:
Let P and Q act at an angle. o

Their resultant R is given by
RZ=P?+ Q*+2PQ Cos o (1)

When Q is doubled (So that the angle between the 2Q and P is againa), R is
doubled.

Hence (2R)* = P? + (2Q)* + 2P.2Q Cos o
or 4R? = P?2+ 4Q% + 4PQ Cos a (2)

When Q is reversed. [Angle between the original forces now changes to
(180°- a )], R is doubled.

Hence (2R)? = P? + Q% + 2PQ Cos (180° ~ o)

(or) 4R? =P? + Q> - 2PQ Cos « (3)
Adding (1) & (3)
We get 5R? = 2P? + 2Q? (4)
Multiplying (3) by 2 and adding with (2)

We get
12R? = 3P% + 6Q°

or 4R?=P%+2Q° (5)

13



From (4) & (5)

We obtain on subtraction R? = P?,

Substitution for R in (5) gives
4P? = P? + 2Q?

3P? = 2Q?

3
ie) Q%> = = P?
(ie) 5

Thus P2: Q% : R%* = P?: %Pzz P2

P2:Q%?:R%?=2:3:2.

Example:
Two forces of magnitudes P Cos A, P Cos B act along the sides CA, CB of

a triangle ABC. Prove that their resultant is P sin C and that it makes an angle
90° — B with CA.

Solution: |
The angle between the forces P Cos A, P Cos B along CA and CB in C.

Hence their resUItant R is given by
R2 = (P Cos A)? + (P Cos B)*> + 2(P Cos A) (P Cos B) Cos C
= P2 [Cos? A + Cos?’B + 2 Cos A Cos B Cos C]
But Cos?A + Cos’B + Cos’C =1 -2 Cos A Cos B Cos C.
Hence R? = P2 [1 — Cos? C] = P2 Sin’C
or R =P sin C.

If ¢ is the angle made by the resultant with CA, then

14



P CosB.SinC

t
an ¢ PCosA+PCosB.CosC

CosB SinC

t
an¢ Cos A+ CosBCosC

But Cos A= Cos (180°-B-C ) =-—-Cos (B + C)
Cos A=—[Cos B Cos C — Sin B Sin C]

or CosA+CosBCosC=SinBSinC

CosB SinC

H = = Cot B.
encetan ¢ = ——= oG
= tan (90 — B)
~¢ =90°—B.

Example: (U.Q)

Two forces P + Q and P — Q make an angle 2 o with one another and their

resultant makes an angle 0 with the bisector of the angle between them. Show
that Ptan 6 = Q tan «o.

' Solution:

Since the resultant makes an angle 6 with the bisector of the angle
between the forces, we find it makes o — 0 with the first force

Hence tan (oc-é) = (P -Q) Sin 2a
- (P+Q)+(P-Q)Cos2a

_ (P-Q) Sin 2
P(1+ Cos 2a) + Q(1- Cos2a)

_ (P-Q)2Sina Cos a
P (2 Cos®a) + Q (2 Sin%a)

(ie) tana -tan® (P -Q)tana
1+tanatan® P+Qtana
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Cross multiplying and simplifying.

We get
Qtan o (1+tan® o) = P tan 0 (1+tan? o)

Since 1 + tan®ais non-zero, we get on division by 1 + tan®a.
Qtan o= P tan 6

Example:

The greatest resultant that two forces can have is of magnitude P and the
least is of magnitude Q. Show that, when they act at an angle o, their resultant is

of magnitude \/Pz Cos? %oc +Q? Sin? %a .

Solution:
If F1 and F, are two forces, then their greatest resultant is obtained when

they are in the same direction through a point.
Hence P = F, + F,. (1)
Their resultant is least, if they act in opposite directions through a point.
(ie) Q = Fy — F, 2)

Suppose now F,; and F, act through a point at an angle o.

Then their resultant R is given by
R*=F? +F2+2F, . F,Cos « (3)

Consider

P? Cos? ;- o + Q? Sin? -;- o

= (F, + F,)? Cos? —;- o + (Fy = F2)? Sin? % a by (1) & (2)

16



Hence R = \/P"Cosz —;—a+QZSin2 Vo .

1.

2.
3.\

4,

5.

6.

7.

2 > 2 1 .21
= F’ (Cos2 -;— o +Sin“%a] +F;} ( Cos’ —2—-oc+81n' -é-aj

+2F, F, Coszla—-Sinz—l—aj F?
2 2
=F2 +F2+2F,.F, Cos o

= R? by (3)

2

Exercises

Two forces of given magnitudes P and Q act at a point at an angle o. What
will be i) maximum value of the resultant?

The resultant of two forces P and Q is at right angles to P. Show that the

P
angle between the forces is Cos'l[——d—).

~The resultant of two forces P and Q is of magnitude P.-Show that, if P be

doubled, the new resultant is at right angles to Q and its magnitude will be

V4P’ -Q* .

Two equal forces act on a particle, find the angle between them when the
square of their resultant is equal to three times their product.

If the resultant of forces 3P, 5P is equal to 7P find.
i) the angle between the forces.
i) the angle which the resultant makes with the first force.

Two equal forces are inclined at an angle 20. Their resultant is 3times as
great as when they are inclined at an angle 2 ¢. Show that Cos08=3Cos¢.

The resuitant of two forces P and Q acting at an angle 0 is equal to

(2m+1) VP2 +Q?: When they act at an angle 90° —- O, the resultant is

(2m—1) VP? +Q?* Prove that tan0 = m_i :
m +

17



Triangle law of Forces: 1.3
A simple deduction from the Parallelogram of forces is the following
theorem, known as the Triangle of forces.

If three forces acting at a point can be represented is magnitude and
direction by the sides of a triangle taken in order, they will be in equilibrium.

M
D C

(a) (b)
Fig. 1

Let the forces P, Q, R act at a point O and be represented in magnitude
and direction by the sides AB, BC, CA of the triangle ABC. We have to prove that

they will be in equilibrium.

Complete the Parallelogram BADC. As AD is equal and Parallel to BC, AD
also represents Q in magnitude and direction.

P+Q=AB+AD

= AC (by ligm law).

This shows that the resultant of the forces P and Q at O is represented in
magnitude and direction by AC.

The Third force R acts at O and it is represented in magnitude and
direction by CA.

Hence P+ Q+R = AC at O+CA atO
:6(

as the two vectors at 0 are equal and
opposite)

. The forces are in equilibrium.

18



Note:

In the above theorem, the forces P, Q. R are represented by the sides of
the triangle A, B, C only in magnitude and direction but not in position. The forces
act at a point and do not act along the sides of the triangle.

Corollary:

From the proof of the above theorem, it is clear that the resultant of the
forces represented in magnitude and direction by the two sides AB and BC of the
triangle ABC, is represented in magnitude and direction by AC.

This principle is stated as follows:

If two forces acting at a point are represented in magnitude and -direction
by two sides of a triangle taken in the same order, the resultant will be
represented in magnitude and direction by the third side taken in the reverse
order.

In the notation of vector, the above means that AB + BC = AC

Perpendicular Triangle of Forces:-

If three forces acting at a point are such that their magnitudes are
proportional to the sides of a triangle and their directions are perpendicular to the
corresponding sides, all inwards or all outwards, then also the forces will be in

equilibrium.

Let the forces P, Q, R meet at 0.

ABC is a triangle such that magnitudes of P, Q, R are proportional to the

sides BC, CA, and AB respectively of AABC and their dlrectlons are
perpendicular to the corresponding sides all outwards.

R A

PV C
(a) ’ (b)
Fig. (2)

19



We have to prove that they will be in equilibrium.

If we rotate the A ABC through 90° in its own plane, we will get a new
triangle A' , B' , C' whose sides are parallel to the given forces and represent

the forces both in magnitude and direction. Hence by the triangle of forces p, Q, R
are in equilibrium.

Note:

The above result will also be true, if the directions of the forces, instead of
being perpendicular to the Corresponding sides, make equal angles in the same
sense with them. The proof is exactly similar.

1.4 Converse of the Triangle of Forces:

If three forces acting at a point are in equilibrium, then any triangle drawn

so as to have its sides parallel to the directions of the forces shall represent them
in magnitude also.

(a) (b)
Fig. (3)
Let the th\ree forces P, Q, R acting at 0 along the directions OL, OM and

ON keep it is equilibrium XYZ is a triangle such that the sides YZ, ZX and XY are
parallel to the directions of P, Q, R respecti\\/ely.

We have to prove that to the sides ofNA XYZ are prpportional to the
magnitudes of P,Q and R given that P + Q + R = O(statically).

Along OL, cut off OA to represent the magnitude of P on some scale.

(ie) Let OA = P. .
On the same scale, make @ = Q.

20



To get the resultant of P and Q.

Complete the ligm AOB.
The P+ Q= 0A + OB = OD
ButP+Q+ R = O (given)

(ie)65+R=5 or R = DO

This shows that the third force R is represented in magnitude on the same
scale by DO and that DON is a straight line.

Hence the three forces P, Q and R are Parallel and proportional to the
sides of the triangle OAD.

Now any triangle like XYZ whose sides are parallel to the directions of P, Q
and R will be similar to A OAD and hence

YZ _ZX _ XY
OA AD DO
But P_Q R
OA OB DO
. YZ _ZX _ XY
P Q R

(ie) The sides of A XYZ will be proportional to P, Q, R.

Polygon of Forces:-

If any number of forces acting at a point can be represented in magnitude
and direction by the sides of a polygon taken in order, the forces will be in
equilibrium.

Let the forces P, , P> . .. .. P. acting at O be represented in magnitude
and direction by the sides B1B, , B:B3 . . . .. B.B: of the polygon B4,Bo . . . . .. Bn.

21



Fig. (4)
We have to prove that the forces will be equilibrium.

Compounding the forces by vector law, step by step.

We have P, +P,=B,B, + B,B, = B,B;
P1+P2+P3=B1B3 + 8384 = B;B,
and P1 + P2 + P3+ ..... + Pn—l - B1 Bn—1 + Bn_1 Bn = B1 Bn

It is to be noted that in each of the equations above, the resultant on the
right side, of the forces named on the left side, acts at the point O.

The last force P, is represented by B, B, .

SPi+Po+ L +Pn_1+Pn=B1Bn at O + BnB1 at O

= 0.
. The forces are in equilibrium.

Note 1:

The above theorem is true even when the forces acting at O are not in the
same plane. '

Note: 2

The converse of the polygon of Forces is not true. The converse of the
triangie of forces is true because when ever the directions of three forces acting
at a point and keeping it is equilibrium are known, all triangles drawn with their

22



sides parallel to these directions, will be similar and hence represent the forces in
magnitude also. But in the case of more than three forces acting at a point and
keeping it in equilibrium, we cannot say that the sides of any polygon drawn with
its sides parallel to the directions of the forces shall represent them in magnitude
also.

If we draw twd such polygons, they will be merely equianguiar and not
necessarily similar. All that we can say is that a polygon can be drawn with the
sides parallel and proportional to the forces.

1.5 Lami’s Theorem:

If three forces acting at a point are in equilibrium, each force is
proportional to the sine of the angle between the other two.

Refer to the result and figure : 1.4 (Page 20)

We have provided that the sides of the triangle OAD represent the forces
P, Q, R in magnitude and direction.

Applying the sine rule to A OAD.

We have

OA ~ AD ~ DO
Sin ~ODA  Sin«DOA  Sin ZLOAD

(1)

But ~ODA= alt. «BOD= 180° — ZMON
-, Sin ZODA= Sin (180° — Z/MON) = Sin ZMON (2)
| Also #ZDOA= 180° — £ZNOL »
. Sin #DOA= Sin (180° — £ZNOL )’/= éin Z/NOL (3)
& <OAD = 180° — /BOD = 180° — ZLOM

~.Sin #OAD= Sin (180° — ZLOM) = Sin ZLOM (4)

Substituting (2) , (3), (4) in (1)

23



We have

OA AD ~ DO
Sin/ZMON ~ SinZNOL  Sin ZLOM
(ie) = ~ Q _ R
Sin «<MON  Sin #«NOL Sin ZLOM
P Q R
o) ———— = —/m— = ——
Sin (Q,R) Sin (R,P) Sin (P,Q)

Example : 1
Two forces act on a particle. If the sum and difference of the forces are at

right angles to each other. Show that the forces are of equal magnitude.

Solution:
Let the forces P and Q acting at A be represented in magnitude and

~direction by the lines AB and AD.

Complete the Parallelogram BAD.

Then P + Q = AB + AD + AC (]|gm law)

. AC is the sum of two forces.
D . C

N
p
AN \
A >————B
p

P—Q=AB — AD
=AB + DA
=.DA + AB

= DB (by A® law)

24



. DB is the difference of two forces.

It is given that AC -and DBare at right angle.
(ie) In Parallelogram ABCD, the diagonals AC and BD cut at right angles.
.'.ABCD m.ust be a rhombus.
~.AB = AD.
(ie) P = Q in magnitude.
Examhle 1 2 \
A and B are two fixed points on a horizontal line at a distance C apart. Two

fine light strings AC and BC of lengths b and a respectively support a mass at C.

Show that the tensions of the strings are in the ratio
b (a? + ¢ —- b?): a (b? + ¢ — a%).

Solution: _
Let T, and T, be the tensions along the strings CA and CB and W the
weight of the mass at C, acting vertically downwards along CE. '
Produce EC to meet AB at D.
Since C is at rest under the action of three forces,

We have by Lami’'s theorem,

T, T,

. — = . (1)
Sin ZECB SinZECA A c D B
Now Sin LECB = Sin (180° — ZDCB) b
T,
= Sin ZDCB
T, 5
= Sin (90° — ZABC)
= Cos ZABC E C
Sin ZECA =Sin (180°— ZACD) | VW

25



= Sin ZLACD

= Sin (90° — ZBAC)

= Cos ZBAC

Hence (1) becomes
T B T
Cos Z/ABC Cos ZBAC
. Th _ Cos«ABC _ CosB
T, ~Cos «BAC Cos A
in AABC,
We know that
2 2 _ |2
Cos B = C°+a“-b
2ca
and
2 2 _ .2
Cos A = b“+c“-a
2bc
Hence (2) becomes
T, C? +a? -b? ( 2bc
—_— = x
T, 2ca b? +c? —-a?

T, b(c?+a®-b?)
T, a(b?+c?-a?%)

)

(2)

-. The tensions of the strings are in the ratio b(a® + c* - b?) : a (b? +c2 - a?).



Example : 3
ABC is a given triangle. Forces P, Q, R acting along the lines OA, OB, OC
~-are is equilibrium. Prove that |

i) P:Q:R = a%(b? + ¢ — a?) : b? (c? + a? — b?): ¢? (a% + b? — &%) if O is the circum-
centre of the triangle.

i) P:Q:R=Cos —g—:Cos%:Cos% if O is the in centre of the triangle.

iii)«P.:Q:R=a:b:cif Oisthe ortho centre of the triangle.

iv) P:Q:R =0A:OB:OCif Ois the centriod of the triangle.

A
A
F
/NP E
O
R
Q
B C
B D C
By Lami’'s theorem,
We have
P _ Q _ R (1)
Sin ZBOC Sin ZCOA Sin ZAOB

1) What O is the circum centre of the A ABC,
£ZBOC =2 £LBAC = 2A;

ZCOA = 2B

And ZAOB = 2C.

(1) gives _P = .Q = .R
Sin 2A Sin 2B Sin 2C

27



P Q R 2)

ie = - ‘
(i) 2SinACos A 2SinBCosB 2SinCCosC

2 2 2
But Cos A = b” +c” —a and Sin A = 24 where Ais the area.

2bc bc

2 2 2
- 2SinACosA=2 2A (7+c”-a’)
2bc
2A(b? +¢c? —a?)
b2c?

2A(c? +a? -b?)

Y 2 Sin B Cos B = S
ca

2A(a? +b? —c?)

and2SinCCos C =

a’b?
So (2) becomes
P.b?.c? B Q.C?a’ _ R.a’b?
2A(b? +c% —a?) 2A(c? +a? —-b?) 2A(a® +b? —-c?)
Multiplying throughout by —22
ultiplying throughout by pee
We get
P _ Q 3 R
a’(b? +c? -a?) b2(c? +a’ —b?) c?(a? +b? —-c?)

i) When O is the in centre of the triangle, OB and OC are the bisectors of ZB
and £C.

.. £BOC = 180° — g—% = 180° — (—B—+—C~)

£BOC = 180° — (90°--§-J=90°+%
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Similarly £ COA = 90° + %

So (1) becomes.

P ~ Q B R
Sin (90° + é) Sin (90° + E) Sin (90° + 9—)
2 2 2
(ie) P B Q B R
Cos-’li CosE CosEZ
2 2 2

iii} Let O be the orthocentre of the triangle In the fig.
In the fig.
AD, BE, CF are the altitudes.

Quadrilateral AFOE in Cyclic.
(- ZAFO + ZAEO = 90° + 90° = 180°)
- ZFOE + A =180°
(or) .. .LFOE =180°-A
Y ~COA =180°-B
And ZAOB =180°-C

Hence (1) becomes

P _ Q _ R
Sin (180°-A) Sin(180°-B) Sin(180°-C)

Gie) P Q _ R
SinA  SinB SinC
P Q R ) a b C
i —_— = _ = —_— S — =
2 =% o ( "°SinA ~ SinB Sin c]
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iv) When O is the centriod of the triangle.
we know that

ABOC = ACOA = AAOB and each = —;— A ABC.

ABOC = -;— OB.OC Sin £BOC =% AABC

~sin,BOC = 2AABC
30B.0C
Similarly Sin /COA = 2AABC
30C . OA
and Sin zAOB = -28ABC
30A.OB
Hence (1) becomes
P30OB.OC _ Q30COA _ R30AOB
2AMABC = 2AABC  2AABC

(ie) P.OB.OC =Q. OC. OA=R. OA. OB

Dividing by OA. OB. OC throughout,

Example : 4

Weights W, w, W are attached a points B,C,D respectively of a light string
AE where B,C,D divide the string into 4 equal lengths. If the string hangs in the
form of 4 consecutive sides of a regular octagon with the ends A and E attached

to point on the same level, show that W =(«f2_+1) w.
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Solution:

Wy

ABCDE is a part of regular octagon. We know that each interior angle of a
regular polygon of n sides

= [2n_4)x90°
n .

Putting n = 8, each interior angle of ABCDE

(2x8—4] « 90°
8

12 90°= 135°
8

Let the tensions in the portions AB, BC, CD, DE be T, , T, , Ts , T,
respectively. The String BC pulls B towards C and pulls C towards B, the tension

being the same throughout its length. This fact is used to denote the forces acting
at B, C, and D.

In ABCD, £BCD = 135°

o

45° _ 221
2

.. ZCBD=Z CDB =

. ZABD =Z£ ABC — ZCBD.
=135°—-22 %° =112 —;—

we know that every regular polygon is cyclic
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A, B, C, D, E lie on the same circle.
ZEAB = 180° — £BDE

.. LEAB = 180° - { L CDE — £BDC}

= 180° -- {135° — 22 %}

= 45° + 22—1— = 67l
2 2

Equating the two values of T, from (1) and (2)

We have
W gin22d = Y ces227
Sin135° 2 Sin 135° 2

. Y, 1°
ie) — = tan22— =J2——1
(ie) W >

we W w2+
- V2-1  (f2-)(2+1)
_ w(/2+1)
1
LW =w (4247
Ekample:s

A weight is supported on a smooth plane of inclination o by a string
inclined to the horizon at an angle vy . If the slope of the plane be increased to 3
and the slope of the string unaltered, the tension of the string is doubled. Prove
that Cot a— 2 Cos B =tan A. '
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Solution: '
P is the Position of the weight. The forces acting at P are i) its weight W

downwards ii) the normal reaction R _L"to the inclined plane and iii) the tension T
along the string at

90°

&/

Q 0
" ZEAB + £ ABD = 67 + 112%

= 180°
.AE || BD.
..BD also is horizontal

Let the vertical line through B meet AE at L and the vertical line through C
meet BD at M.

Applying Lami’s theorem for the three forces at B.

W T,
We get ———— = 2
9 Sin ZABC Sin (180° - #ABL)
o) W _ - T _ _ T,
Sin 135° Sin ZABL _ 10
Sin22—

(“Inrt £d AABL, ZABL =90°—~67— )
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. T2 _ W

(o] : (o]
Sin 22_1_ Sin135
>
ie) To= —V__ sino221 (1)
?” Sin135° 2

Similarly applying Lami's Theorem for the three forces at C,

We have — w - T
Sin #«BCD Sin (180° — .MCD)
(ie) — v __ - T _ T _ T,
Sin £135°  SinZMCD 10y 10
Sin [90° —22% ] Cos 221
" 1°
T, = ———— . Cos22— 2
2 Sin135° 2 (2)
Example:

A string ABCD hangs from fixed points, A,D carrying a weight of 12/b. At
B and A weight W at C. AB is inclined at 60° to the horizontal BC and CD is
inclined at 30° to the horizontal. Find W.

Solution:
Let T, , T2, Tz be the tensions in the Parts AB, BC, CD of the String ABCD
hanging from the fixed points A and D.

A

D
T, .
' 1607 T,
0° | I
T, T,
B
A 121bs w
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Consider the equilibrium of the point B.

By Lami’s'theorem

L T
Sin 90° Sin (180° ~30°)
12

Sin(90° +30°)

Sin 30° 12
or T,=12 =N=2  _ 1<
2 Cos 30° J3

Consider next the equilibrium of C.

By Lami's theorem

1, W T,
We get = = : _
Sin (180° - 60) Sin (90° +60°) Sin 90
Cos 60° 12 1
or W=T, —— = — | — = 4/(bs.
* "Sin 60° BB
Example :

A bead of weight w can slide on a smooth circular wire in a vertical pilane
the bead is attached by a light thread to the highest point of the wire and in
equilibrium the thread is tart and makes an angle O with the vertical. Find the
tension of the thread and reaction of the wire on the bead.

Solution:

The bead is kept in equilibrium at a point A of the wire by three forces, W

(the weight of the bead) the reaction R at A and the tension T in the string AB,
where B in the highest point of the wire.
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Also the wire being smooth the reaction R at A passes through C, the
centre of the circular wire.

Since AB is inclined at an angle 0 with the vertical, ZCBA =0.

But BC = CA, So that Z.CBA =6

By Lami’s theorem

wW B R 3 T
Sin (180° -9) Sin (180° -6) Sin 20
or wW B R _ T
Sin 0) Sin 0) 2 Sind Coso

This gives T=2W Cos6 & R=W

Example : 6
Two beads of weights w and w’ can slide on a smooth circular wire in a

vertical plane. They are connected by a light string which subtends an angle 2

at the centre of the circle when the beads are in equilibrium on the upper half of
the wire. Prove that the inclination of the string to the horizontal is given by

W~ W'
tan o =———-—tanp
W+ W
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Solution:
Let A and B be the beads of weights Wand W' connected by a light string
and sliding on a circular wire.

In equilibrium position ZAOB =2p

O being the centre of the circle.
.. LOAB =2 OBA =90°— f.
Let AB make an angle &« with the horizontal .
AL and BM are the vertical lines through A and B
ZOAL = 90—~ ZOAN =90°—(90° — (90°—PB +a. )= B — ..
Since AL | BM,
ZABM + £ BAL = 180°

S ZABM = 180° — ZBAL = 180° — (90° — a) = 90° + aan angle yto the
horizontal. By Lami’s theorem three farces at P,

T RN W
Sin (180° — &) Sin (90° — (7 - o))
N\
T W

e Sna = Costy—o)

- W Sin o
Cos (y —a)

(1)
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In the second case, the inclination of the plane is B.
There is no change in vy

If T, is the tension in the string.

W Sin 3

We have T, =
Cos (v - )

But T, = 2T (given)

. WSina _ 2W Sin a
" Cos(y—-a) Cos (y—a)

..8in B Cos(y—a)=2sin aCos (y-B).
(ie) Sin p ( Cos vy Cos o + Siny Sina)
=2 sina(Cosy Cos § + Sin y Cos B)
Sin B Cosy Cos‘oc =2 Sina. Cosy Cosp + Sina SinB Siny
= Sin (2 Cosy CosP + SinB Siny)

. Cosa _ 2 Cosy Cosf + Sinp Siny
7 Sina Sinp Cosy

(ie) Cot a =2 Cot B +tany (or)
Cot o —2Cot B =tany.

. Z0BM =2 ABM — ZABO

=>90°+ o — (90° —B )= a+ P.
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The forces acting on the bead w and A are
i) Weight w acting vertically downwards along AL
i) normal reaction R due to contact with the wire along the radius OA outwards.
and iii) tension T is the string along AB.
Similarly the force acting on the bead w' at B are
i) Weight w' acting vertically downwards along BM.
ii) normal reaction R' along the radius OB outwards and

iii) tension T is the string along BA.

Applying Lami’'s theorem for the three forces at A

w _ T
Sin[180° - (90 - B)] Sin(180° - B —a)
. w T
= 1
(®) Cosp~Sin(-w) )
Similarly applying Lami’'s theorem for the three forces at B,
w' B T
Sin[180° - (90 —-B)] Sin(180° —-B - a)
. w' T
(ie) (2)

Cosp Sin(B-o)

Dividing (1) by (2)

We have

W Sin(B+a)

w"  Sin(B-o)

w-w'  Sin(B+a)-Sin(B-a)
w+w!'  Sin(p+a)+Sin(B-a)
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J.tan o

- 2CosBSina _ tana’

2 Sing Cos a tanp

= [W_W:Jtanﬁ

W+ W

Hence the result.

Exercise.

Two forces act at a point and are such that if the direction of the resultant
is turned through a right angle. Prove that the two forces must be equal in
magnitude.

Three forces x, y, z, acting at the vertices A, B, C respectively of a
triangle, each _lto the opposite side keep it in equilibrium. Prove that

— T m— T oom—

If three forces represented in magnitude and direction by the bisectors of

the angles of a A" all acting from the vertices be in equilibrium, show that
the triangle must be equilateral.

A string ABCD hangs from fixed points, A,D carrying a weight of 12kgs at

B and a weight W at C. AB is inclined at 60° to the horizontal, BC is
horizontal and CD is inclined at 30° to the horizontal. Find W.
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UNIT - i

RESOLUTION OF A FORCE

2.1 Resolution of a Force .

Two forces given in magnitude and direction have only one resultant for we
can construct only one parallelogram when two adjacent sides are given.
Conversely, a single force can be resolved into two components in an infinite
number of ways. Since any number of parallelograms can be constructed on a
given line AC as diagonal. (See fig.1. page.5)

If BADC is any one of these, the force AC is equwalent 'to the two
component forces AB and AD. ’

The most important case of resolution of a force occurs, when a given
force is to be resolved in two directions at right angels, one of these directions
being given. In this case, the magnitudes of the component forces are early got
as follows: “

Let OC represent the given force F and OX be a line inclined at an angle Q
to OC.

Let OY be perpendicular to OX.

Draw CA 1 to OX and complete the parallelogram OQACB.

B =—C
O A
(a)

Fig. 1

Then the force OC is equivalent to the two component forces OA and OB.

Also OA=0C. Cos O =F Cos O

And OB =AC. =0OC. SinO =F Sin0
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When a given force is resolved into two components two mutually
perpendicular directions, the components are referred to as the resolved parts in
the corresponding directions.

In fig. (@) OA is the resolved part of F along OX while OB is the resolved
part of F along OY.

In fig. (b), O is obtuse and OA is in a direction oppbsite to OX.

In this case, the resolved part of F along OX is negative.

Y
A

A
(b)

Its value as before is F Cos 8 Which is negative, as O is obtuse.

Hence we have the following important proposition:

A force F is equivalent to a force F cos 0 along a line making an angle 0
with its own direction together with a force F Sin 0 Perpendicular the direction of

the first component.

Corollary: 1
When O = O, Cos O = 1.

The resolved part = F
(ie) The resolved part of a force in its own direction is the force itself.

Corollary: 2
When 0 = 90°, Cos90° =0

The resolved part = O.

(ie) A force has no resolved part in a direction perpendicular to itself.
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2 1.1 Components of-a force along two given direction:

Let OC represent a given force F and OX, OY be two lines making angles
o and B with OC.

Draw CA parallel to OY and CB parallel to OX, making the parallelogram
-OACB as shown in the figure.

Then OA and OB are the components of the force OC along OX & oY
respectively.

From AOAC,

OA _ AC _oc
Sin ~ OCA Sin £ AOC Sin 2 OAC

OA _AC oC
SinB . Sina  Sin {180 —a + B}

(ie)

OA _ AC _ F
SinB Sina  Sin(a+B)

OA= E!.':.]_B._
Sin(o + B)
and OB = AC= _ona
Sin(a. + B)

It should be noted that the component of force in a given direction is
different from the resolved part of the force in that direction. To find the
component of a force in any direction. We must be given the direction of the
other component also. On the other hand to find the resolved part. We need only
the given direction, since the other direction must be at right angles to it.
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In other words the component of a force in a direction is a variable
quantity, while the resolved part of the force in a direction is a fixed quantity its
value being F Cos 0.

Example: 1 ,
Show that a given force may be resolved into the components, acting in
three given lines which are not all parallel or all concurrent.

Solution:

Let the three lines form a AABC and let the given force F meet the side
BC in D.

B ) C

\\%
5

Then F can be resolved into two components acting BC and DA
respectively. The component along DA can be resolved into two components
along AB and AC respectively.

Suppose two of the lines AB and CD are parallel and LM is the third line.
Let the given force F meet CD at E. F can be resolved into two components along
CD and EL. The component along EL can be resolved into two components acting
along BA and ML respectively.

Example:

A line cuts the lines of action of three concurrent forces I; 5 ﬁ in A, B, €

] ¥

respectively. If Rbe the resultant of P & Q Show that P + Q = R i
OA OB OC
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Solution:

Let OD be drawn - L"to the line ACB (the line cutting the lines of action of
the forces) meeting it at D.

The resolved parts of 1_5, 5,§ along OD are P Cos ZAOD, Q Cos/BOD and
R Cos|COD..

o)

X

Since ﬁ is the resultant of P and 6

We get
R Cos [COD = P Cos [AOD + Q Cos @OD
or R. 2P -pOD o OD
OoC OA OB
o) P . Q@ _ R
OA OB ocC
Exercises

1. If a force P be resolved into two forces making angles of 45° and 15° with
its direction show that the latter force is \/EA P.

2. Find the components of force P along two directions making angles of 4S°
and 60° with P on qpposite sides.

3. Two forces P and Q have a resultant R and the resolved part of R in the
direction of P is of magnitude Q.

Show that the angle between the forces in 2 Sin™ —2% :
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2.2 THEOREM ON RESOLVED PARTS
The algebraic sum of the resolved parts of two forces in any direction is
equal to the resolved part of the resultant in the same direction

C

(b)

(a)

Let AB and AD represent completely the forces P and Q and AX be the
direction in which the forces are to be resolved. Complete the parallelogram
ABCD so that the resultant R is represented by AC.

Draw BL, DN and CM perpendiculars to OX and BK Lto CM.

Then AL, AN and AM are resolved parts of the forces P, Q, R along AX.

In fig.(b) AD makes an obtuse angle with AX and so the resolved part of Q
is — AN.

We have to show that AL + AN = AM.

| The triangles DAN and CBK are congruent and hence AN = BK
~ AL + AN = AL + BK

=AL+LM=AM.

Obviously the above theorem can be extended to the resultant of any number of
forces acting at a point.

Suppose P,, P,, P3 are three forces acting at O.

Let R, be the resultant of P, and P, and R; be the resultant of R, and P;.
Applying the theorem to the two sets of three forces.

P1: PZ’ R1 and R1 ’ P3v R2
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We have
resolved part of Ry along OX = resolved Part of P,

+ Resolved part of P (1)
And
resolved part of R, along OX = Resolved Part of Ry +
Resolved part of P; (2)
Combining (1) and (2)
We have

resolved part of R, = resolved part of P, + resolved part of P,
+ resolved part of P; and so on. '

Hence in a generalised form
We have the theorem

The algebraic sum of the resolved parts of a number of forces in any
direction is equal to the resolved part of the resultant in the same direction.

In the application of this theorem, it is to be noted that all the forces are
resolved in the same direction and each resolved part has to be taken with its

proper sign.

'Resultant of any number of forces acting at a point: Graphical method.

Y

—
A B

Let P, Q, R, S be the forces acting at O.

Take a point A and draw lines AB, BC, CD and DE to represent
successively the forces P, Q, R and S in magnitude and direction.
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Compounding the forces by vector law, step by step we have

P+Q= AB + AC = AC

P+Q+R=AC + CD = AD

andP+Q+R+S=AD + DE = AE

Hence the required resultant is represented in magnitude and direction by
the line AE. The same construction will apply for any number of forces. The figure
ABCDE is said to be the force-polygon.

The force-polygon can be constructed by drawing the vectors
corresponding to the forces in any order In fig (c) the order of the third and the
fourth forces have been interchanged but AE is the same in each case.

Example: 1
ABC and A' B' C' are two triangles. Show that the resultant of the forces

AA", BB',and CC'acting on a particle is 3 GG' where G and G' are the
centroids of the two triangle.

Solution:

Since G is the centroid of A ABC, by definition of GA+GB + GC =0
Il ¥ from the definition of G'.

G'A'+ G'B' + G'C' = 0.

But AA' = AG' + G'A'

BB' =BG' + G'B’

and CC' = CG' + G'C'

Adding AA' + BB'+ CC' = (AG' +BG' +CG') + (G'A' + G'B' +G'C')

= AG' + BG' + CG' by (2)
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= (AG+GG' )+ (BG +GG ) +(CG + GG')

Example: 2

Find a point inside a quadrilateral such that if it is acted on by forces
represented by the lines joining it to the vertices of the quadrilateral. It will be in
equilibrium.

Solution:
Let P be a point within the quadrilateral ABCD such that the forces

represented by PA, PB, PC, PD are In equilibrium.

Let E and F be the mid points of the diagonals AC and BD of the
guadrilateral.

Then PA + PB +PC + PD

——— ey —— —

= (PA+PC) + (PB+PD)

U

= 2. PE + 2.PF = 2(PF +PF)

—

= 2.2 PM.
Where M is the mid point of EF.

Since the forces are In equillbrium.

PA+ PB+ PC +PD =0

or 4 PM=0
So that
PM=0

(le) P is coincldes with M.
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. the required point is the mid-point of the line joining the midpoints of the
diagonals. '

Example: 3

ABCD is a quadrilateral and forces acting at a point are represented in
direction and magnitude by BA, BC, CD and DA. Find their resultant.

Solution:
We have BC + CD + DA

I
w
>

. BA +(BC + CD + DA) = BA + BA

Hence the resultant is 2BA, both in magnitude and direction.

Exercises

1. ABCDE is a pentagon. Forces acting on a particle are represented in
magnitude and direction by AB, BC, CD, 2DE, AD and AE. Find their resuitant.

2. a) ABCDE is a square and forces acting at a point are represented in
magnitude and direction by AB, EBC, ECD and DA. Find their resultant.
b) Forces acting at a point are represented in magnitude and direction by
AB,2BC,2CD,DA and DB where ABCD is a square. Show that the forces
are in equilibrium.

2.3 RESULTANT OF ANY NUMBER OF COPLANAR FORCES

Resultant of any number of coplanar forces acting at a point : Analytical
Method.

Let forces Py, Py, P53 . . . .. P. act at O. Through O draw two lines OX and
OY at right angles to each other in the place of the forces.

Y
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Let the lines of action of Py, P> . . . .. P, make angles o, ,a, ... .. o
with OX.

Let R be the resultant inclined at an angle 6 to OX. Then

R Cos O = resolved part of the resultant along OX.
= algebraic sum of the resolved parts of Py, P2 . . . .. P, along OX. (2.3)
=P;Cos 01 +P,Cos O,+..... + P, Cos 0O,.
=X (Say) (1)

R Sin 0 = resolved part of the resultant along CY.
= algebraic sum of the resolved parts of P, , P, . ... P, along OY.
=Y (Say) (2)
Squaring (1) and (2) and adding
We have

R? = X? + Y?

(ie) R= X%+ Y2 (3)

Dividing (2) by (1)

tan(—)=1
X

i = -1 .Y_.
(ie) O = tan (X] (4)

Equations (3) and (4) give respectively.

The magnitude and direction of the resultant.
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Example: 1(U.Q)
ABCDEF is a regular hexagon and at A, act forces represented by

AB,2AC,3AD,4AE and 5 AF. Show that the magnitude of the resultant Is

AB. /351 and that it makes an angle tan ™ (-—Z-) with AB.

V3

Solution:

Let a be the side of the hexagon.
Each interior angle of a regular hexagon = 120°
: ;LCAB = LACB = 30°
= Z FAE = LFEA

From the the isosceles A ABC
AC = 2AB . Cos 30°

AC = 2a ‘/EA

=a /3 = AE

ZAED = 90°
-.AD? = AE? + ED?

= 3a% + a’ = 432

AD = 2a.
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Since the vertices of a regular hexagon lie on a circle.
ZDAB + ZDCB = 180°
.. £ZDAB = 180° — 120°
= 60°
.. ZDAC = 30° and ZEAD = 30°

The magnitudes of the forces acting at A are a, 2a+/3, 6a, 4a+/3 and 5a
as shown in the figure.

o Take AB and AE as axes of X and Y and let R be the resultant inclined at
an angle © to Resolving the forces along AB and AE.

We have
R Cos 0 = a + 2a+/3 Cos 30° + 6a Cos60° + 5a Cos 120°

cnaoadi V3/ +8a 1 —_85g. 1
=3+ 2a+3. A-i-ﬁa.-é— Sa~.2

Oa .
> (1

n

and R Sin 8 = 2a+/3 Cos60° + 6a Cos 30° + 4a+/3 + 5a Cos 30°

C5ay3 + 1BY3 _ 2123 )
2 2
Squaring (1) and {2)

Add adding

2
R2o 98, (21aJ§]

2 2
2
L o P
4 4
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= -——14‘?4 a’ = 351 a*

R = a+/351

Dividing (2) by (1)

Hence the resultant is a force of magnitude AB+/351, in a direction making

NG

an angle tan‘1(i) with AB.

Example: 2
Find the magnitude and direction of the resultant of three coplanar forces
P, 2P, 3P acting at a point and inclined mutually at an angle of 120°.

Solution:
Resolving the force along and perpendicular to the direction of the first

force 5,

- We get
X =P Cos 0° + 2P Cos 120° + 3P Cos 240°

=P — 2P Cos 60° — 3P Cos 60°

=p—2pP (}5)—3P (14)=— 34 P.

Y = P Sin 0° + 2P Sin 120° + 3P Sin 240°
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= 2P Sin 60° — 3P Sin 60° = — P Sin 60°

- eV

The resultant of the force has magnitude.

R = \/XZ +Y?

-\ T -

If © is the angle made by this resultant with the first forces P.

_Y_ 3] 4
Thentane—s(-— —?P/ AP

= :/% = tan 30° = tan (180° +30°) Since X and Y are - ve, the
resultant lies in 3™ quadrant.
=0 =210°
Example: 3 (U.Q)

Forces of magnitudes P - Q , P, P + Q act at a point in directions parallel
to the sides of an equilateral triangle taken in order. Show that the resultant is of

magnitude Q J3 acting perpendicular to the direction of the second force.

Solution:

Let R be the resultant of force making an angle 0 with BC. Resolving
along BC.

RCos® =P Cos 0°+ (P+Q) Cos 120° - (P — Q) Cos 60°
= P + (P+Q) Cos (180° — 60°) — (P — Q) Cos 60°
=P + (P+Q) (— C‘os 60°) — (P — Q) Cos 60°.
=P - 2P Cos 60°

=P— P=0 )
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o +Q

120°

Resolving 17 to BC
Rsin © =P Sin0°+ (P + Q) Sin 120° — (P — Q) Sin 60°
= (P+Q) Sin (180° — 60°) — (P ~ Q) Sin 60°

= (P+Q) Sin 60° — (P - Q) Sin 60°.
= i 0 = “/_3- =
2Q sin 60° = 20. V34 = J3 . Q.

Squaring (i) & (ii) and adding

R2 (Cos? O +Sin?20)=0 +3Q%

R? = 3Q?
.R =43a.
Also, Dividing SN0  _ J3a
‘ R Cos © O

tan 6 = o©
0 = 90°

Resultant = V3. Q and acts 1° to BC (ie) L'to the direction of P.
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Exercises.

1. Forces P, 3P, /3P and J3 P act along the straight lines OA, OB, OC, OD

lying in a plane. If ZAOB = 60°, ZBOC = 90° and ~ZCOD = 120° find the
magnitude and direction of their resultant.

2. Forces of 2, V3, 54/3, 2 kgs. Wt. Respectively act one of the angular points of

a regular hexagon towards the five others in order. Find the direction and
maghnitude of the resultant.

3. Show that the resultant of forces equal to 7, 1, 1 and 3 kgs.wt. respectively
acting at an angular point of a regular pentagon towards the other angular

points, taken in order is 71 kgs.wt.

4. Three forces P, Q, R in one plane act on a particle the angles between R and
Q,P and R and P and Q being o,Band y respectively show that their

resultant is equal to /{P? +Q? +R? + 2QR Cos a + 2RP Cosp + 2PQ Cosy}.

5. _Three forces acting at a point are parallel to the sides of a triangle ABC, taken
‘ in order and proportional to the cosine of the opposite angles: Show that their

resultant is proportional to (1-8 Cos A Cos B Cos C)%.

2.4 CONDITIONS OF EQUILIBRIUM
Conditions of equilibrium ot any number of forces acting upon a particle:

Forces acting at a point are in equilibrium when their resultant is zero. We
shall now give the conditions which must be satisfied by a number of forces acting
at a point of a rigid body or on a particle, in order that the body, or the particle
may be at rest. B

Geometrical or Graphical Conditions:
We have already studied the Triangle of Forces and the polygon of Forces.

If forces acting at a point are represented in magnitude and direction by
lines forming the successive sides of a polygon, then for equilibrium, the polygon
must be closed. When there are only three forces acting on a particle, the
conditions of equilibrium are often most easily found by applying Lami’s Theorem.

57



Analytical conditions:
If we resolve the forces in any two directions at right angles and the sums
of the components in these directions be X and Y, the resultant R is given by

R? = x? + Y? [Refer equation (3) is 2.3]
If the forces are in equilibrium, R = 0.
Then X2 +Y2=0

Now the sum of the squares of two real quantities cannot be zero unless each
quantity is separately zero.

SX=0and Y =0.

Hence, if any number of forces acting at a point are in equilibrium, the
algebraic sums of the resolved parts -of the forces in any two perpendicular
directions must be zero separately.

Conversely,
If the algebraic sum of the resolved parts of the forces acting at a point in

any two perpendicular directions are zero separately the forces will be in
equilibrium.

This is because when X = 0and Y = 0 we must have R = 0.

Example : 1

Forces acting at a point are represented in magnitude and direction by
AB, 2BC, 2CD, DA and DBwhere ABCD is a square. Show that the forces are
in equilibrium.

Solution:
D P C
T
\ N
A > B
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AB + 2BC + 2CD + DA + DB

=(AB + BC + CD +DA)+(BC + CD + DB)

0 [Since the forces in the first set brackets are in equilibrium by
the polygon of forces (square ABCD) and the forces in the
second set are in equilibrium by the triangle of forces (triangle

BCD)].
Hence the given set of forces are in equilibrium.

Example : 2
ABCD and A' B' C' D' are Parallelograms prove that

AA', BB, CC'and E)Eacting at a point will keep it at rest.

Solution:-
A D!

Cl

Let G and G' be the points of intersection of the diagonals.

By the polygon of forces, from the quadrilateral AGG'A",

AA' = AG + GG' + G'A"
Similarly
B'B = B'G' + G'G+GB

C'C = CG + GG'+ G'¢!

D'D= D'G' + G'G + GD (AG = AG")
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Adding up,

AA" +B'B + CC' + DD = O
[.'.thé concerned vectors in the rigit side are equal and opposite].

Example: 3 (U.G)
E is the middle point of the side CD of a square ABCD. Forces 16, 20,

4.5, 12\/—kg. wt. Act along AB, AD, EA, CA in the directions indicated by the
order of the letters. Show that they are in equilibrium.

Solution:

Take AB and AD as axes of X and Y. Produce EA to F and let ZBAF = 6.
Produce CA to G.
ZBAG = LBAC + ZCAG
= 45° + 180° = 225°
Let R be the resultant of the forces Inclined at an angle 0 to AB.
Resolving the forces along AB and AD.

We have

RCos 6 =16 + 122 Cos 225° + 445 Cos 0
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= 16 + 12/2 Cos (180° + 45°) + 4./5 Cos O

= 16 + 12/2 x — Cos 45°+ 4+/6 Cos O

=4+ 4.5C0s 0

£LBAE = ZBAF — ZLEAF

0 — 180°

& ZDEA = alt. ZBAE = 6— 180°

Inrt. 6d. AAED, AE? = AD? + DE?

2

+

=a

_ 5a?
2
3
CQs(em1ao°)=%-E- - (:/3 - 71_5-
—2_J

Cos (6— 180°) = 71_5- = — Cos®

QCose=—71_.5—
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From (1)

RCos 0 =4+4+45 x — —— =0 (2)

J5
R Sin O = 122 Sin 225° + 4+/5 Sin 6+ 20
= — 1242 Sin (180° + 45°) + 4+/5 Sin0 + 20

= — 1242 . Sin45° + 44/5 Sin®+ 20

= 1242. 1 +4 5 Sin 6 +20

V2
=8 + 4+/5 Sin0 (3)
Fromrt £d AAED.
: AD a 2
Sin (0 - 180°) = 2F = -
AE av/5 V5
2
- Sin (180 - 0 ) = 2
V5
. 2
or Sin © =. <
(or) | 75
From (3 ) R Sin 0 =8+4J§x--—2-5-
=8-8=0 (4)

Squaring (2) and (4) and adding.
R2=0+0=0 (ie) R=0

.. The forces are in equilibrium.
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'Example:4(U.Q)

Forces P, 2P.3P, 4P and 2 +/2P act at a point in direction of AB, BC, CD,
DA and AC where ABCD in a square : Show that they are in equilibrium.

- Solution : ‘
Let R be the resultant making an angle 0 with AB.

3P
D / C
AN
4P <
45° \
A p B

Resolving along AB

R Cos 0 P-3P+2 2 P Cos 45°

2P +2 2 P- =0

«/—
Resolving L' to AB

R Sin O

2P - 4P + 2 /2 P Sin 45°

-2P+22 P

——,_ =0
Squaring an;‘-‘ad.dj__ng RZ=0

. R=0

Hence the forces are in equilibrium.
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Exercises

1.

Fifteen Coplanar forces act at a point and are represented in magnitude and
direction by the lines drawn from each of the vertices of a pentagon to the
midpoints of those sides on which the vertex does not lie. Show that there are

in equilibrium.

Three equal forces acting at a point are in equilibrium. Show that they are
equally inclined to one another.

Three forces act perpendicularly to the sides of a triangle at their midpoints
and are proportional to the sides. Prove that they are in equilibrium.
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UNIT -l

FORCE ACTING ON A RIGID BODY

3.1 Introduction:

In the previous unit we have considered the method of finding the resultant
of two forces which meet at a point. We shall now consider how to find the
resultant of two parallel forces. Such forces do not meet in a point and so we
cannot find their resultant by direct application of the law of parallelogram of
forces.

Two parallel forces are said to be like when they act in the same direction.
They are said to be unlike when they act in opposite parallel directions.

3.2 Resultant of Two like and Unlike Parallel Forces
To find the resultant of two like parallel forces acting on a rigid body:

Let like parallel forces P and Q act at the points A and B of the rigid body
respectively and let them be represented by the lines AD and BL. At A and B,
introduce two equal -

Fig. 1

and opposite forces F of arbitrary magnitude along the line AB and let them be
represented be AG and BN. These two new forces will balance each other and
hence will not affect the resultant of the system.

The two forces F and P acting at the point A can be compounded into a
single force R, represented by the diagonal AE of the parallelogram ADEG.
Similarly the two forces F and Q acting at the point B will have a resultant R,
represented by the diagonal BM of the paralielogram BLMN.
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Produce EA ana v ang let them meet at O. The two resultants Ry and R;
can be considered to act at O. At O draw Y'OY || to AB and OX || to the
directions of P and Q Reresolve R, and R, at O into their original components.

R, at O is equal to a force F along OY' and a force P along OX. R; at O s
equal to a force F along QY and a force Q along OX. The two Fs at O cancel
each other, being equal and opposite. We are now left with two forces P and Q
acting along OX. Hence their resultant is a force (P+Q) acting along OX.

(ie) acting in a direction parallel to the original directions of P and Q.

Thus the magnitude of the resultant of two like parallel forces is their sum.
The direction of the resultant is parallel to the components and in the same
sense.

To find the position of the resultant:

Let OX meet AB at C.

Triangles OAC and AED are similar-

ety

. OC _AC . yDC AC
P F

"AD ED’ -
(or) F. OC = P.AC (1)

Triangles OCB and BLM are similar.

(or) F.OC =Q. CB | (2)
From (1) and (2)

We have P.AC = Q. CB

(i.é) The points‘C divides AB internally in the inverse ratio of the forces.
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3.2.1 To find the resultant of two unlike parallel forces acting on a
rigid body: (U.Q) '

Let P and Q be two unequal and unlike parallel forces acting at the points
A and B of the rigid body.

Let P>Q let them be represented by AD and BL. At A and B introduce two
equal and opposite forces F of arbitary magnitude along the line AB and let them
be represented by AG and BN o

Y! '
<5 > Y
N\
P NS
N
AN
NN
\ \\
Q \\\\\“
EXRRT
LSIN N F
BN I
1 . L - - h?
[C GF A B[~ ~ :
X ™~ R, |
Q o :
LF-————- =M
Fig. 2

These two new forces will balance each other and hence will not affect the
resultant of the system.

The two forces F and P acting at A can be compbunded into a single force
R, r/epresented by the diagonal AE of the parallelogram AGED Similarly the two

forces F and Q acting at B have a resultant R, by the diagonal BM of the
parallelogram BLMN.

Produce AE and MB and let them meet at O. The two resultants R, and R;
can be considered to act at O. At O, draw Y'OY || to AB and OX parallel to the
directions of P and Q. Reresolve R; and R, at O into their original components.
R, at O is equal to a force F along OY' and a force P along XO. R; at O is equal
to a force F along OY and a force Q along OX. The two Fs at O cancel each other
being equal and opposite. We are now left with a force P along XO and a force Q
along OX clearly the resultant is a force P-Q (as P>Q) acting along XO.

(ie) acting in a direction parallel to that of P.
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Thus the magnitude of the resultant of two unlike parallel forces is their
difference. The direction of the resultant is parallel to and in the sense of the
greater component.

To find the position of the resultant:
Let OX meet AB at C.

Triangles OCA and EGA are similar

.OC _CA
"EG GA
P F
(or) F. OC = P.CA (1)

Triangles OCB and BLM are similar.

.oC _CB
"BL LM

) =F

(or) F.OC =Q.CB (2)
From (1) and (2)

We have P.CA=Q .CB

(i.e) The point C divides AB externally in the inverse ratio of the forces.

Note: As P>Q
CB must be > CA.

Hence the resultant passes nearer‘the greater force.
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Failure of the above construction:
The construction for finding the resultant of two unlike parallel forces P and
Q will fail.

If P =Q. (ie) if the forces are equal in magnitude. In that case , In. fig.2
triangles AGE and BNM will be congruent ;

ZGAE = £ NBM and the lines AE and MB will be parallel.
There wiil'be no such peint as O.

Hence we conclude that the effect of two equal ana unlike paralle! forces
that the effect of two equal and unlike parallel forces cannot be replaced by a
single force. Such a pair of forces have no single resuitant and they constitute
what is called a couple, which will be considered later on.

3.2.2 Resultant of a number of parallel forces acting on a rigid body:-
If a number of parallel forces P.Q,R . . . . act on a rigid body, their resuitant
can be found by successive applications of law of the Parallelogram of Forces.

First, we find the resultant R,, of P and Q then we find the resultant R, of

R; and R this process is continued, until the final resultant is obtained. If the

parallel forces are all like, the magnitude of the final resultant is the sum of the

| forces. If the paraliel forces are not all like, the magnitude of the resultant is the
a\Jg\ebra-i.c sum of the forces each taken with its proper sign.

3.2.3 Condition of equilibrium of three coplanar parallel forces:-
Let P,Q,R be the three forces parallel in one place and be in equilibrium.

p}
| P+ Q

) f
A C B

R

Fig. 3

Draw a line to meet the lines of action of these forces at A,B, and C
respectively.
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‘ If all the three forces are in the same sense equilibrium will be'lil_<_e and the
‘third R unlike.

The resultant of P and Q is (P+Q), Parallel to P or Q and hence, for
equilibrium, R must be equal and opposite of (P+Q).

-. R =P+Q and the line of action of P+Q must pass through C.

. P. AC =Q. CB
, P _Q
CB AC

P+Q P+Q_ R

and each = =
CB+AC AB AB

P Q R

(ie) x=7-= =
CB AC AB

Thus, if three parallel forces are in equilibrium, each is proportiona! to the
distance between the other two.

Centre of two parallel forces:

Let P and Q be two parallel forces acting at two points A and B. Then,
their resultant R passes through a point C. Which divides AB internally or
externally in the ratio Q:P

AC Q (1)

The position of C given by (1) depends only upon the positions of A and B
and then magnitudes of the forces P and Q. -

It does not depend on the actual direction of P and Q. In other words,
whatever be the common direction of parallelism of the forces P and Q their
resultant will always pass through a certain fixed point. This fixed point is callec
the centre of the two parallel forces is a fixed point through which their resultant
always passes whatever be the direction of parallelism.

More generally, the resultant of a system of parallel forces of given
magnitudes acting at given points of a body, will always pass through a fixed
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point, for all directions of parallelism. This point is called the centre of parallel
forces.

Example: -

Two men, one stronger, than the other have to remove a block of stone
weighting 300 kgs. With a light pole whose length is 6 metre. The weaker man
cannot carry more than 100 kgs. Where must the stone be fastened to the pole.
So as just to allow him his full share of weight?

Solution;
A X C 6-X B
100 300 200

Let A be the weaker man bearing 100kgs.his full share of the weight of the
stone and B the stronger man bearing 200 kgs. Let C be the point on AB where

the stone is fastened to the pole, such that AC = X. Then the weight of the stone
acting at C is the resultant of the parallel forces 100 and 200 at A and B
respectively.

100 AC = 200BC
(ie) 100 X = 200 (6-X)

100 X

1200-200X
300 X =1200
(or) X =4

Hence the stone must be fastened to the pole at the point distant 4 metres
from the weaker man.

Example :2 (U.Q)
Two like paraliel forces P and Q act on a rigid body at A and B
respectively. :

2 .
a) If Q be changed to % show that the line of action of the resultant is the

same as it would be if the forces were simply interchanged.

/
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b) If P and Q be interchanged in position, show that the point of application of
the resultant will be displaced along AB through a distance d, where

d=2"Q aB
P+Q
Solution:
Q
P+ Q A
3 A
A o B

Let C be the centre of two parallel forces with P at A and Q at B.
Then P AC = Q. CB (1)

. 2
IF Q in changed to —I-)(-)— (P remaining the same)

Let D be the new centre of parallel forces.

P2
Then P. AD = T DB (2

PQ.AD=P?.DB
(or) Q.AD=P.DB (3)

Relation (3) shows that D is the centre of two like paraliel forces with Q
and Aand P at B

When the forces P and Q are interchanged in position, D is the new centre
of parallel forces.

72



CD=d
From (3) Q .(AC+ CD)= P.(CB - CD)

P.CB—-P.d

il

(ie) Q. AC+Q.d

(or) (Q+P) .d P. CB -Q. AC
= P (AB —-AC) -Q (AB -CB)

=P.AB-P.AC-QAB +Q.CB

(Q+P) - d = (P-Q). AB [~ P.AC = Q.CB from (1)]
.. P-q
(or) 4% 5raAB
Example: 3

Three like parallel forces, acting at the vertices of a triangle, have
magnitudes proportional to the opposite to the opposite sides show that their
resufant passes through the incentre of the triangle.

Solution:

Let like paralle] forces P,Q,R act at A,B,C . It is given inhat
P Q R
— D e— T ve— 1
a b C ()

Q+R

B D C
Let the resultant of Q and R nieet BC at D.

We know that the magnitude of the resultantis Q + R

(ie) Q. BD =R.DC
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~ BD forceatC R
Also = = —
DC forceatB Q

C
= — from (1
o (1)

AB
AC

AD is the internal bisec¢tor of AA.

We have now to find the resultant of the two like parailel forces, Q+R at D
and P at A.

Let this resuitant meet AD at I.

Al forceatD Q+R
ID forceat A P

Then

= b;'C from (1) (2)

From result (2) if it is clear that | is the incetre of the A.

Example: 4

O is the orthocentre of a AABC. Six equal like parallel forces pass, three
of them through the mid points of the sids and the other three through the middle
points of OA, OB, OC show that the resultant passes through the nine poiht

centre of the triangle.

Solution:
Three forces each of magnitude P pass through the mid points X,Y,Z of the

sides. Three other forces of magnitude P each pass through K,L,M the mid points
of OA,0OB and OC.
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The nine points circle passes through the points D,X and K and ZKDX = 94~
Hence KX is a diameter of the circle. The nine point is a diameter of the « rcle.
The nine point centre N is thus the middle point of KX. (ie) the resultant ¢i like

—

- —
parallel forces P at k and P at X in 2P acting at N. |

—
LY and MZ, the resultant of forces P each at L and Y as well as at M and Z will

Y N being the midpoint of

— - =

2P + 2P+ 2P = 6P at

». -

—> —>
be QP and 2P at N. (ie) the resultant of the six forces in_
N the nine point centre.

- Exercise:
1) If the magnitudes of two unlike parallel forces P, Q (P> Q) be increased by
the same amount, show that the line of action of the resultant will move

L]

further off from P.

2) Three equal like parallel forces act at the middle points of the sides of a
triangle, show that their resultant passes through the point of intersection.

3) Four equal like parallel forces act at the corners of a square, show that
their resultant passes through the centre of square.
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UNIT - IV

MOMENT OF A FORCE
Topic: 4.1

Moment of a Force:

When forces act on a particle, the only motion that can occur is a motion of
translation. But a force acting on a rigid body may produce either a motion of
translation or rotation of translation and rotation combined. When there is a
motion of translation alone. The force is measured by the product of the mass of
the particle and the acceleration produced on it by the force. In the case of
rotation, the idea of the turning effect or moment of a force is introduced.

Fig. 1

Consider a sheet of cardboard pivoted freely at a fixed point O. If a force F
acts along a straight line AB, it is clear that there will be no rotation if AB passes
through O. If AB does not passes through O. The force will tent to rotate the
sheet about O. This tendency to rotate the body will increase as the magnitude of
the force increased and also as the perpendicular distance from O on the line of
action of F. The tendency to rotate varies as F when ON is constant. It also
varies ON when F in constant, ’

Hence it varies as FX . ON
(ie) the product of F and ON. When both theses quantities vary.

This product is called the moment of F about U. Thus the moment of a
force about a point is defined to be the product of the force and the perpendicular

distance of the point from the line of action of the force.

The point F. ON will become Zero only if either F is Zero or ON is Zero.
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When ON = O the point O is on the line of action of F.
Hence if the moment of a force about a point is zero, either.

1) the force itself is zero, or .
i) the line of action of the force passes through that point.

4.1.1 Physical significance of the moment of a force:-

From the definition of the moment of a force about a point, it is clear that it
is a fitting measure for the turning effect of the force about that point. Thus the
physical meaning for the moment of a force about a pQint is that it measures the
tendency to rotate the body about the point.

4.1.2 Geometrical Representation of a moment:-

O O

(a) (b)
Fig. 2

Let a force F acting on a body be represented in magnitude direction and
line of action by the line AB.

Let O be any given point and ON the perpendicular from O on AB or AB
produced.

The moment of the force F about O.
=F x ON=AB x ON =2AAO0B.

Hence if a force is represented completely by a straight line, its moment
about any point is given by twice the area of the triangle which the straight line
subtends at the point.p :
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4.1.3 Sign of the moment:
In fig.2 (a) when the force F acts along AB, it will tend to rotate the lamina
in the anticlockwise direction.

(ie) in a direction opposite to that in which the hands of clock move. In
such case, the moment is said to be positive. If the force tends to turn the body
in a clock wise direction, its moment is said to be negative.

-Thus‘~thé"h16m§ht, of a force_about a point has both magnitude and
direction and in therefore a vector quantity.

4.1.4 Unit of moment:

The moment of a unit force about a point at a unit perpendicular distance
from the line of action of force is defined as the unit for the measurement of
.moments. If the unit of force be a poundal and unit of distance be one foot the
unit of moment is a poundal foot. If the unit of force be a dyne and unit of
distance be one centimeter, the unit of moment is a dyne —cm.

- 4,2 VARIGON’S THEOREM

Varigon’s theorem of moments (U.Q)
The algebraic sum of the moments of two forces about any point in thelr
plane is equal to the moment of their resultant about that point.

R = P+Q
p A Q A C O D
O A C D P N

R=P+Q

(a) (b)
Fig. 3

To prove this theorem.
We consider two cases.

Case i) Let the forces be parallel.

Let P and Q be two parallel forces and O any point in their plane. Draw
AOB perpendicular to the forces to meet their lines of action in A and B.
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The resultant of P and Q is a force
R = (P+Q) acting at C. Such that
P. AC = Q. CB.

The algebraic sum of the moments of P and Q about O

=P.0OA+Q. OB

= P. (OC-AC) + Q (OC +CB)

= (P+Q). OC - P. AC +Q.CB

= (P+Q) .OC [ P.AC = Q. CB]
= R.OC

= moment of R about Q.

In fig. (a) and (b) , O is within AB and the algebraic sum of the moments of
P and Q about O.

=P. OA-Q. OB

= P. (OC+CA) - Q (CB -CO)

= (P+Q). OC +P. CA-Q. CB

= (P+Q) .OC [' P. AC = Q. CB]
= R.0OC

= moment of R about Q.

When the parallel forces P and Q are unlike and unequal, the theorem can
be proved exactly in the same way

Case ii )
Let the two forces P and Q act at A as shown in fig as (a) and (b)

O D C D C

(a) (b)
Fig. 4
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And let O be any point in their plane. Through O, draw a line parallel to the
direction of P meeting the line of action of Q at D.

Choose the scale of representation such that length AD represents Q in
magnitude. On the same scale, let length AB represent P. Complete the
parallelogram BAD so that the diagonal AC represents the resultant R of P and Q.

In either figure, the moments of P, Q, R about O are represented by
2AAOB, 2 AAOD and 2 AAQOC respectively.

If fig (a), O lies outside the £ BAD and the moments of P and Q are both
positive.

The algebraic sum of the moments of P and Q
=2AA0B +2AA0D
=2AACB +2AA0OD
(A AOB = AACB)
=2AADC + 2AAOD
(- diagonal AC bisects the ”gm)
=2(AADC + A AOD)
=2 A AOC
= moment of R about O.
In fig. (b) O lies inside the angle BAD.

The moment of P about O is positive while that of Q is negative.

The algebraic sum of the moments of P and Q

=2AA0B-2AA0D
=2AACB-2AAOD
=2AADC-2AAOD

= 2(AADC- A AOD)
=2 A AOC

= moment of R about O.

4.2.1 Generalised theorem of moments (principle of moments)

If any number of coplanar forces acting on a rigid body have a resultang,
the algebraic sum of their moments about any point in their plane is equal to the
moment of their resultant about the same point. | -

Let P4, Py, Ps..... etc., be any number of coplanar forces and O any point in-
their plane.
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~Let Ry be the resultant of P, and P,, Rsthat of Ry and P3, R; that of R, and
P, and so on until the final resultant R is obtained.

Apply varignon’s theorem to the forces P4, P,, and R

We have
Moment of P; about O + moment of P, about O
= moment of R, about O ' (1)

Similarly, applying the theorem to the forces R4, P3, and Ry,

We have
Moment of R, about O+ moment of P; about O
= moment of R, about O (2)
Combining (1) and (2)

We have
‘ Moment of P, about O+ moment of P, about O + moment of P; about O
= moment of R, about O

Proceeding thus, till all the forces are exhausted, We prove the above
theorem.

Let py, P2, Ps...be the perpendicular distances of O from the lines of action
of the forces P,, P,, Pa... respectively and P. The perpendicular distance of O
from the line of action of the resultant R.

P, pi + P, P2t .... = pR
(ie) 2.Pps =pR | (1)
From this theorem, we drive'the following important corolaries:
Coroilary: 1
If the basic pomt O about which moments is taken happens to lie on the
line of action of the resultant R, then p= O.

cFrom (1) 22 Pypi=o

Hence the algebraic sum of the moments of any number of coplanar forces
about any point on the line of action of their resultant is zero.
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Corollary 2:
Suppose 2, P, p1 =0

Then from (1) pR =0
.. Eitherp=0and R=0

If p=0, it means that the basic point O about which moment is taken, lies
on the line of action of the resuitant.

If R=0, it means there is no resultant for system (ie) the forces are
equilibrium.

Thus if the algebric sum of the moments of any number of forces about any
point in the their plane is zero, then either their resultant passes through the
point about which moments are taken or the resultant is zero. In the latter case,
the forces will be in equilibrium.

Corollary: 3
Suppose R=0O

(ie) the forces are in equilibrium.
Then from (1) 2, P; p1=px0 =0

Hence if a system of coplanar forces is in equilibrium the algerbraic sum of
their moments about any point in their plane is zero.

This theorem enables us to find points on the line of action of resultant of a
system of forces. For, we have only to find a point which the algebraic sum of the
moments of the forces is zero and then the resultant must pass through that point.

Example: 1

Two men carry a lcad of 224kg.wt which hangs from a light pole of length
8m. each end of which rests en a shoulder of one of the men. The point from
which the load is hung is 2m. nearer to one man than the other what is the
pressure on each shoulder?

Solution:

- AB is the light pole of length 8m. C is the point from which the load of 224 kgs
is hung
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Let AC = x
Then BC =8 — x
It is given that

(8-x) — x =2

(ie) 8-2x =2
(or) 2x =6

S.ox =3

(ie) AC = 3 and BC =5.
Let the pressures at A and B be R; and R, kg. wt respectively.

Since the pole is in equilibrium, the algebric sum of the moments of the
three forces R4, R, and 224 kg. Wt about any point must be equal to zero.

Taking moments about B,

224 CB~-R; AB=0 |
(as the moment of R, about B iso)

(ie) 224 x 5 —R,. 8 =0

224 x5
* Ry = Bx
Ry = 140.

Taking moments about A,
RAB-224 AC=0
(ie) BR, - 224 x 3 =0

224 % 3
8

. Rz =

. Ry =84

Note: 1

For equilibrium, the weight of 224 kgs must be equal and opposite to the
resultant of R, and R..

.o Ry + Ry =224,
Hence from this relation, we may find R, after finding R;.
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Note: 2
In practice, instead of equating the algebraic sum of the moments of the

forces about any point to zero, it will be convenient to equate the sum of the
moments in one direction to the sum of the moments in the other direction.
Hence in the above, taking moments about B,

We have R;. AB = 224. BC.

Example: 2

A uniform plank of length 2a and weight w is supported horizontally on two
vertical props at a distance b apart. The greatest weights that can be placed at
the two ends in succession without upsetting the plank are wy and w; respectively.
Show that

Wi W, b
WH+W, W+w, a

Solution:
Let AB be the plank placed upon two vertical props at C and D. CD =b.

The weight w of the plank acts at G, the midpoints of AB,
AG =GB =a

When the weight W, is Placed at A, the contact with D is just broken and
the upward reaction at D then is zero.

There is upward reaction R, at C. R; R,

Now, taking moments about C.

We have W,. AC =W. CG A G B
C D
(ie) W, (AG -CG) =W. CG
W1 AG = (W +W1) CG W, W W2
(ie) W;a =(W+W,) CG
ce = @ (1)

W+ W,
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When the weight w, in attached at B,
There is loose contact at C.
The reaction at C becomes zero.
There is upward reaction R, about D.
Now taking moments about D,
Weget W.GD=w,;BD
(ie) W.GD =w, (GB-GD)
.GD (W+W,) = w, GB =W,. a
' w,a
GD = m (2)
ButCG+GDb=CD=b

wa _ wpa

=b
W+W, W+W,
W+W, W+W, a
Example: 3

The resultant of three forces P, Q, R acting along the sides BC, and CA,
AB of a triangle ABC passes through the orthocentre. Show that the triangle must

be obtuse angled. If £ A= 120° , and B=C show that Q+R = P/3 .
Solution:
Let AD, BE and CF be the altitudes of the triangle intersecting at O. the

orthocentre.

As the resultant passes through O, moment of the resultant about O =0.
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Sum of the moments about P,Q,R about O is also = O

Hence, taking moments about O.
We have P, OD + Q. OE + R. OF = O 1
inrt. £d ABCD,

Z0BD = LZEBC=90° -C

o, tan (90° -C ) = ob
BD
-.Cot C = 9—9
BD
or OD =BD Cot C (2)

F-omrt. £d AABD,

CosB=EP-
AB -

- BD=AB.Cns B=c.Cos B.

From (2). OD=c Cos B. CotC

- cCos B 298¢
SinC
c
= — .CosBCos C
SinC

Cc

= 2R' Cos B Cos C (" =2R"' R being the circumradius of the A)
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Similarly OE = 2R' Cos C Cos A.
And OF = 2R" Cos A Cos B.
Hence (1) becomes
P.2R"Cos Bcos C+ Q. 2R" Cos C Cos A+ R. 2R' Cos A Cos B=0
Dividing by 2R" Cos A Cos B Cos C

Q R
+ + =0
CosA CosB CosC

We get (3)

Now P, Q,R being magnitudes of the forces, are all positive

Hence in order that relation (3) may hold good, at least one of the terms
must be negative.

Hence one of the cosines must be negative.
(ie) the triangle must be obtuse angled .

(Two of the cosine cannot be negative, as we cannot have two obtuse
angles in the same triangle).

If A =120° and the other angles equal
Then B=C = 30°
Hence (3) becomes

P N Q N R
Cos120° Cos30° Cos 30°

P Q+R

) F%)+(§J =

O

(ie

(ie) PV/3 =Q+R
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Example: - 4
Forces P,Q,R act along the sides BC, AC, BA respectively of an equilateral
triangle. If their resultant in a force parallel to BC though the centroid of the

triangle prove that Q = R = 12 P.

Solution:
AABC being equilateral the medians AA', BB' and CC' are also the
altitudes meeting at G, the centroid.
Let DE be ||to BC through G.
ft is given that DGE is the line of action of the resultant.
As the resuitant passes through G, its moment about G = O
. sum of the moments of P,Q, R about G is also = O.
(ie) P.GA'-Q.GB'-R. GC' = 0.
(ie) P-Q-R =0 (GA' = GB' = GC") (1)

Since the resultant passes through E also, sum of the moments of P, Q, R
about E is = O.

Draw EL 1lto BC and EM _Lto AB.
S.P.EL-R.EM=0 (2)

From the similar As ELC and AA'C,

EL _EC_1
AA'  AC 3
AD AE AG 2
~~DGE| BC and = = =—
| BCand o2 EC GA' 1
L EC= 1L AA (3)

From the similar AS AME and AC'C.
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EM AE 2

——

cC' AC 3

EM = -2- CC' (4)

", substituting (3) and (4) in (2)
We have

p. L AA'—R. 2¢cc'=0
3 3
(ie) P = 2R (- AA' = CC")

=
R=— 5
(or) 5 (5)
Putting R =-P2— in (1)
P
WehaveP-Q-~2—=O
P
ie) —- Q=0
(ie) >
P _
—=Q 6

From (5) and (6) R = % =Q

Example: 5
If £ and m are the moments of a given force p about two fixed points A and
B respectively. Show that the line of action of divides AB in the ratio ¢:M deduce

that a force is completely known when the moments of the force about any three
points not lying in the same straight line, are known.
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Solution

(a) (b)

Let ¢ and m be the moments of a given force P about A and B and let
them be in )

i) Opposite directions, as shown in fig (a)
ii) The same direction, as shown in fig (b)

Draw AL and BM perpendicular to the line of action of p.
Let the line of action of P meet AB or AB produced at C

t=P. Af and m=P. BM

‘AL
m BM

=€% [ A s ACL and BCM are similar]

Hence the line of action of P divides AB in the ratio ¢:m internally in fig (a)
and externally in fig (b).

Let ¢, m, n be the moments of a force P about three given non-collinar
points A, B, C respectively. The line of action of P divides AB internally or
externally in the ration ¢:m. Similarly it divides BC internally or externally in the
ration m:n. Hence we can fix the points D and E in which the line of action of P
intersects AB and BC respectively.

The line of action of P in therefore the straight line DE.
Let p be the perpendicular distance of A from DE.

Then P.p = 7.
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.p =L
p

As ¢and p are known, we can calculate the magnitude of the force p.

Thus the force is known completely.

Example: 6

Find the locus of all points in a plane such that two forces through a point

given in magnitude and position on the plane shall have equal moments about
them in the same sense.

Solution:

- -
Let OA , OB be two forces of given magnitude and position. Join AB and

let ¢ be a line through O, parallel to AB.

Let P be any point on ¢.

- -
Then the moments about P of OA and OB are of the same sense and

their magnitudes are equal to 2APOA and 2 APOB.

But A POA = APOB, as the triangle stand on the same base OP between
the same paraliels.

Hence the moments about p are equal in magnitude and sign.

The locus of such points in hence the line ¢.

4.2.2 Moment of a force about an axis:

We have considered only coplanar forces and their moments about a point
in their plane. Let us now consider a rigid body which in ecapable of turning about
some axis fixed in the body for instance a door capable of turning about the line
of things. Now, any force whose line of action is not parallel to or does not
passes through this axis, will tend to turn the body about it. To measure the
tendency of rotation in such cases we introduce the idea of the moment of a force
about an axis.

91



(a)

(b)

In fig. (a) a force P acts on a body in a direction perpendicular to a line AB
in the body, but not intersecting it. '

(ie) P acts in a plane L'to AB. The moment of the force P about the line

AB is defined to be P.ON. Where ON is L distance between the line of action of
P, and the line AB.

In fig. (b) the force P acts in any direction (not necessarily) 1*to AB.
Let ON is the shortest distance between AB and the line of action of P.

The force P can be considered to act at ON along its line of action.
It can be resolved into two components:
i) P Cos O parallel to AB and
i) P Sin O Perpendicular to it.

The component P Cos 0 being ||'° AB has zero moment about AB.

The moment of P Sin 6 apbout AB is P Sin6. ON and this in the moment of
P about AB.

Note: 1
The moment of P about AB is zero if either (i) P is ||' AB or else (ii) the

line of action of P intersects AB.

Note: 2

As in the case of Varignon’s theorem in two dimensions, we can show that,
if a system of forces acting on a body have a resultant, the algebraic sum of their
moments about any line in the body in equal to the moment of their resultant.
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Note: 3

If a system of forces acting on a body keeps it in equilibrium, the algebraic
sum of their moments about any line in the body is zero.

Example: 1

At what height from the base of a pillar must the end of a rope of a given
length be fixed so that a man standing on the ground and pulling at its other end
with a given force may have the greatest tendency to make the pillar overturn?

Solution:
Let AB be the pillar. A being the base and C the man of the ground.

Let the rope be fixed at D and AD = X. CD =/ = length of the rope.

B
D
E
X F
0
A

C 14

Let F be the given force exerted by the man along DC. When the pillar
overturns. The contact at A is broken. The man wili have the best chance of
overturning the pillar, if the moment of F about A is greatest.

Draw AE 1 to DC and
Let ZLDCA =20
Moment of F about A

= F. AE

=F. AE

= F. AC Sin© _
= F. DC Cos0 Sin® (AADC)
=F/¢ Cos 6 Sin0

-F—;i 2 Cos O SinO = %Sin 20
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F and ¢ being given the above moment is greatest when Sin 26 is
greatest.

(ie) When 20 = 90°
Or 6 = 45°

Then X = AD = DC Sin©

) ¢
= ¢ Sin 45° ——
J2

Thus the rope is to be fixed at a height of ifrom the base.

2

Example: 2

A round table of weight w stands on three legs of which the upper ends are
attached to its rim so as to form an equilateral triangle show that a body whose
weight does not exceed w may be placed anywhere on the table without the risk

of toppling it over.

Solution:

Let ABC be the round table in which A, B, C are the upper ends of the legs
attached to the rim such that ABC is an equilateral triangle and let L, M, N be the
points of contact of legs with the floor.

Let G be the centre of the table through which its weight w acts. There is a
possibility of overturning if any weight p is placed on the portion. of the table
outside the triangle ABC, say, in the portion, BEC.

STk

B v




If there is overturning the table will turn about the line MN and the leg AL
will rest very lightly on the fioor.

In that case, the end L just loses cbntact with the floor and the weights p
and W will have equal moments about MN.

(ie) about BC. The weight will have the greatest turning effect when placed
farthest away from BC.

(ie) When placed at E, the midpoint of thé arc BEC.
Let D be the midpoint of BC
As AABC in equilateral, AGDE is Lto BC.
Taking moments about BC.
We have
W.GD = P.DE (1)
~ From right angled AGDC

sin 30° = &P
Yo

-. GD = GC Sin 30°

%gz%é (G being the circumcentre of AABC)

.. D is the midpoint of GE and GD = DE
S From(1)P =W,

Hence w is the greatest weight that can be placed anywhere on the table
without toppling it over. It can be noted that if any weight is placed within the
- AABC , its moment about BC or CA or AB will be in the same direction as that of

‘'w and hence there is no change of the table being overturned whatever the weight
may be.
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Example: 3

A uniform circular plate is supported horizontally at three points A,B,C of
its circumference. Show that the pressures on the supports are in the ratio
Sin 2A: Sin2B: Sin 2C.

Solution:
Let BC = a, CA = b and AB =c the weight of the plate acts at O.

The centre of the circle and which is also the circumcentre of the triangle.
et OD be perpendicular to BC
We know that £BOD = A
Fromrt. £d ABOD

OD =0B. Cos £BOD =R. Cos A

R being the circum - radius of the triangle

A

ch

Let AE be perpendicular to BC

AE = AC . Sin L ACE=bSinC
Let Ry be the reaction at A,

Taking moments about BC , (to avoid the reactions at B and C )
We have at R,. AE = W.OD

W.R CosA

. R1 = ~
bSinC
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WR Cos A
2R SinB SinC

H

(-~ b = 2R Sin B)

WCosA _ 2WSinACos A

2 SinB SinC 4 SinA SinB SinC

W Sin 2 A
4 SinA SinB SinC

Similarly the reactions, R, and R; at the other two supports are

W Sin 2B and = W Sin 2C
4 SinA SinB SinC 4 SinA SinB SinC

SRR, :R3=S8in 2A : Sin 2B : Sin 2C.

Example: 4 .

A table consists of a uniform circular board supported by three vertical legs
fixed at equal distances around the circumference. The weight of the board is
9 /bs. A weight of 12 ¢bs. Placed on the edge of the table, midway between
two legs is just sufficient to cause the table to over turn. Find the weight of each
leg.

Solution:-
The weight of the board is 9/4bs, and it acts through the centre G of the

board vertically downwards.
\D

W\/ C J
O (bs 7P WV
R d 12 ¢bs

The weight 12 £bs in placed at D which in mid-way between the legs at A

and C and this causes the table to overturn about the line PR joining the feet of
the legs at A and C.

Let w be the weight of each leg.

au
\

S\
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Taking moments about the line PR (or AC)
We get 9 GE + W. EB = 12 ED.
If GD =r

The radius of circular board

EB=%r,

GE =ED = %r,

Hence 9. yz r+ w. % r=12. %r

W=1 ¢b.
4.3 THREE FORCE ACTING ON A RIGID BODY

Rigid body subjected to any three forces:

There is a large class of problems in which a body is in equilibrium under
the action of three forces. We shall first prove that if three forces acting on a rigid
body are in equilibrium, they must be coplanar.

Let P, Q, R be three forces in equilibrium. Take any point A on the line of
action of P and any point B on the line of action of Q such that AB is not parallel
to R. Then the three forces being in equilibrium, the sum of their moments about
the line AB is zero. But P and Q intersect AB and therefore their moments about

AB are each zero.
.. R is either parallel to AB or R intersects-AB.

But we have chosen the points A and B such that R is not parallel to AB.
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.. R must intersect AB at a point, say C.

Similarly, if D is some other point on Q such that AD is not || to R.

We can prove that R must intersect AD also at a point, say E.

Since the lines BC and DE intersect at A, BD and CE must lie in one plane
and A is on this plane.

(ie) A is a point on the plane formed by Q and R.
But A is any point on the line of action of P.
. Every point on P is a point on the plane formed by Q and R.

(i.e) P, Q, R are in one plane.
4.3.1 Three coplanar Forces:

Theorem

If three coplanar forces acting on a rigid body keep it in equilibrium, they
must either be concurrent or be all parallel.

Let P, Q, R be three coplanar forces acting on a body and keep it in
equilibrium.

Then R must be equal and opposite to the resultant of P and Q.
Now, P and Q being coplanar must either be parallel or intersect.

Case: 1

If P and Q are parallel (like or unlike), their resultant is also a parallel
force. As R balances the above resultant, it must act in the same line but in
opposite direction. So R also is in the same direction as that of P and Q.

(i.e) P, Q, R are all parallel to one another.

Case 2:

Let P and Q meet at a point O. Then, by parallelogram law, their resultant
is a force through O. As this is balanced by the third force R, the line of action of
R must also pass through O.

(i.e) the three forces are concurrent.
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Note:
In the above discussion P and Q can never form a couple. Since we know
that a couple and a force can never be in equilibrium.

4.3.2 Condition of Equilibrium:

When the number of forces acting on rigid body in equilibrium is three and
when the forces are not parallel, we can use the methods which apply to forces
acting on a particle. Thus we can use Lami’s theorem, or the triangle of forces or
we can resolve the forces is two directions at rigid angles to each other.

When the 3 force in equilibrium are parallel, we use the condition that each
is proportional to the distance between the other two.

In all cases, it is important to draw a figure with the three forces clearly
shown, either all parallel or meeting in a point.

Procedure to be foliowed in solving any statical
In solving any statical problem the student should proceed in the following
mannar:

1. First draw the figure according to the conditions given.

2. Mark all the forces acting on the body or bodies, bearing in mid the
following fundamental points:

i) The weight of a body acts vertically downwards through its centre of
gravity.

i) When a body is leaning against a smooth surface, the reaction of the
body is normal to the surface.

iii) When a rod is resting on a smooth peg, the reaction on the rod is
perpendicular to the red.

iv) The tension in a light string is the same throughout its length and this
tension is unaffected by the string passing over smooth pegs or pulleys.
If the pulley is rough, the tension is different on the two sides of the

pulley.

v) The resultant of two equal forces bisects the angle between them.
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3. In addition to the above considerations, we can use the fact that when
there are only three non-parallel forces, they must meet in a point. Thus it
three forces are in equilibrium and two of them meet at a point O, the third
also must pass through O. This consideration will enabies us to draw an

accurate figure slowing the position of the body.

4.3.3 Two Trigonmetrical Theorems:
The following two important trignometrical theorems will be found to be

highly useful in the solution of many statical problems.

If D is any point on the base BC of triangle ABC such that gg-:—?and
ZADC =0
ZBAD = acand ZDAC = J3.
Then (m+n) Cot 6 = m Cot o - Cot f3 (1)
(m+n)Cot @ =nCotB-m Cot C (2)

Proof:

mBD BD DA
(1) = -

n DC DA DC

Sin ~ BAD Sin £ ACD
Sin £ ABD ' Sin 2 DAC

]

- _Sina  Sin(6+p)
Sin(@-a)  Sinp

[+ LACD = 18 — (6 - B)]

A
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Sin a (Sin 6 Cos B + Cos 6 Sin )
Sin B (Sin6 Cosa Cosé )

Cotp + Cotd
Cota — Cot6

[dividing the numerator and denominator by Sina Sinf3 Sin 0 ]
-.n(Cot § + Cot 6) =m (Cot a — cot 0)
(m+n) Cot ® =mcot aa—ncot B

(2) Again

m Sin ZBAD Sin £ ACD

n _ Sin ~ ABD ' Sin ~ DAC

Sin(0 - B)

, : [-DAC =180°-06+C]
Sin B Sin(C + 0)

Sin C (Sind CosB — Cos 6 SinB)
Sin B (Sin C Cos 6 + Cos C Sin6)

CotB -Cot 0o
Cot6 + Cot C

(Dividing the numerator and the denominator by Sin B Sin C Sin 0)
(ie) m(cot © + Cot C)=n (Cot B - Cot 0)
(or) (m+n) Cot 6 = n Cot B~ m Cot C.

Example: 1 (U.Q)

A uniform rod of length a hangs against a smooth vertical wall being
supported by means of a string, of length ¢ tied to one end of the rod, the other
end of the string attached to a point in the wall. Show that the rod can rest

¢? —a?

inclined to the wall at an angle 0 given by Cos® 0 = e
a

What are the limits of the ratio of a: £ in order that equilibrium may be possible?
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Solution:

AB is the rod of length a with G its centre of gravity and BC is the string of
length 7.

C
o
T
A - >
00° R,
0
6
G
N
.
D B
The forces acting on the rod are:
i) its weight w acting vertically downwards through G.
i) the reaction Ry at A which is normal to the wall and therefore

horizontal
iii) the tension T of the string along BC

These three forces in equilibrium not being all paraliel, must meet in a
point L, as shown in the figure.

Let the string make an angle o with the vertical.
~ /ACB =a=/ZGLB
Also /LGB = 180° —- 06 and /ALG = 90°

Using the first trignometrical theorem

A ALB and noting that AG:GB = 1:1

We have
(1+1) Cot (180° — B6) = 1.Cot 90°— 1.Cot o
—2Cot 0 =—Cot o
or2Cot 8 =Cota (1)
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Draw BD L to CA

Fromrt.,/ d ACDB, BD = BC. Sin a= ¢. Sin o and

Fromrt.,/d AABD, BD = AB Sin 0 a Sin 0.

S, f Sin oo =a Sin 0
Eliminate a between (1) and (2)
We know that cosec? o= 1+ Cot?q,

From (2)

Sina

_asSing

JS.coseco=

aSino
Substituting (4) and (1) in (3)
We have

(,2
— =11+ 4Cot’ 0 =———— =1+4
a2sin?0 a’Sin?o

2

(ie) - =Sin? © + 4 Cos?0
a

2

= Sin®? 6 + Cos?6+ 3 Cos?0

2
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)2 o2
Cos? @ =/ f
3a

(5)

For the above equilibrium position to be possible, Cos2 0 must be positive
and less then 1.

. 0% -a?> 0.
(ie) £2>a’or a2> ¢?

0% —a?

Also
3a?

<1

(ie) ¢2—-a® < 3a’or ¢?<43°

)2
ie) a? > —
(ie) 2

. (2
. a? lies between - and ¢?2

2
(ie) a_2 lies between 1 and |
14 4

(or) -j— must lie between % and 1.

Example: 2

A beam of weight w hinged at one end is supported at the other end by a
string so that the beam and the string are in a vertical plane and make the same
angle 0 with the horizon. Show that reaction at the hinge is

-—\2:— V8 + cosec?6

Solution:
Let AB be the beam of weight w and G its centre of gravity. BC is the
string.
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The forces acting on the beam are:
i) its weight w acting vertically downwards at G.

1) the tension T along BC and.
iit) The reaction R at the hinge at A.
Let the forces (i) and (ii) meet at L.
For equilibrium, the third force R also must passes through L.
(ie) the reaction at the hinge is a force along AL.
BC and AB make the same angle B with the horizon.

. They make the same angle 90°- Owith the vertical LG.

(ie) /BLG = 90° — 0= LGB

Let /ALG = o

Using the first trfgonometrical theorem AALB
We have (as AG : GB = 1:1)
(1+1) Cot (90 —0) = 1. Cot a- 1. Cot (90°-6)
(ie) 2 tan® = Cot o -tand
(or) 3tan® = Cota (1)

Applying Lami’s theorem for the three forces at L,
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R w

We have — =
Sin(90°-0) Sin(90°-6+a)

R W W

(Ie) Sos6 ~ Sino°—o —a) Cos(6-a)

_ WZCost _ W Cos6
Cos (B—a)- Cosb Cosa Sind Sina

W Cosb
Sin o. (Cosé Cot o + Sind)

W Cos6
Sin a (Cos 6. 3tan® + Sind)

Using (1)

W Cos 6 Coseca
3 Sin 6 + Sind

= -\Z— Cot O cosec o

_VZ\;I— Cot 6 1+Cot? a

iv——c;—otﬁ\ﬁ+9tan2a

-Y-Z-\/Cot2e+ =¥\Eot26+1+8

~.R= %’— JCosec? 6+8

Example: 3 ~
A heavy uniform sphere rests touching two smooth inclined planes one of
which is inclined at 60° to the horizontai. If the pressure on this plane is one-

half of the weight of the sphere, prove .nat the inclination of the other plane to the
horizontal is 30°
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Solution:
Let the sphere centre C rest on the inclined planes AM and BN. MA makes

60° with the horizontal and let NB make an angle o with the horizon.

N
M

The forces acting on the sphere are
i) RrReaction R, at A L "to the inclined plane AM and to the sphere and

hence passing through C.
iy Reaction Rg at B which in normal to the inclined piane BN and to the

sphere and hence passing through C.
i) W. the weight of the sphere acting vertically downwards at C along CL.

Clearly the above three forces meet at C.

Also ACL = 60°
And [éCL = o

Applying Lami’s theorem,

Ra _ W
Sina  Sin(60°+ o)

R = W Sina
A Sin(60° + )

But Ra = —g» (2)
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From (1) and (2)

We have

- WSinae W
Sin(60°+ o) 2

(ie) 2 Sin a = Sin (60° +a)

= Sin 60° Cos o+ Cos 60° Sina

3

(ie) 2 Sin o= —COSa+lSina
2 2

(ie) 48Sin o = 3 Cos o+ Sin a
(ie) 3Sin o= 43 Cos o

(ie) Sin a =J§

Cos a 3

(ie) tan a= L

73
(or) oo =30°

Example: 4

Equal weights P and P are attached to two strings ACP and BCP passing
over a smooth peg C. AB is a heavy beam of weight W, whose centre of gravity is
‘a’ ft from A and ‘b’ ft from B. Show that AB is inclined to the horizon at an angle.

tan™ a-b — tan| Sin™ W
a+b 2p
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Solution:
Since the string ACP and BCP support the equal weights P at their ends
the tensions along AC and BC must be each equal to P.

The forces acting on the rod are
i) tension P along AC
i) Tension P along BC and
iii) Its weight W acting vertically down words through G, its centre of
gravity.

For equilibrium, the above three forces must meet at a point C as in the
figure.

Now the resultant of the two equal tensions P along AC and CB must
balance the weight W.

Hence CG must bisect the angle ACB.

Let ACG = a=/BCG.

Then W = 2P Cos o (1)

Let AB make an angle O with the horizontal.

Then /CGB = 90°— 0.

Using the first trigonometrical theorem.

To A ACB.
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We have (a+b) Cot (90° — 8)=a Cot oo — b Cot «
(ie) (a+b) tan O = (a-b) Cot. a

a-b

.o tan O = Cot .
a+b
a-b /
= tan (———a}
a+
a-b n  Cos™'W
= tan | ——
a+b (2 2p J
Using (1)
I [Sin‘1 ——]
a+b p
(- Sin'x + Cos™' x= =)
0 =tan "’ l:a tan (Sin‘1 ——H
a+ D
Example: 5

The attitude of a right cone is h and the radius of its base is a string is
fastened to the vertex and to a point on the circumference of the circular base is
then put over a smooth peg. The cone rests with its axis horizontal. Show that

- the length of the string is /h? + 4a?

Solution:
VAB is the cone resting with the axis VL horizontal.

G is its centre of graivity.

We know that YE = l
GL 3
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Since the string passes over a smooth peg P, the tensions along VP and
PA must be equal Let them T each.

Since the two tensions pass through P. for equilibrium, the third force.
(ie) W, the weight of the cone must pass through P.
Hence PG is vertical.

Since W balances the resultant of the equal tensions T, the line PG must

bisect [VPA.
Let éPG = 0 =/APG

Let o be the semi-vertical angle of the cone and let PG meet VA at M.

/PMA =90° -o.

M _VG _3
MA GL 1
Using the first trigonometrical theorem.
A VPA
We have
(3+1) Cot (90° — o) = 3 Cot 6— 1. Cot 0
(ie) 4 tan ao=2 Cot O
(or) 2tan o = Cot O (1)

From A PVG,
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Sin B = vG
VP

P =8 (2)
Sin6

From APNA

| AN
Sin 6 = —
mT " Pa

e (3)
Sin® Sin6

- PA

Adding (2) & (3)

VG GL

VP+PA = ——— + —
Sin® Sind

VG + GL _ h
Sind Sino

. Length of the string =

Sind

h cosec 0

hy{1+ Cot?e)
l Cosec?0 =1+ Cotzej

hy1+4tan® a using (1)

2
= h 1+4a
h2
{ tana:ﬁE:i
VL h
= vh? + 4a?
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Aliter:
Produce VP to meet BA produced at 0. /PAQ = 6 and QA =0 (- PG| AB)

- /Pra_=/PQA
and PQ=PA
Hence length of the string

= VP + PA=VP + PQ =VQ.
From (1) Cot 8 = 2 tan o..

2a

h

h
0.! -_— 4
tan® o (4)

—
—

Fromrf. <d A VvQL

tan 9 :ﬂ—_.-_-_._l'l_ (5)
QL QL

From (4) and (5) QL = 2a
Now, VQ? = VL? + QL?

VQ %= h? + 43?2

VQ? = 4h? +4a®

Example: 6

A string of length 21 has one end attached to the extremity of a smooth
heavy uniform rod of length 2a and the other caries a weightless ring which slides
on the rod. The rod is suspended by means of the string from a smooth peg,
prove that, if © be the angle which the rod makes with the vertical , then

{ Cos B =asin®0.

Solution:
Let AB be the rod. G its centre of gravity, C the peg and D the ring.
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The forces acting on the ring are
i) tension T along DC and
i) the normal reaction R at D due to contact with rod, which is .. v ~AB
downwards.

Hence for equilibrium of the ring, T = R.

Also. DCis 1" to AB.

Since the string passes over a smooth peg. The tensions also DC a0 =0
must be equal Let them be T each.

Consider the equilibrium of the rod and e ring together.

The forces acting on the are:-
i) tension T along AC
i) tension T along DC and
i) Weight W of the rod acting vertically downwards through G.
The mutual normal reactions cancel each other As the forces (i) ana (ii;
passes through C for equilibrium, we also must pass through C.
. CG in Vertical

Sjnce W balances the resultant of the equal tensions T, the line CG must
bisect /ACD.

- /ACG -/cD = 90° — 0

Using the first trigonometrical equation.

A ACD
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We have
(AG+GD)Cot & = AG. Cot (90° — 0) - GD. Cot (90°—6)
(ie) (a + G.D) Cot 6 =tan O — GD tan O
GD (Cot O + tan ©) = a (tan O — Cot 0)

a(tano — Cot0)

- 6P ) (CotB + tan0)

(sine CosB]

Cos6  sin®d

(Cose . §in® ]
sin0 CosO

a(Sin20 — Cos?0)  SinBCosd
Cos6 Sind (Cos?6 + Sin%6)

a(Sin26 ~ Cos?0) (1)
From AACG,

AC ____AG
Sin(180° -8) Sin(90° -0)

. AC a a Sinb

e = or AC = 2
(i) Sind Cosfo Cos9 (2)
From AGCD

CO  GD
Sin6  Sin(90°-0)

Sin0 _ a(Sin20 - Cosze) Sind

CD=GD
Cos0 Cos0

(3)

[Using (1)]
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Adding (2) and (3)

aSind  a(Sin%e - Cos?0)
+

AC+CD = Sino
Coso Cosb
ey 2¢ = M9 ). sin% - Cos?o)
Coso
or = 2aSin®0
Cosb

(or) ¢ Cos @ = aSin® 0
Problems on parallel forces:

Example: 1

A uniform solid hemisphere of weight w rests with its curved surface on a.
smooth horizontal plane. A weight w its suspended form point on the rim of the
hemisphere. If the plane base of the rim is inclined to the horizontal at an angie

tan9=-8—59-

3w

Solution:
The forces acting on the hemisphere are

R
A
A
O
G_4Y;
. L B
N\
W W
w
i) the reaction R, at C 1"to the hemisphere. Hence it is along CO,0

being the geometric centre of the hemisphere.
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i) The weight w of the hemisphere acting vertically downwards at G, the

centre of gravity of the body, which is on the radius OE 1* to AB such
that

oG = %r_ . I being the radius.

i) the weight w acting vertically downwards at 3 . These three forces are
clearly parallel.

For equilibrium, we know that each of the three forces is proportional to the
distance between the other two.

w 0
e — = — 1
BD GL (1)

From the figure, BD = OB. Cos 8 =r Cos 6 and

GL = OG. Sin 0

ESin@
8

i

. (1) becomes

w _ ()]
r Cos6 (_Ci_rj Sing
(or) Sind _ 8m
Cos6 3w
tanQ = 8o
W

Example: 2 (U.G)
A solid hemisphere is supported by a string fixed to a point on its rim and
to a point on a smooth vertical wall with which the curved surface of the

hemisphere is in contact. If O, ¢ are the inclinations of the string and the plane

base of the hemisphere to the vertical, prove that tan¢ =-§-+tan 0.
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Solution:
The figure represents a section of the hemisphere and the wall by a plane

1 to the wall and the base of the hemisphere. AB is the plane base and O is the
centre of the hemisphere C is the point of contact with the wall.

D

We know that, G the centre of gravity of the hemisphere is on the radius

LT to AB such that OG = %r_

The forces acting on the hemisphere are:

i) the reaction Rc at C perpendicular to the wall and the hemisphere and
hence passing through O.
it) the tension T along the string AD and

i) the weight w of the hemisphere acting at G vertically downwards.

Let the forces (i) and (ii) meet at L.

For equilibrium, the force (iii) also must pass through L.

. LG is vertical.

LAO = ¢ -0
ALO = 90° + 0
LOG = ¢
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FromrtZd, AOLG, OL =0G. Cos¢ = %r_ Cos ¢

From AOAL, — OL = — OA
SinZ0OAL SinZOLA
(ie) oL r
Sin(¢ -6) Sin(90° +0)
oL = rsin(p-6)
Cos0O

r(Sing Cos® — Cos¢ Sin0)
Cos0

r (Sin¢ - Cos ¢ tan 0)

Equating (1) and (2)

3r :

5 Cos ¢ =r(Sin¢ - Cos ¢ tan 0)
Dividing by (I) Cos ¢
We have

% =tan ¢ - tan®

(or) tan ¢ = % + tan©

Example: 3 (U.Q)

A bowl is formed form a hollow sphere , of radius ‘a’ and is so placed
that the radius of the sphere, drawn to each point in the rim makes an angle o
with the vertical whilst the radius drawn to appoint A of the bowl makes an angle
B with the vertical if a smooth uniform rod remains at rest with one end at and a

point of its length in contact with the rim, show that the length of the rod is 4a

-3

.- o
sin}. Sec
B 2
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Solution:-

PQ id the rim of the bowl and /POX =a = /QOX

/AOX = B, /AOB is the diameter.

G is the centre of gravity of the rod.

The forces acting on the rod are:

i) the reaction at A normal to the spherical surface and which hence
passes through O the centre.

i) The reaction at Q L to the rod AG.
Since/AQB = 90°
(AB being a diameter this reaction passes through B.)

i) The weight of the rod action vertically down words through G.

The forces (i) and (ii) P asses through B.

For equilibrium, the force (ii) also must pass through B and

121



Hence GB is vertical

/BOX =/180° — B

Aaoc):/czox—/éox = -(180° - B)

=a + B - 180°
(ou+ B -180°) =

~/BAa = Y /BoaQ =

Fromrt. £d ABAQ.

QA = AB. Cos ZéAQ.

= 2a Cos [GZB —90°]

1
2 2

a+B
2

a+3

= 2a Cos (90"—

QB = AB Sin /BAQ

= 2a Sin [“;B—goo)

v o232

a-+3
2

) = 2a Sin

- 2a Cos

Let the vertical line OX cut the rod AG at D
Hon = 180° - /A0X = 180°- B

a+3
2

/OAD = /BAQ = — 90°
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. /ODA = 180° - [ /boa +/OAD ]

o+ 3
2

- 90°)

=180°-(180° - B+

=fB.- a;B + 90°

= go° + P=¢
2

Since GB in || to OX ..

¥

/BGQ =ZODA = 90° + B;

Fromrt Zd A BGQ

_ BQ
tanBGQ GO
i &) B_a =_.@._Q__
(ie) tan (90° + 5 ) aa
- .. B-a, _BQ
(ie) tan (90 5 ) Yo
» a—-3 _ BQ
(or) Cot 5 Ga
Ga= —2_
Cot
2aCosm+B
= _ E - (3) using (2)
Cot £ °FP
© 2
AG = AQ + QG
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o+ B 2::1C059-L:-"—E
= 2a Sin [from (1) x (3)]
Cota“B
2
ZzstCosotJrE’SinOL_B
= 2a Sin o+f 2 2
2 Cosa_B
2
= — 2a [Sina+BCosa—B—Costin
Cos -B 2 2
- 2a Sin (a+B_a-—B]
Cos ——= 2 2

2a Sec a;B SinB.

. Length of the rod = 2 AG = 4 a Sec

a;BSMB
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UNIT -V

\\
FRICTION

Introduction:

When two bodies are in contact, with their surfaces of contact smooth one
body in free to move on the other along the plane of contact this means that the
surfaces cannot provide any force preventing motion along the plane of contact.
(ie) the reaction at the point of contact is just normal to the plane of contact.
However, if the surfaces are rough, a force is called into play along the plane of
contact preventing motion along the plane. Such a tangential force is called the
frictional force. This force is just the component of the reaction at the point of

contact along the plane of contact (the other component, L' to the plane being
called normal reaction).

5.1.1 Definition:-

If two bodies are in contact with one another, the property of the two
bodies, by means of which a force is exerted between them at their point of
contact to prevent one body from sliding on the other, is called friction the force
exerted is called the force of friction.

5.1.2 Limiting Equilibrium:
Frictional force is a self-adjusting force it appears only when the external
forces act and vanishes when they cease to act. The frictional force is exactly

equal to the force that we exert on the body in pulling it and if we increase the.
pull, the frictional force also increases.

It must be noted that the frictional force between any two rough surfaces
cannot go on increasing to balance the external forces. Ultimately a stage is soon
reached when the frictional force available is no longer sufficient to overcome the
effect of the external forces and the equilibrium is about to be disturbed. The
body is the just on the point of motion. R

The body is then said to be in limiting equilibrium.
5.1.3 Limiting Friction:
While the body is in limiting equilibrium the frictional force also reaches its

maximum or limiting value that is, it is the frictional force at the time when the
body is about to move the frictional force is called limiting friction.
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5.2 Coefficient of Friction:

When the body is in limiting equilibrium the magnitude of the limiting
friction bears a constant ratio to the normal reaction between the two bodies in
contact. This ratio depends only on the materials of which the surface in contact
are made and not on their shapes or areas.

This constant ratio is called the coefficient of friction. We denote it by .

- —>
Thus if F denotes the frictional force and R the normal reaction then when

the equilibrium is limiting

F
—=pnor F=puR
R M t

—_p
(ie) the limiting friction is uR

5.3 Laws of Friction:
Friction is not a mathematical concept, it is a physical reality. The results
of physical observation and experiment are formulated as the laws of Friction.

Law: 1

When two bodies are in contact, the direction of friction on one of them at
the point of contact is opposite to the direction in which the point of contact would
commence to move.

Law: 2
When there is equilibrium, the magnitude of friction is just sufficient to

prevent the body from moving.

Law: 3

The magnitude of the limiting friction always bears a constant ratio to the
normal reaction and this ratio depends only on the substances of which the
bodies are composed.

Law: 4
The limiting friction is independent of the extent and shape of the surface
is contact, so long as the normal reaction is unaltered.

Law: 5 (Law of dynamical Friction)

When the motion ensues by one body sliding over the other the direction of
friction is opposite to that of motion;-the magnitude of the friction is independent
of the velocity of the point of contact but the ratio of the friction to the normal
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reaction is siightly less when the body moves than when it is in limiting
equilibrium.

5.4 Angle of Friction:- ‘ | .
When two rough bodies in contact are in limiting equilibrium, limiting -

friction is called into play. The angle which the resultant of this limiting frictional
— -

force pnR and the normal reaction R makes with the normal to the surface in

contact (PA in the diagram) is called ‘angle of friction’. It is denotet"by A .

—

Note that R and pR are the resolved parts of Saldng PA and PB
respectively and so R =S Cos Aand 1R =S8 SinA , giving 1 =tan A.

Thus the coefficient of friction is equal to the tangent of the angle of
friction.

5.5 Cone of Friction:

._.)
For two given bodies, the limiting frictional force being puR, the maximum

._)
inclination of the resultant reaction S to the common normal at he point of contact

of the surfaces is A = tan™" pwith the normal PA as axis and the point of contact P

as the vertex if we describe a cone with semi-vertical angle A, the resultant
reaction through p will always have a direction lying within the cone and in the
limiting case on the surface of it. Such a cone is called the cone of friction.
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5.2.4 Equilibrium of a particle on a rough inclined plane:
Let a particle of weight W be placed

at A on a rough inclined plane, whose inclination to the horizontal is 0.

The forces acting on it are:
i) its weight w acting vertically downwards
i) the frictional force F acting along the inclined pilane upwards. (If there
had been no friction, the body would have a tendency to move
downwards. Hence friction will act upwards.
iii) The normal reaction R, perpendicular to the plane.

Resolving along and L' to the plane,

We get F =W Sin 0 (1)
And R =W Cos 0O (2)
; -E = tan O (3

We know that g is always < [l

Hence for equilibrium tan 6 < L.
(ie) tan O < tan A
A being the angle of friction or 8< p

Suppose 0, the inclination of the plane in gradually increased

When 06 = A, then g =tan A = .

/

~ In this case, the equilibrium becomes limiting and the particle is just on the
point of sliding down.
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Hence we have the following theorem: |
If a body be placed on a rough inclined plane and be on the point of sliding
down the plane under the action of its weight and the reaction of the plane only,
the angle of inclination of the plane to the horizon is equal to the angle of friction.
, .

The inclination (A = tan'n) of the inclined plane when the body just

beings to slip is called the angle of repose. Hence the above theorem is stated
as:

The angle of repose of a rough inclined plane is equal to the angle of
friction.

Note:
If should be noted that the angle of repose of a rough inclined plane is

equal to the angle of friction, only when there are no external force acting on the
body.

5.1.5 Equilibrium of a body on a rough inclined Plane under a force
parallel to the plane:

Theorem: .
A body is at rest on a rough plane inclined to the horizon at an angle.
greater than the angle of friction and is acted upon by a force, parallel to the

plane and along the line of greatest slope, to find the limits between which the
force must lie.

Let o be the inclination of the plane to the horizon, w the weight of the
body and R the normal reaction.

" Case .1 Refer to fig.(a).

Let the body be on the point of moving down the plan. Then limiting
friction acts up the plane and = pR.
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Let P be the force required to keep the body at rest.

Resolving along and perpendicular to the plane,

We have
P+uR =W Sin o (1)
And R=W Cos o (2)

Substituting for R from (2) in (1)

We get P=wSin a — tw Cos a
If A is the angle of friction.

We know that u= tan A.
S P =W (Sin a —tan A Cosa).

(Sin o Cos) — SinA Cosa)

=W (
Cosi

W Sin (o — 1)
CosA

Let this value of P be P,

W Sin (o - 2)
Cos A

Then P, =

Since o > A
P, is positive
Case .2 As in fig (b)

Let the body be on the point of moving up thé plane. Then limiting friction
1 R acts downwards.

Let P be the force required to keep the body at rest.
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Resolving as before,

We get
P—-uUR =W Sin a (4)
And R =W Cosa (5)
Hence

P=puWCos a+WSin a

W (tan A Cosa + Sin o

W(Sin A Cos a + Cos A Sin o)
Cos A

W(Sin o + )
= = P, (Sa
Cos X 2 (Say)

_ W(Sina+2)

‘. P 6
2 Cos A (6)

Now if P in > P,, the body will move up the plane.

. P, is the limiting value of P, which is necessary to keep the body in
equilibrium, without moving upwards.

If P is < p, the body will move down the plane.

. Py is the limiting value of P, which is necessary to keep the body in
equilibrium, without moving downwards.

Hence, if p lies between P, and P, the body will remain in equilibrium and
in not is the point of motion is either direction.

Hence, for equilibrium, the force p must lie between the values

W(Sin o - 1) and W(Sin o+ A)
Cos A CosA
Note:

The value of P, may be obtained from that of P, by changing the sign of 1
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5.6 Equilibrium of a body on a rough inclined plane under any force:

Theorem:

A body is at rest on a rough inclined plane of inclinatien o to the horizon
being acted on by a force making an angle 0 with the plane to find the limits
between which the force must lie and also to find the magnitude and direction of

the least force required to drag the body up the inclined plane.
P

(b)

Let W be the weight of the body, P the force acting at an angle 0 with the
plane and R the normal reaction.

Case 1:

In fig (a) the body in just on the point of moving down the plane. Then
limiting friction n R acts upwards.

Resolving the force along and L' to the plane,
Wéget, PCos O +uR =W Sin o (1)
and PSin® +R =W Cosa ' (2)
Substituting the value of R from (2) in (1)
we get
PCos O + u(WCosa —P Sin 8) =W Sina
(ie) P (Cos O -u Sin B)=(WSina —u Cos o)

b = W(Sina-pCosa)
Cos0—-uSin6

If A is the angle of friction,
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We know that L= tan A

_ W(Sin a - tan Cos «)
Cos 0 —-tan A Sin 6

_ W(Sin a Cos A ~ Sin A Cos o)
Cos 8Cos A — Sin A Sin@

W Sin (o —2)

P =
Cos(0+2)

Let this value of be P,

W Sin (o.—A)
Cos(6+ 1)

. P1 =

Case. 2
In fig. (b) the body in just on the point of moving up the plane. Then
limiting friction R acts downwards,

Resolving the forces as before.
PCos 8 — uR=W Sin a (4)
PSinB +R =W Cosa (5)
Substituting the value of R from (5) in (4)

We get
PCos O -- n(W Cos aa— P Sin 8) =W Sin o

(ie) P (Cos O + 1t Sin 0) =W (Sin o+ pCosa)

W (Sin o + p Cos o)
Cos0O + . Sinb

P=

W (Sin o + tanA Cosa.)
CosO + tanA Sind

W (Sin o CosA + Sin Cosa)
CosH CosA + SinASing

133



W Sin(o + 1)
Cos (60— A)

Let this value of P be P,.

.o _ WsSin(a+2)
- P2 = Cos (6-1) (6)

P, and P, are the limiting values of the force P, necessary to keep the body
in equilibrium.

Hence if lies between P, and P, the body will remain in equilibrium.

Note:
(1) the value of P, may be obtained from that of P, by changing the sign of .

(2) By putting 8 = O, the discussion of (3) gives the results of discussion of 2

Corollary:
We can find the direction and magnitude of the least force required to drag

the body up the inclined plane.

From Case 2
W Sin(o + 1)
Cos (0 -2)

Since oo, W and A are constants, P is least if cos (0-1) is greatest.
(ie) if Cos (O-A) is greatest.
(ie) if Cos (O-A) =1.
This happens when (0-A) =0..
(ie) when 6 =A.
In that case, value of

P=WSin(o+A)
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Hence the force required to move the body up the piane will be ieast when
it is applied in a direction making with the inclined plane an angle equal to the
angle of friction. This result is sometimes stated as:

“The best angle of fraction up a rough inclined plane is the angle of
friction”.

Exampie: 1 (U.Q) '

A Particle of weight 30kgs resting on a rough horizontal plane is just on the
point of motion when acted on by horizontal forces of 6kg wt and 8kg.wt at right
angles to each other. Find the coefficient of friction between the particle and the
plane and the direction in which the friction acts.

Solution:
Cr—————"—"——> |D
5 10 :
N\ ,
|
|
|
|
~ > I
A ~ g B

Let AB = 8 AC = 6 represent the directions of the forces. A being the particle.

The resultant force = /8% + 62 = Y100 = 10 kg. Weight and this acts along
4\

AD. Making an angle Cos™ [ngith the 8kg.force.

The particle tends to move in the direction AD of the resultant force and
hence friction acts in the opposite direction DA.

Let F be the frictional force.

As motion just begins, magnitude of F is equal to that of the resultant
torce.

F=10 (1)

If R is the normal reaction on the particle, R = 30 (2)
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If wis the coefficient of friction as the equilibrium is limiting, F = uR.

. 10 1
ie) 10 = n.30. (or) U= —=—.
(ie) L (o) u= =2 =3
Example: 2 (U.Q)
A heavy particle rests in limiting equilibrium on a rough inclined plane. ltis
just on the point of moving up the plane along the line of greatest slope when a
force equal to the weight its applied in that direction. Find the coefficient of
friction.

Solution:

Let W be the weight of the particle resting at a point O on the line of
greatest slope PQ is limiting equilibrium. Let o be the inclination of the plane to
the horizon.

When a force equal to the weight W of the particle is applied to it along
0Q, it is on the point of moving up the plane.

— —
If R is the normal reaction at O, the limiting friction pR acts down the

plane along OP,

Resolving the forces along and _L"to the plane.

We get,
LR+ W Sin oo =W

R=WCos o

Hence p(w Cosa )+ W Sin a=W

.. 1-Sin o
giving 4 = ——
Cosa

Example: 3
A weight can be supported on a rough inclined plane by a force P acting
along the plane or by a force Q acting horizontally. Show that the weight in

PQ

\/( — 2) where. A is-the angle of friction.
Q“Sec“A —P
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Solution:

Let W be the weight and o the angle of inclination of the plane. R is the
normal reaction. When the weight is just on the point of moving down, limiting
friction. WR acts upwards. A horizontal force Q keeps the weight in equilibrium.

Resolving along and perpendicular to the plane.
wWR+QCos o =W Sin o (1)
R=WCos a +Q Sina
Putting the value of R from (2) in (1)
We have
it (W Cos o+ Q Sina) + Q Cos o= WSin
(ie) Q (p Sin oc+oa)=W(Si'n0L-,.tCosa) (3)
The same weight W is supported by a force P acting along the plane.

From (2) by the theorem.

We have

_ WSin(e-2)_ W
CosA  CosA

= [Sina Cos A-Cosa Sin A] (4)

From (3) Cosa (Q+pW) = Sin a (W- u Q)

Cos o Sin a

' W—plQ-Q+uW
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\/Cosza + Sin? o

\/(W -nQ) + (Q+uW)?

and each =

1 1
\/W(1+L12)+ Qzﬁ+uz) B -\/1+p12, \/W2 +Q?

_ 1 3 1
Vi+tan? 2 yW?+Q?  fSec?r ;/w? +Q?

W@ and Sin o = Q-+ pW

. Cos o =
Sec A YW? + Q2 Sec A VW? + Q32

Substituting these in (4)

We have

W | (Q+pw)Cosi — (w— pQ)Sinﬂ

Cos & | Sech JYw? + Q? ]

o
]

= W [Q(COS A+ uSini) + W (uCosa —'Sinl)]
Vw? + Q?
- l‘l . ., . \
= W | Q| Cosh + SInA «in AJ + W( Sin A CosA — SinkJ
Jw? +Q2 L N Cosi . CosA

W Q (Cos?A + Sin®A)  WQ Sec A

Jw? + Q2 Cosa JW2? Q2

22
pr = I3 SZ“; X = PAW? + Q%) = W2 Q2 Sec? A
+

(or) W2 (Q?sec® A— P?) = P2 Q?

P2Q? PQ
. 2 _ —
.W—Q2S 7, p? or W = = = :

ec i \/Q SecA -P
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Example: 4

Show that the horizontal force, which can support a heavy mass on a
smooth inclined plane of o to the horizon can just subtain it in limiting equilibrium

on a rough plane inclined to the horizon at an angle of (a+A) where Ais the
angle of friction.

Solution:
Referring to equation (3) of the previous worked example:

We have
Q= W(S!n o — uCos o) (1)
puSin o + Sec o
W/ sing - SinA COSOLJ |
_ A Cosa W Sin(a - 1) (2)
Sin Sina + cosa Cos{o - 1)
CosA

This gives the horizontal force Q which just keeps the weight W is limiting
equilibrium on a rough plane of inclination o .

Let Q, be the horizontal force which keeps W is limiting equilibrium on a
rough plane of inclination o+ A .

Let Q, can be got from Q by changing o into a+A.

Q, - W Sin(a +ﬂ?\ _,,k) - W tan o (3)
: Cos (o + 4 — )

Let Q, be the horizontal force which keeps w in equilibrium on a smooth plane
of inclination o :Q, can be got from the value of Q gives . in (1)by putting pu= O.

W sino (4)

S Qo = =W tan o
Cosa

From (3) and (4)

We find that Q, = Q>
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Example: 5
An insect tries to crawl up the inside of fixed hemispherical bowl! of radius
R. How high can it travel? If the coefficient of friction between its feet and the

bowl! in 1 ?

Let A be lowest point of the fixed hemispherical bowl! of radius R. Let the

_)
insect of weight W (Say), Gawl upto |. When it is about to slip back. Then the

— —
maximum friction pF is called into play F being the normal reaction through O,

the centre of the bowil.

- > —>
Since the three forces F ,uF, W meeting at I are in limiting equilibrium by Lami’s

theorem, we get

F . WF W
Sin(180°—a) Sin(90° +a) Sin 90°
-

Where o is the angle that pF makes with the vertical

Hence F = W Sin o

and ukF=W Cos o

So that 1 = Cot o

Since [l = 1
3



Cot o = l

The height of the point I about A= AP = 0OA -0OP =R - R Sin o
as {OIP = o
/ 3

=R(1-Sina)=R L1_7—_—} as Cot o=

1
10 3

Exercise:-

1. A body of weight 4kgs. rests in limiting equilibrium on an inclined plane

whose inclination is 30°. Find the coefficient of friction and the normal
reaction.

2. A body of weight 4kgs. rests in limiting equilibrium on a rough plane whose

slope is 30°, if the plane is raised to a slope of 60°, find the force along
the plane required to support the body.

3. If the force, which acting paraliel to a rough plane of inclination o to the
horizon is just sufficient to draw a weight up be n times the force which will
just let it be on the point of slipping down, show that

n -+ 1

tan o0 =
n-—1

Example:- 6

Two particles P and Q each of weight W on two equally rough inclined
planes CA and CB of the same height , placed back to back are connected by a
light string which passes over the smooth top edge C of the planes. Show that if

the particles are on the point of slipping the difference of the inclinations of the
planes is double the angle of friction.

Solution:-
Let wand B be the inclinations of the planes CA and CB; R,S be the

normal reactions of the planes, T the tensions of the planes, T the tension of the
string and 1t the coefficient of friction (which is the same for both planes).
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Let P be on the point of moving downwards. Then Q will be moving
upwards.

Limiting friction LR will act on P upwards the inclined plane and limiting
friction pu 'S will act on Q downwards the inclined plane.

Considering the equilibrium of P and resolving along and 1 %to the plane CA.

We have

LR +T =W Sin o (1)

R W Cosa (2)

Substituting the value of R from (2) in (1)

T=WSin a— u W Cosa (3)
Resolving along and perpendicular to the plane CB.
We have T =W Sin  + us (4)
And S=W Cos §} (5)
Substituting (5) in (4)

We get T =W Sin B+ uW Cos 8 (6)
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Tt

Equating the two values of T in (6) and (3)
W(Sin B +p Cosp ) =W (Sino. — nCos o)

(ie) u(Cos o + Cos )= Sin a - Sin B

oa+PB o o—PB
_ Sina-sing _ 2C0S 5 SN
Cosa +Cosp  5n0e o+ Cosa;B
= tan 2 —B (7)
2
[f Ais the angle of friction,
We know that

i =tan A (8)

.. From (7) & (8)

Weget}.=mT_B

(or)2 A = o-p

Example: 7

Two equal weights are attached to two ends of a string which pass over a
smooth pulley on the top of two equally rough planes having the same altitude
and placed back to back the inclination of the planes to the horizontal being 30°
and 60°respectively. If the system be in limiting equilibrium. Show that the

coefficient of friction in 2 — /3 .

Solution:-

Since the inclination of the second plane. (namely, 60°) is greater, the

weight w on this plane is on the point of moving down the plane and so the weight
W on the other plane is on the point of moving up.

- 143



The pulley being smooth, the tension is the two parts of the string are the

_.)
same, say T .

—-> — —>
The normal reaction of the planes are Rand R'and pR acts down the

-
plane (of inclination 30°) while uR ' acts up the other plane.

Resolving the forces normal to the planes separately,

We get

R =W Cos 30°=~‘/§-w

And R' = WCos60°=—;—W

- Resolving the forces on each planes along the plane,
We get
T— n.R=W Sin 30°

V3 1

r T=unu. —w+w, —
(or) He = >

and T+ 1. R'" =W Sin 60°

J3 1
oNT=W., — — u.—W
(Or) > h-3
These give U —‘/2§—W+W.—;-=W.‘—/2—_3——— u.lW

(or) u(~/3 +1) = /3 - 1
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H e —=
enc 311 J§ ]
_(3-1f _3+1-243
3-1 2
_ 4-243
2
_ 22-43
2
n=2—+3
Example: 8

A straight rod rests with one end A on a rough horizontal plane and the
other end B against a smooth vertical wall. If £ be the length of rod and a, the
distance of its gravity from show that the centre of the inclination of the rod to the

wall when on the point of slipping is tan™ (E%J where p is the coefficient of

friction.

Solution:-

__)
Since the wall is smooth, the reaction S at B is perpendicular to the wall.

The rod being on the point of slipping the reaction at A on the ground
makes an angle A (angle of friction) with the vertical through A.

>
If G is C G of the rod AB the line of action of the weight W through G
passes through Q, the point where the reactions meet.

o
e o B
T o
Q
R a
, W
90° - 0
A Wh



(ie) OG is Vertical

In AAOB, /AOG = A,

/GOB = 90°

AG = aand GB=/{ -a
Applying the trigonometrical resuit to AAOB

We get

(AG + GB) cot /OGB = AG cot/AOG- GB Cot /GOB
(ie) ¥ Cot @ =aCot A

/4
(or)tan 8 = —['—tanl
a

4

a

.. 0 =tan® (E]
a

Problems on Friction:-
Problems on the equilibrium of a rigid body or bodies involving friction are
of varied types. They can be classified as follows. '

a) These in which the equilibrium of the rigid body can be Broken only by
sliding, the direction of motion being obvious.

For example,
Consider a ladder resting on rough ground against a rouygn wall in a

vertical plane L'to the wall. If no other forces act, it is clear that the lower
end of the ladder slips away from the wall and the upper end sliﬁs
downwards at the same time. One end cannot slip without the other.
Other examples of this type are, a rod resting over two rough pegs, a rod
resting within a rough hollow sphere etc.

146



\b) Those in which equilibrium is broken either by sliding or tilting. For

example, a black of cylinder resting on a rough plane which is gradually
tiled. If the vertical through the centre of gravity comes outside the base
before sliding commences, the body will topple over before sliding.

Those in which we have a non-rigid body such as two jointed rods AB, BC
freely jointed at B and with the ends A and C resting on a rough horizontal
plane. In this case, it is not necessary for slipping to occur at both A and
C. It may happen that one of the rods may slip before the other does.

The method of dealing with such problems is illustrated in the
following examples.

Example: 1

A uniform ladder is in equilibrium with one end resting on the ground and

the other against a vertical wall: if the ground and wall be both rough, the
coefficients of friction being pand ' respectively, and if the ladder be on the

point of slipping at both ends, show that 0, the inclination of the ladder to horizon
is given by

_ 1
tan O = JTHH
2un

Find also the reactions at the wall and ground.

Solution:-

First method: (Refer to ‘a’)

Let AB (=2a) be the ladder G its centre of gravity and W its weight. Let R

and S be the normal and S be the normal reactions acting on the ladder at the
ground and wall.

Fig (a) APR
S
B
R
A
G
Vv
A W
A > C
HR
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The lower end A will have a tendency to move away from the wall and
hence friction there will be acting in the direction AC. The upper end B will have
a tendency to move downwards and hence friction there will be acting upwards.
Since both ends are slipping the frictions at A and B are limiting. They are uR

and p’'S as marked in the figure.
Resolving horizontally, S = uR
Resolving Vertically, f' S+ R=W

Taking moments about A,

| S.BC+ nu'S.AC = W.AE.
(ie) S.2aSin © + u'2CosaCosb =W. aCos 0

Putting the value of S from (1) in (2)

We have
W uR+R=W
\\

(ie) R = -
T+pu

uw
T+pp

Then from (1) S =

(4) and ( 5)give the reactions.

Putting the value of S from (5} in (3)

We get HW, 2 Sin 9+—“—ﬂv—.2Cos€)=Wc056
T+pp T+pp

(ie) 2 SinO +2pupu'Cos 0 =(1+ pp')Cos 0

(ie) 2 pu Sin O =(1- pp') Cos 6
Sing  1-pup
= = tano
(or) Cos 6 21 an
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Second Method:- (Refer to fig.(b)

The two forces, friction and normal reaction at A can be compounded into a
single force. ‘"Similary the two forces, friction and normal reaction at B can be
compounded into a single force. Let these two resultant reactions at L. For
equilibrium, the third force the weight of the ladder must pass through L.

Fig (b)

Hence LG is vertical. As the equilibrium is limiting, these resultant
reactions must make angles A,A'with the normal at A and B [where tanA=u and
tanA'= u'l1in A ALB,

JicB = 90° —0
/ALG =X, BLG = 96°—2
And AG: GB = 1.1
Using the first trigonometric equation

We have (1+1) Cot (90° —0) = 1.cotA — 1. Cot (90°—1)
(ie) 2t an O = Cot A-tan A"

= 1 —tan A'
tanA

= 1 e
H H
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Note:
(1) By this method, we cannot find the reactions. They have to be found by

resolving the forces.

(2) This geometrical method is particularly useful when we require only the
position of a body in limiting equilibrium as we obtain the result without

introducing the reactions and having to solve the equations.

Example: 2 (U.Q)
A ladder 20 meters long with its centre of gravity 8 meters up form the

bottom, weights 60kgms.and rests at an angle of Oto the ground against a
smooth vertical wall. The coefficient of friction between the ladder and the ground

is % . Find the least value of Owhich will enable a man weighing 140kgms to

reach the top without the ladder slipping.

Solution:-
Let L be the position of the man on the ladder AB such that AL = Xx.

The forces acting on the ladder are:
1) its weight 60kgs acting vertically downwards at G where AG = 8.

2) Reaction R at A, L"to the ground.
3) Friction F at A towards the wall as the end A will begin to slip in the

direction OA.
4) Normal reaction S at B due to contact with the wall (AS the wall is smooth,

there is no friction at B.)
5) The weight of the man 140kgs at L acting vertically downwards

N
S
B
R L
!
X J
G 140
0
A F_ |E O
\V/
60
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Resolving horizontally and vertically,
F=S ' (1)
R = 140 + 60 = 200 (2)

Taking moments about A.

— — —
60. AE + 140 AF=S. BC

S.20 Sin O =60.8 Cos 6+ 140. x Cos 0O (3)
. g = 480 Cos6 + 140 xcos 0
' 20 Sin 6

= (24 + 7X) Cot 0 (4)

F_ S _(24+7X)Coto

Now, — =
R 200 200

For equilibrium,

F

R Must be < 1, the coefficient of friction -
(ie) (24 +7X)Cotd y or Cot 0 < 100 (5)
200 2 T 2447x

The condition (5) must be satisfied for values of x from 0 to 20, if the man
is to reach the top safely.

It is enough if the value of Ois such that, there is no slipping when the mar
reaches the top.

.. Putting x = 20 in (5), the condition
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(ie) Cot O < 100
164

or tan O Sm,(ie)tane <4
164 25

As 0O increase, tan0Balso increases, Hence condition (6) is satisfied if

8 < tan”’ LﬂJ
25

.. Least value of 6 = tan™ (ﬂ)
25

Example: 3 (U.Q)

A uniform ladder rests in limiting equilibrium with its lower end on a rough
horizontal plane and its upper end against an equally rough vertical wall. If O be
the inclination of the ladder to the vertical, prove that

tan @ = 2”2 , where L is the coefficient of friction.
—H

Solution:-
Let the ladder AB rest with its end A on a rough horizontal plane, its end B
on the an equally rough vertical wall.

Since AB rests in limiting equilibrium, the reaction at A and B make angle
A (the angle of friction) with the perpendicular as A and B to horizontal plane and

the vertical wall.
. —>
Let these forces of reaction meet at O. The line of action of the weight W

of the ladder acting through G, the mid-point of AB must pass, through O. There
being only three forces is equilibrium.
(ie/) OG is vertical.
Since AB is inclined to the vertical at8,
Z0QB =0
In AOAB, /AOG = A /GOB = 90° — A

Hence applying the trigonometrical result to the A OAB,
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We get,

(AG+GB) Cot OGB = AG Cot /AOG — GB CotéOB

1 [

(or) ABCot 6 = > AB Cot A — > AB Cot (90° — L)
(ie) 2 Cot 8 =Cot A -tan A
2
=1_,=1=r
L il
Hence tan 0= 2“2
-1

Example:4

A ladder AB rests with A resting on the ground and B against a vertical
wall, the coefficients of friction on the ground and wall being panduy’
respectively. The centre of gravity of the ladder of slipping at both ends. Show
T o ; 1-npy
that the inclination to the ground is given by tan 6 = —————.
(n+1)u

Solution:

_.>
The ladder AB of weight W is in limiting equilibrium with its end A on the

- —
ground and the other end B on a vertical wall. The reactions Rand S at A and B

make anglesAand A (the respective angles of friction) with the normal at A and
B respectively.

¢ -
Let R and S meet at O.
._)
Then the line of action of the weight W of the ladder through the C.G of
the ladder, namely G must passes through O.
(ie) OG is vertical.

If O is the angle that the ladder makes with the ground then in
AAOB

/OGB = 90°—9

/AOG = A and /GOB = 90° — A
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Hence applying the trignometrical result to A AOB,

We get,

(n+1) Cot GB =1Cot /AOG -n.Cot/GOB.

as G divides AB in the ratio 1:n.

(ie) (n+1) Cot (90° — B)=Cot A—n Cot (90° — A")

(or) (n+1)tan 6 =Cot A—ntan A’

1 . '
== —np T-npp
m 1
Hence tan O = -’
(n+11u

Exercise:

1.

2.

A uniform ladder rests with its lower end on a rough horizontal ground and
its upper end against a rough vertical wall, the ground and the wall being
equally rough and the angle of friction beingA. Show that the greatest
inclination of the ladder to the vertical in 2A .

A ladder AB rests with A on a rough horizontal ground and B against an
equally rough vertical wall. The centre of gravity of the ladder divides AB
in the ratio a:b. If the ladder is on the point of slipping. Show that the

_ 2
inclination O of the ladder to the ground is given by tan 0 = %5—3%; where
H

K is the coefficient of friction.

3. A uniform ladder rests with its lower end on a rough ground and its upper
end against a smooth vertical wall. When in limiting equilibrium, the ladder
makes with the wall an angle30°. Find the coefficient of friction . (U.Q).

Example: 1

A uniform rod of weight W rests with its one end against a rough inclined

plane AB of inclination o and the other end against a smooth vertical wall BD, B
being at a higher level them A. If O be the inclination of the rod to the vertical in
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the position of limiting equilibrium. Prove that tan 6 = 2 tan (A —a) where A is
the angle of friction.

Prove also that reaction of the wall is W tan (A —o) and the resultant
reaction with ground is W sec (A — ).

Solution:-

LM is the rod, with G its midpoint the forces acting on it are

i) its weight W acting vertically downwards at G.

ii) the reaction RatL L* to the inclined plane AB
iii) Limiting frictional force F at L along LB.
iv) reactions S at M normal to the wall and hence horizontal.

As the equilibrium is limiting, the two forces F and R at L can be compound into
one force, the resultant reaction P making an angle A with LC, the normal at L.

_ Let this resultant reaction meet the line of action of S at N.

For equilibrium, NG must be vertical.

Draw LK | to NG meeting the forces S at K.

/CLK = angle between CL and LK.
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= angle between their L™, AB and the horizontal
= o
KLN= A-a
/LNG= A-a and LG: GM = 1:1
From ALNM, using the first trigonometrical equation
We have
(1+1)Cot 6 = 1. Cot (A—a ) — 1. Cat 90°
(ie) 2 Cot O = Cot (A—a).

2 _ 1
tan6 tan(A — o)

(or) tan © =2tan (A—a)
By applying Lami’s theorem for the three force P,S and W at N.
We get

P 8 _ W
Sin90° Sin(A~-a) Sin(80°+A-a)

ey P S W
) T Sin(—a) Cos(r-a)

W

=W S A —
Cos (A —a) ec (A-a)
and S = W Sin V(A.f a_)= Wtan(A — o)
' Cos (A —a)
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Example: 2(U.Q)

A uniform rod is in limiting equilibrium with one end resting on a rough
horizontal plane and the other end on an equally rough plane inclined at an angle
o to the horizon. If A be the angle of friction and the rod be in a vertical plane,
show that if 8 be the inclination of the rod with the horizon then,

Sin (o —22)
2Sin A Sin (o —A)

tan O =

Solution:
Let the rod AB of length 2a rest with its end A on the plane of inclination
o, with the horizon and the other end B on the horizontai plane.

Since the two planes, are equally rough, the equilibrium being limiting, the
reactions at A and B make the same angle A (the angle of friction ) with the

normal at A and B.
\ e

Let the reactions meet at P.

-
The line of action of the weight W of the rod AB acting through G, the midpoint of
AB, passes through P, there being only three forces in equilibrium.

In A APQ, /APG
= 180° — (/PAQ + /AQP)

180° — (90° + A + 90°—a.)
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= a—-A

GPB A

And /PGA 90° - 0

Hence applying the trigonometrical resuit to A APB.
We get,

(AG+ GB) Cot/PGA = BG Cot /GPB_- AG Cot/APG

(or) 2a Cot (90— 0) = aCot A —aCot (a—2)

- o [Soor_Corle-)]

o _ 1[sin(a-2A)CosA — Cos{a ~ 1) SinA
Stan 0 = = Aubihi

2 SinA Sin(a - 2)
- tan 0 = Sin{a. — 21)

2SinA Sin{o — 1)

Example: 3 (U.Q)

A uniform ladder of length ¢ rest on a rough horizontal ground with its a
upper end projecting very slightly over a horizontal smooth rail at a height a
above the ground. If the ladder is about to slip down and is the coefficient of
friction, show that

ayr?-a?
¢? + a2

l_l:

Solution:-
The ladder AB rests with the end A on the ground and its upper end B is

very slightly above the rail at P, initially.

__)
When the ladder is about to slip down. B is at P and the reaction Rat B

(or P) acts L* to the ladder AB.
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— —>
Let the weight W of the ladder acting through the midpoint G meet R at

—

O. Then the reaction S at A must pass through O there being limiting
equilibrium.

_)
The equilibrium being limiting and the ground being rough, S makes with

the vertical AX the angle A (the angle of friction) Let AB make an angle 0 with

AX.
Since/GBO = 90°; /GOB= 90°— /OGB= 90°—60

Also ZAOG=/XA0 = A.

Applying the trigonometrical result to the A AOB.

We get

(AG+ GB) Cot/OGB = AG Cot /AOG — GB Cot éos
(Cot O = % fCot A - yz Cot (90°—0)
(or) 2Cot B =Cot A —tan A

2+tan? 0
tan O

Cot A =2CotO +tanB =

In A ABX, Cos O =% and So
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tan ©

Hence n =tan A = ————
H 2 +tan’0

il
Y

o
H
N

Exercise:

1. A rod is in limiting equilibrium resting horizontally with its ends on two
inclined planes at right angles, one of which makes an angle o (< 45°) with
the horizontal. If n1 the coefficient of friction is same for both ends, prove

Cosa-Sina
Cosa+Sina

that

2. A uniform rod of length / rests in a vertical plane against (and over) a
smooth horizontal bar at a height h, the lower end of the rod being on level
ground. Show that if the rod is on the point of slipping when its inclination
to the horizontal is 0, then the coefficient of friction between the rod and

¢ Sin20 Sind
4h — ¢ Sin26 Coso

ground in

Example:- 1 (U.Q)

A uniform rod rests in limiting equilibrium within a rough hollow sphere. |If
the rod subtends an angle 2 o at the centre of the sphere and if A be the angle of
friction, show that the inclination of the rod to the horizontal is
2] sin2a

LCos?.a + Cos2A |

tan

Solution:-
Let AB the rod, G its C.G and O is the centre of the sphere.

Since /AOB =2 o

JOAB =/OBA = 90°— 0.
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Let R and S be the normal reaction at A and B acting along AO and BO
respectively,

Since B is on the point of coming down and A is on the point of going up,
limiting friction S and uR act in the directions shown in the figure.

PRYCT N A e

The forces R, LR at A and S, ILS at B can be compounded into single
forces. The resultant reactions acting along AL and BL respectively.

Th‘en/OAL = ZOBL = A

For equilibriufﬁ, the 3" force.

(ie) the weight of the rod must pass through L.
(ie) LG is vertical.

Let AB make an angle 8 with the horizontal.

In AM,LAB =@_—— A =90° — a—A
A@=é_8_g+k = 90° — a+A

LGA = 90° — 0 and AG:GB = 1:1

Using the second trigonometric equation.
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We have
(1+1) Cot (90°—6) = 1 Cot (90° — a.— A )—1 Cot (90° — o +1)
= Cot (90° — (at+A ) — Cot (90°— (ot — A))
(ie) 2tan O =tan (a+i)) —tan (a—2A)

_ Sin{fa+A) Sin(a-2)
Cos(o+1) Cos{a—-2)

Sin(o + ) Cos(o — 2) — Cos(o + ) Sin{a. — 1)
Cos(o + ) Cos(a - 1) '

_ Sin[(o +A)— (o - A
Cos(o +A)Cos(a — 1)

Sin 24
Cos(a +A)Cos(o - 1)

Ctan O = Sin 2\
' 2 Cos{o + A)Cos(a — 1)

Sin 2\
Cos o+ A + o —A)+ Cos ((a + A) — (0. — A))

. Sin 2A
.tan O =
Cos2a + Cos2A

Sin 2A
Cos2a + Cos2A

0= tan™

Example: 2 (U.Q)

A uniform sphere is held in equilibrium on a rough inclined p!ane of angle
o by a force of magnitude % sin o applied tangentially to its circumference,

where w in the weight of the sphere. Prove that the force must act parallel to the

plane and that the coefficient of friction must be not less than 1 tana .
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Solution:
Let C be the centre of the sphere. A the point of contact of the sphere with
inclined plane and AB the diameter through A.

Let the radius a.
The forces acting on the sphere are:
1) its weight W acting vertically downwards at C
2) the normal reaction R acting along AC.

3) Frictional force F acting upwards along the inclined plane as the sphere is
on the point of moving down and

4) the force Wsina

applied tangentially.

Let X be the L'distance of A from the line of action of —V%/— Sin o
For equilibrium, taking moments about A
—\-!-V— Sina =W.AD=W. aSin a

2

(ie) ... x= 2a.
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el

The force Wszma must be at a distance 2a from A. So it must act at B to

the plane.

Resolving along and L' to the plane ,

We have

F+ %WSinaW.AD=W.aSina

(ie) F = Wsina (1)
2
and R =W Cosa (2)
" —F- = —VX Sin a+W Cos o = tan a
R 2 2

For equilibrium g must be < 1

tan o

(ie) < u

tan o

(or) p> 7
Example: 3

A sphere of weight W resting on a rough inclined plane at an angle o to
the horizontal, is maintained in equilibrium by a horizontal string attached to the

highest point of the sphere. Show that the angle of friction in greater than % a

and that the tension of the string is w tan ;— o .

Solution:-
Let the sphere rest on the inclined plane, touching it at A.

At the highest point on the sphere a string is attached and the sphere is
pulled parallel to the horizontal plane
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Let T be the tension in the string. Its components. along. and LT to the:

inclined plane are T Cos aand T sina.

Let us. consider the case of limiting equilibrium.

Resolving the forces along and 1 Fto the inclined plane.
We get

TCos o + tR =W Sin
and. Tsin a+WCos a =R

These give T Cos o+ p(T Sin o+ W cosa ) =W sin o

Sina.—-pCosa W Sin (CL —?\.)

OnT=W —— = V.
Cos o+ uSin o Cos (o —X)

as nu=tan A

Also taking moments: about A.
We get
T (a+a. cos:.a) =W. a:Sin a

©OnT = W—m2 _witanZ
1+ Cos-a. 2
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Equating the two values of T
We get

Sin(a-2) _ W tan &
Cos (o —2) 2

(Or) tan ((a—2) = tan%

(ie) (o—2)= % or kz%a

(for limiting equilibrium)
For equilibrium,

A>la
2

Example :4

A uniform rod of length 2¢rests within a hollow sphere of radius a in a
vertical plane through the centre of the sphere. The sphere is rough, the angle of
friction beingA . Prove that if #<a cos A the greatest inclination to the horizontal

at which the rod can rest is given by (2¢? - a®*) Sin 8 — a®Sin (6-21) = 0.
Solution:

The section of the hollow sphere by the vertical plane is a circle and the
rod AB rests with its lower end A and upper end B on this circle.

Let the centre of the circle be C. Then

/ACB = 2 o Say.

So that /CAB = /CBA = 90° — o

Let the inclination of the rod to the horizontal be 8when the rod is in
limiting equilibrium Evidently this value of 0 is its greatest value.

The reactions at A and B make the same angle A (the angle of friction) with
the normal to the circle at these points.
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Let the reactions meet at O. Then there being only three forces in

—>
equilibrium, the line of action of the weight W of the rod acting at its midpoint G

must pass through O.
(ie) OG is vertical.
Hence ZQ§§= 90°—06
In A OAB, /OAB = (90— a )—A
‘as m= 90°— a and OBA = 90°— a +A
Hence applying the trigonometrical result to the A OAB,
We get
| (AG + GB) Cot (90°—0) = GB Cot (90°—a—A) — AG Cot (90°—a— A)
(or)2¢ tan B = ¢ [tan (x+A) —tan (aa—A)].

(ie) tan O = Sin2). on simplication
Cos2a + Cos2A

But Sin o =

F
a

2
SothatCos2a = 1— 2 Sin? o= 1— 2-2—
a

Sind _ Sin2A
Hence =

CosO0 1-2¢%?/a? + Cos2i/

(or) sin 6 (a®—2/42 + a? Cos 2A) = a2 Cos O sin2\

giving (242 — a®) sin® — a® (Sin ® Cos 2A— CosO Sin2A)=0

(or) (2¢% - a®) sinO—a®Sin (8 —2A) =0
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Note that in this position

1
A <90° - o which gives CosA< — or<aCos A
a

(or) f<acos A.

Example: 5
A heavy circular disc whose plane is vertical is kept at rest on a rough
inclined plane by a string parallel to the plane and touching the circle. Show that

the disc will slip on the plane if the coefficient of friction be less than -;- tan a
where a is the inclination of the plane.
Solution:-

Let the circular disc centre O, be kept at rest by pulling the string in. a
direction parallel to the plane, as shown in the diagram.

Resolving the force that act on the disc along and 1'to the plane.

We get

R =W Cos aand W sina =P+ UR

Taking moments about A,

We get

P.AB = W. OA Sin a

P = —1—W. Sin a
2,
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‘The disc will slip (slide) if the component W sin a of the weight of the disc
acting down the plane; exceeds the frictional and applied forces acting up the
plane.

Hence the condition for he disc to slip in

W Sina > uR +P.
OrWsina>uiw. WCosa+ % W. Sin a
givingtana > 2pu

1
(or) p < —tan a
2
Exercise:

1. How high can a particle rest inside a hollow sphere of radius a if the

coefficient of friction be ——15-?

2. A uniform rod rests in a vertical plane within a fixed hemispherical bowl|
radius is equal to the length of the rod. If ube the coefficient of friction

between the rod and the bowl. Show that, in limiting equilibrium, the

inclination of the rod to the horizontal is tan™ [34M ZJ.
 —

3. A heavy uniform rod rests with its ends on the interior of a rough vertical
circle and subtends a right angle at the centre. Show that in the position

of limiting equilibrium, the rod is inclined to the horizontal at an angle
equal to double the angle of friction.

Example: 1(U.Q)

A square lamina whose plane is vertical rests with the ends of a side
against a rough vertical wall and a rough horizontal ground. if the coefficients of
friction for the ground and the wall be pandpu’ respectively prove that, when

lamina is on the point of motion, the inclination of the side in question to the

horizontal is tan™ | — K ,
1+ 21+ pp
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Solution: )
Let ABCD be the square lamina and the side AB (=a) be in a contact with
the at A and the ground at B. The forces acting on the lamina are:

i) normal reaction R at B L' to the ground

i) limiting friction WR at B as shown in the figure.

iii) Normal reaction S at A 1" to the wall.

iv) Limiting friction ' s along the wall upwards and
V) Its weight w acting vertically downwards at G its centre of gravity.

Let AB make an angle Oto the horizontal

Resolving horizontally and veritically7
\

S=uR (1)
R+ u'S=W (2)
Taking the moments about B

S.OA+ p’'S. OB =W. BE
(ie)S.aSin6 + 'S .aCosb =W.BG Cos (45° +0)

- Wa

Cos 45° Cos 60— Sin 45° Sin©
7 ¢ ’
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=l,-\21E (Cos 6 — SinB)

(ie) S (Sin 0+ p' Cos 0)= —\,2! (Cos 6 — SIn0) (3)

From (2) R = W — ' S and putting this in (1)

We have S=u (W— u'S)u

ie) s = (4)
1+ pp

Substituting (4) in (3)

nny
T+ pp

(Sin® +p' Cos 9) = % (Cos 6 — Sin9)

f

(ie) 2p (Sin® +pu' Cos 0) =( 1+pup') (Cos 6 — Sin0)
Sin 0 2u+l+pu’')=Cos 0 (1+pup’ —2pp’)

_ Sin6 _  1-pp
Cosb 1+ 2+

.0 =tan"( el 213 )

1+ 20+ ppt!
Example: 2 (U.Q)

A solid homogeneous hemisphere rests on a rough horizontal plane and
against a smooth vertical wall, show that if the coefficient of friction be greater

than g the hemisphere can rest in any position and, if it be less, the least angle

that the base of the hemisphere can make with the vertical is Cos™’ (%1]
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If the wall be rough (coefficient of friction p’ ) show that the angle is

Cos-1 8“(1 + l‘l'“")

3(1 + uu‘)
Solution:
R
L AN
w's * -
\ ~
B \\C \\ \S
N N\ -
N N
1050 N\
M
A
Fig. (a) Fig. (b)

Figure represents a section of the hemisphere by the plane 1T to the wall.
A is the point of contact with rough horizontal plane and B with the smooth wall
LM is the base and C is the centre of hemisphere.

The centre of gravity is at G on the radius L"to LM. Such the
CG = %L r being the radius of the hemisphere

The forces acting are,

i) reaction R L' to the ground at A
i) friction F at A.

iii) reaction S _LT to the smooth wall at B and
iv) Weight W of the hemisphere acting vertically downwards at G.

Let /ACM = 0
Resolving horizontally and vertically,

R=W (2)
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Taking moments about A,

S.CA=W.GD

=W.CG Cos0

S.r =W. —3-8£ Cos0

(or) S = 3w 0 (3)
From (2) and (3)
F = 3wCose :059 and R = W from (2)
F _3WCos6 _ 3Cosb
R 8W 8
For equilibrium,
g must be < |, the coefficient of friction.
(ie) 3Cos0O <u
3
(or) u= §Cos 0 (4)

If nis -2— then as Cos 0 is <1, 1 will be automatically > %Cos 0.

Hence condition (4) is satisfied and the hemisphere can rest in any
position. ’

From (4) Cos O < %ﬁ

Ifu<§,§£<1
8 3
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Let o be the angle such that Cos o= 3

Then Cos O <Cos a for equilibrium.
(ie) B8 2 o

(or) 8 > Cos™ %—‘

Hence the least value of 0 is Cos™ (%ﬁ)

When the wall is rough, limiting frictions pR and 'S act at A and B refer

to figure.

Resolving horizontally and vertically.

S=uR (5)
R+p'sS=w _ | (6)
Taking moments about A,

S.CA+un'S.BC=W.GD

(or) Sr+ nu'S.r=W. %r_ Cos©
S (1+u') = %Vl Cos0 (7)

Putting the value of from (6) in (5)
We have
S=p(W-u's)

pWw
1+ ppt

(ie) S= (8)
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Substituting (8) in (7) ©

We have 1”W| (1+p') = 3:3_/! Cos 0

+ M

(ie) CosB = 8u(l+ ) which gives the least angle 0
3(1+ ')

Example: 3 (U.Q)

A thin equilateral triangular plate of uniform density rests in a vertical plane
with one-end of its base on a rough horizontal floor and the other end against a
smooth vertical wall. Show that the least angle its base can make with the

1
horizontal is given by Cot 0 =2 p+ ﬁ where L is the coefficient of friction.

Solution:

Vw

_)
Let ABC be the plate of weight W with its one vertex B on the smooth
vertical wall and another end C on the horizontal floor.

—

_)
The reaction R at B. is 1L"to OB. Let the weight W of the plate acting

—> -
through G meetR at D. Then the reaction R' at C must pass through D, there
being equilibrium.
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Since the equilibrium is limiting. R’ makes the angle A (the angle of

friction with the vertical at C.
Let /BCO = 0.

BD  BC
Sin ~.BCD Sin #BDC

(Or) BD BC ay CDG =2

Sin(90°—6-2) Sin (90° + 1)

From A BCD ,

ie)BD = Bc <2s0+2)
Cos A
But BD = BG Cos /GBD = —— BC Cos (8 — 30°)

V3

as /GBD = /CBD - /CBG

Hence __1.* BC Cos (6—30°)=BC. COS(9+'A,)
V3 Cos A
(Or) 1 Coso....‘/l's—_ N sinel ~ Cos0 CosA — sinf sinA
£ 2 2 Cos A

Thus % CosO = SinH [tanl + ———:l

1
L 243

(or) Cot 6 =2 pn +

1
YR

Example:4
A solid hemisphere rests in equilibrium on a rough ground and against an
equally rough vertical, the coefficient of friction being L. Show that if the

equilibrium is limiting, the inclination of the base 1o the horizon is

Sin-! [8u(1 + p)}

3‘1 + 2 )

176



Solution:-

Let the hemisphere of radius r have contact with the ground and the wall at
A and B.

—>

—>
The weight reactions R and

S at A and B act through the centre O of the
- —
base uR and pS act as in the diagram.

(LOB = 6; then /GOC = 0

Resolving the forces horizontally and vertically,
We get
S=pRandR+u S=W

S=p(W— us)giving s = MW
T+ 1

Also taking moments about A,

We get
S.r+ usS.r=W.GC = W (OG Sin 0)
3
= W. = '
5 r Sino

(Or) Sin 6 = 8

-

w 8u(1 + l%

1+p). B = | Sk d

3W( L) 1+’ {31+p2
Thus © = sin-1 | 8eli+n
31+ p?
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Exercise:
1. A square Lamina rests in a vertical plane with one end of one side against
a rough wall and the other end against an equally rough horizontal ground.
Show that the edge of the lamina in question in inclined to the horizontal

at angle tan-1 U““) where wis the coefficient of friction at each end.
+

2. A uniform thin hemispherical bowl rests with its curved surface on a rough
horizontal plane (coefficient of friction L) and leans against a smooth

vertical wall, prove that when the bowl is on the point of slipping the
inclination of the axis of the bowl to the vertical in Sin™ (2).

3. A hemispherical shell rests with its curved surface on a rough plane.
Whose angle of frictions is A. Show that the inclination of the plane base
of the rim to the horizon cannot be greater them Sin 7 (2 Sin A).

CONE OF FRICTION:
Cone:
Example:1

A uniform cone is placed on a rough inclined plane. As the inclination of
the plane increases. Show that the cone will slide before it topples over if the
coefficient of friction is less them 4 tana.. Where ais the semi-vertical angle of
the cone.

if A be the coefficient of friction, find the angle of the cone when it is on

V3

the point of both slipping and turning over.
Solution:

L et AVB represent the section of the cone by a vertical plane through its
centre of gravity g.

Then GC = % VC.
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When the inclination of the plane in 0. Let the cone be on the point of
sliding.

_) .
The resultant normal reaction R acts at a point on AB (the whole of AB

being is contact with the plane) and so for sliding. We must have W Sin 6 > uR

But resolving L* to the plane,
We get R =W Cos 6.

Hence the cone will slide if W Sin 6>L.. W Cos©

!

(Or)tan 6 >u (1)

In the case when toppling in about to take place (which can happen ohly
about A), the normal reaction and the frictional force act through A.

Hence on taking moments about A,

We get the condition for the cone to topple as W Sin 8. GC > W Cos8. AC

AC AC 1
> ——— T 4 ———— — —
(Or) tan O v as GC 4VC
(ie) tan O > 4 tan o (2)

From (1) and (2)
We find the cone will slide before it topples overif4 tan a < | or u<4 tan a.

Sliding and toppling over will occur simultaneously if p = 4 tana

But pu= —-é—

Hence 4 tan o = 2 (or) =a tan™

1
V3 a3

.. The angle of cone is

2o =2 tan™’

1
443
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Example: 2
A heavy solid right circular cone is placed with its base on a rough inclined -

plane, the inclination of which is gradually increased. Determine whether the
initial motion of the cone will be one of sliding or tumbling.

Solution:
As the previous problem, we find that if the angle of inclination 0 is
steadily increased, the cone will slide initially if pn< tan® (ie) sliding will occur

before toppling over).

So long as 1< 4tano, where o in the semi vertical angle of the cone there
will be sliding only.

If © is such that tan O = 4tana, sliding and toppling over occur
simultaneously. '

Exercise:

1. A cone of vertical angle 2, rests with its base on a rough plane inclined B

to the horizon. As the inclination of the plane is gradually increased,

show that the cone will slide before it topples over, if the coefficient of
friction be less than 4tano.

Show that it will slide topples over if the coefficient of friction is

<%£,r,being the base radius & h the height what happens if the

coefficient.

2. A uniform solid cone with circular base in placed with its plane base on a
rough inclined plane and the inclination to the horizon in gradually
increased. Find the ration of the radius of the base of the cone to its
height if the cone is to topple before it slides. Coefficient of friction = !

3. A uniform cone, resting with its circular base in contact with a rough
inclined plane (anglea ) is on the point of both slipping and toppling. If
the angle of friction be)A, find a and the vertical angle of the cone in
terms of A.

4. A right cone is placed with its base on a rough inclined plane. If L be

J3

the coefficient of friction, find the angle of the cone when it is on the point
of both slipping and turning over.
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DYNAMICS
UNIT - VI

PROJECTILES

6.1 Projectiles:
Consider motion of a particle projected into the air in any direction and with
any velocity. Such a particle is called a projectile.

The two forces that act on the projectile are its weight and the resistance
of air.

For simplicity, we suppose the motion to take place with such a moderate
distance from the surface of the earth that we can neglect the variations in the
acceleration due to gravity. This means that g may be considered to be constant
in magnitude throughout the motion of the projectile. Secondly we shall neglect
the resistance of the air and consider the motion to take place in vacuum.

6.1.1. Definitions:
The following terms are used in connection with projectiies.

The angle of projection is the angle that the direction in which the particle
is initially projected makes with the horizontal plane through the point of
projection.

The velocity of projection is the velocity with which the particle is projected.

The trajectory is the path which the particle describes.

The Range on a plane through the point projection is the distance between
the point of projection and the point where the trajectory meets that plane.

The time of flight is the. interval of time that elapses from the instant of
projection till the instant when the particle again meets the horizontal plane

through the point of projection.

6.2 PATH OF PROJECTILE
To show that the path of a projectile is a parabola.
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Let a particle be projected from O with a velocity u at an angle ato the

horizon.

X
P
A
U/p
[
el -
M B -
Fig (a)

Take O as the origin, the horizontal and the upward vertical through O as
axes of X and Y respectively. The initial velocity u can be split into two
components, which are u cos a in the horizontal direction and u sina in the vertical
direction. The horizontal component u sin a subject to an acceleration g
downwards.

Let p(x, y) be the position of the particle at time t secs after projection.
Then

X = horizontal distance described in t secs = (U cosa ).t (1)
y = vertical distance described intsecs = (ucosa)t— yzgt2 (2)

(1) and (2) can be taken as the parametric equations of the trajectory. The
equation to the path is got by eliminating t between them

From (1)

X
ucCos a

t =
And putting this in (2)

2

X 1 X
Wegety= 4 sina. ——— - —q. | ——m
9ety * u Cos o 29 [UCOSOL]

2
ax
= Xxtan a - 3
Y 2u®Cos? « (3)
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Multiplying (3) by 2u2?Cos? «.

s . no
2u2Cos? a.x = 2u®Cos?a.x - gx?
cos a
. . » 2u®SinuCosa 2u? Cos2a
(ie) x° - X = -
g g

» 2 .
[x u? Sin o Cos oc) _ u*Sin%a Cos?a  2u® Cos® o
. =

g

Transfer the origin to the point

(u® SinaCosa  u? Sin? a
\ 2 ’

g 29 J

The above equation then becomes

2 2
>(2=_2u Cos SR, (4)
g
2 2
(4) is clearly the equation to a parabola latus rectum 2u” Cos” a whose
g

axis is vertical and downwards and whose vertex is the point

j’luz Sinu Cosa  u? Sin%a
x g° " 2g

Note:
The latus rectum of the above Parabola is

2 2
_ 2u” Cos oaz_z_ (u Cosa )
g
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= 2 x (Square of the horizontal velocity).
g

So the latus rectum (ie) the size of the parabola) is independent of the
initial vertical velocity and depends only on the horizontal velocity.

6.2 Characteristics of the motion of a Projectile:-
Refer to fig. (a)

Let a particle be projected from O with velocity u at an angle o to the
horizontal OX. Let A be the highest point of the path & C the point through O.
Using the two fundamental principles given in (i) we can drive the following results
relating to the motion of a projectile.

1) Greatest height attained by a projectile.

At A the highest point, the particle will be moving only horizontally, having
lost all its vertical velocity.

Let AB =h = the greatest height reached. Considering vertical motion -
separately, initial upward vertical velocity = u sin o and the acceleration in this
direction is — g.

The final Vertical velocity at Ais = O

Hence O = (u sina )? — 2g.h.

(ie) The vertex of the parabola is the highest point of the path.
2) Time taken to reach the greatest height

Let T be the time from O to A. Then, is time T, the initial velocity u sina is
reduced to zero, acted on by an acceleration —g.

Hence O = u sin a — gT.

usin o
g

T =
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3) Time of flight (ie) the time taken to return to the same horizontal level as O.

When the particle arrives at O, the effective vertical distance it has
described is zero.

Hence if t is the time of flight, considering vertical motion,
we have

O =usin o.t- %gt2

2usin o
g

(ie)t=0ort=

t = O is the instant of projection when also the vertical distance travelled is
zero.

2u sin a
g

- The time of flight =

We find that the time of flight is twice the time taken to reach the highest
point, as we should except from symmetry.

4. The range on the horizontal plane through the point of projection.

2usin o
g

During this time, the horizontal velocity remains constant and is equal to
u Cos w.

The time of flight in t=

Hence
OC = horizontal distance described in time t.

sin o
g

it

ucos oo .t=ucos a.

2u? Sin o Cos a
g
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Hence
2u? Sin a Cosa _ u® Sin2 o
g 29

The horizontal range R =

Note:-
(1) The horizontal range can also be found thus:

The equation to the path is

2
- gx
-=x tan o - (1)
2u? Cos? a

The equation to the x — axisisy = O. Putting y= O in (1)

gx®
2u? Cos? «

We have x tan o — =0

2u® Cos® atana _ 2u® Sina Cos a
g g

(ie) x =0 or X =

X= O, Corresponds to the point of projection and so the other value

2u? Sin a Cos o
g

gives the horizontal range.

2u? Sin o Cos a
g

2) Horizontal range =

_ 2(ucosa)(u Sin a)
g

= g—L-JX wheére U and V

g
are the initial horizontal and vertical velocities. L

6.2.3 A particle is projected horizontally from a point at a certain height above the
ground to show that the path described by it is a parabola.

Let a particle be projected horizontally with a velocity is from a point A at a

height h above the ground level. Let it strike the ground at M. Take A as origin
the horizontal through A as x — axis and the downwards vertical through A as Y
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axis. Let P (X,Y) be the position of the particle at time t. As there is no horizontal
acceleration, the horizontal velocity remains constant throughout the motion.

\
/ "
N P (%, y)
M
O

So x = horizontal distance described in time t= ut (1)

Due to gravity, the vertical acceleration during the motion is g downwards.
Y = vertical distance, described in time t = yz gt? (2)

Eliminate t between (1) & (2)
We have

2 2

Y = g.x—z(ie)x2=~2—q—y (3)
y g

1
2
(3) shows that Y is a quadratic function of X.

So it represents a parabola with vertex at A and Axis AN.

Worked Examples

Example: 1

A body is projected with a velocity of 98 metres per sec in a direction
making an angle tan'3 with the horizon. Show that it rises to a vertical height of
441 metres and that its time of flight is about 19 secs. Find also the horizontal
range through the point of projection. [g = 9.8 m/sec?]

Solution:
Here u = 98,,, o =tan'3 . (ie) tan o= 3
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_ Sina _tana tan o

Sina = . Cosa = =
Cos a seca  J1+tan?a
-3 3
1+9 710
Cos o = Sin o - 1
tano 10

u®sin® o _ 98x98x9

greatest height reached = =
g 10x2x9.8

= 441 metres

2_usin o _ 2_><98x3

g  J10x98

Time of flight =

=6 10 = 6x3.162,

18.972

= 19 secs, nearly

_ 2u® Sina Cos o
d

1

Harizontal range

2x98x3 3 1

—_— X x
9.8 J10 10

= 588 metres.
Example: 2 (U.Q)
If the greatest height attained by the particle in a quarter of its range on

the horizontal plane through the point of projection, find the angle of projection.

Solution:
Let u be the initial velocity and o the angle of projection.

Then the greatest height = u® Sin® a/ 2g.
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And horizontal range = 2u®sin o Cosa/ 2g.

u®sin? o _

_ l>< 2u? Sin o Cos o
2g 4 q

g

It is given that

2 ain@ 2 :
. u?sin u
(ie) — &% = Sin a Cos a

—

29 29

(ie) Sin o = Cos o (or)tan a =1
oo = 45°,

Example: 3
A stone in thrown with a velocity of 39.2m/sec at 30° to the horizontal.
Find at what times it will be at height of 14.7 (g = 9.8 m/sec®).

Solution:
Initial vertical velocity = 39.2 x sin 30°

= 19.6 m/sec.
This is subject to an acceleration — g.

Let the particle be at a height 14.7m after time t sec.

Applying the formula “s= ut +y2 at®.

We have 14.7= 19.6 - 1/ gt?

=19.6t—4.9t°2
(ie) 3 = 4t—t> or t2-4t+3 = 0

(ie) (t-3) (t-1) = 0; t=1 or t=3.
Hence at the end of 1 sec. And again at the end of 3secs.

It will be at a height of 14.7m
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Example: 4

A bomb was released from an aero plane when it was at a height of
1960m. above a point A on the ground and was moving horizontally with a speed
of 100m per sec. Find the distance from A of the point where the bomb strikes
the ground. (g= 9.8m/sec?).

Solution:

Let us consider the motion of the bomb in the horizontal and the vertical
directions separately. The dynamical details of each motion may be presented as
follows:-

Horizontal Motion Vertical Maotion

(upwards + ve )
initial velocity= 10m/Sec Initial velocity = 0
Acceleration = O Acceleration = -9.8m/Sec?

Distance = -1960m (It is downwards)
Let t be the time taken by the bomb to strike the point on the ground.

Consider the vertical motion and applying the formuia

‘S = ut + Y at®,
1

We have — 1960 = OX t - 5 9.8t?

(ie) 4.9t% = 1960 =t* = 400, (ie) t=20secs.
During this time, the horizontal velocity is constant.

The horizontal distance described by the bomb in 20 secs = 20x 100
= 2000m.

Example: 5

A particle is projected so as to graze the tops of two paralleis walls, the
first of height ‘a’ at a distance to from the point of projection and the second of
height b at a distance ‘a’ from the point of projection. If the path of the particle
lies in a plane 1"to both the walls, find the range on the horizontal plane and
show that the angle of projection exceeds tan™3.

Solution:

U being initial velocity and a the angle of projection, the equation to the
path is
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2

gx

Y =xtana — > >
2Uu° cos‘ o

2
(ie) Y = xt - gxz (1+t?) where t = tan o
u

(1)

The tops of the two walls are (b,a) and (a,b) respectively and they lie on (1)

gb?
2u?

. a=bt— (1+t%)

2

ga 2
& b =at— 1+t
2u2( )

From (2), a — bt = (1+1%)

_ gb?
2u?

2
a
From (3), b - at = — guz )

Divide (4) by (5)

a-bt b?

We get =
g b-at a2

(ie) b® — ab?*t = a® — a?bt

t (@b — ab?) = a® -b?

Ct= a’ -p? ZM +ab+b2
a’b — ab? ab(a\—b)\

a® +ab +b?
ab

t =

tan o = 22+tab+b? _ (a® —2ab+b?)+3ab

ab ab

19.
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(3)

(4)

(5)



2
~ten a _=_(_a_—_—__t_>l_ +3
ab

(6)

The first term in the right side of (6) is positive

~tan o > 3 or a > tan'3.

g(1+tj) _a-bt _bt-a
From(4 = =
“) 2u? -b? b?

Q@2+ab+bﬂ—a
_ ab _ a’+ab+b®-2a’

b2 ab?
b(a+b) _a+b
ab? ab

u? 8in2 o _ ‘ 2u?t
A g - g(1+ tzj

ab
a+b

Horizontal range R =

= t. Substitutinhg from (7)

_a’+ab+b® &b
ab "a+b

a?+ab+b2
a+b

Example: 6 (U.Q)
A particle is thrown over a triangle from one end of a horizontal base and

grazing the vertex falls on the other end of the base. If A,B are the base angles,
and a the angle of projection, show that tana = tan A+ tan B.

Solution:-
Let u be the velocity and «the angle of projection and let t secs be the

time from A to C.

Draw CD LAB and Let CD = h
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Considering vertical motion

-h = vertical distance described in time t,

X 1 2
usin a.t- — gt
29

AD = horizontal distance described intime t = u Cos a .t

Y

N\

A D
From A CAD,
u Sin a.t - 191;2
tan A = CD = h~ = 2
AD AD u cos o.t
tan A = tana - ———gt—w—--
2U cos o
AB = horizontal range
_ 2u? Sin a Cos o
g
-. DB =AB - AD
4 2 i
= EUSIn & COS <. u Cosa.t

g

From A CDB
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CD h
tan B = =
DB (2u2 Sin o Cos «

\ g

—uCos a.t]

X 1 .5
u Sina.t — —gt
o 29

4

L2u2 Sin o Cos a
g

- u Sin a.t}

gt (2u Sino — % gt]
u Cos a (2u Sin a - gt)

gt (2u Sina - gt)  _ gt (2)

tan B = , =
2uCos a(2u Sina —gt) 2uCosa

Adding (1) and (2)

gt N gt

tan A + tan B = tan a—
2uCosa 2uCosa

~tan A+ tan B =tan a

Example: 7
Show that the greatest height which a particle with initial veigcity V can
2 2
reach on a vertical wall at a distance ‘a’ from the point of projection is -Y—g- - .

Prove also that the greatest height above the point of projection attained
by the particle in its flight is v®/2g (v* + g* a?).

Solution:
in the usual notation, the equation to the path is

2
- ax
= ¥ tan — 1
Y * 2v2Cos? « (1)

Putting x =ain (1)
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We get the value of y, which is the height reached on the vertical wall at a
distance ‘a’ from the point of projection.

“y=atan a - ga”
2v3Cos? a
= at — ga” (1+t?) where t = tan « (2)
2v?

Now a and v are given and so y in friction of t.

2
s Y is maximum when dy 0 and %i-%’-is negatlive

dt

Differentiating (2) with respect to t,

dy ga’ ga‘t
oo a-28 2-a-
dt 2v? RRYE

d’y ga? .

—2 = - 2= =negative

dt? V? 9
Clearly

2 2
So Y is maximum when a — gazt =Qort= -;—; (3)
v

Putting this value of t in (2).

2 2 4
Max. valueof Y=a. ~ — 98 [, Y _
ga 2V2 g2a2
- V2 _ ga2 _ V2
29 2v¢ 2g
_ v: _ ga?
20 2v?

This is the greatest height reached on the wall.

Greatest height attained during the flight.
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2

i

vZ8ina _ v* 1 . \

" T 25 29 Cosec’a  2g(i+Cot%a)
2
= v -~ putting the value of tan afrom (3)
a
VB

Zg(v“ + Qzaz)

Example: 8

Show that the greatest height attained by a particle projected with a
velocity u at an angle ato the horizontal in unaltered, if the velocity of projection
in increased to ku and the angle of projection is decreased by Y, where

Cosec A =k (Cot A— Cot a ),

Solution:-
The greatest height attained by the particle when the velocity projection is
o : u?sSin? o
u and the angle of projection is o« given by ——-—-—2-6——
(ku)® Sin? (o - A)
2g
increased to ku and the angle or projection decreased by A. These two are equal
it.

It will be given by when the velocity of projection is

u®Sin? o (ku)? Sin®(a - 1)
29 2g '

(ie) if Sin? o = k? Sin? (a—A).

Sin(a-2) _ 1

g
—

(1) if Sin a K

Sin o Cosi —Cosa SinA _ 1
Sin a k
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?‘sTrreaCos‘x _ Cosa SinA _ 1
St Sin a K

ifGos?wCotasin?L:-E-

if kK (Cot A- Cot o) = cosec A which in required.

Exercise:

1) a) A projectile is thrown with a velocity of 2‘Om/sec;: at an elevation 30°.
Find the greatest height attained and horizontal range. B) A particles is
projected with a velocity of 9.6 at an angle of 30°. Find

i) the time of flight.
i) The._greatest height of the particle.

2. If the time of flight of a shot in T seconds oveér a range of xm, show that the
-2

g-';(] and determine the maximum height and the

elevation is tan”’ [
velocity of projection.

3. A body is projected at angle a to the horizontal, so as to clear two walls of
equal height ‘a’ a distance 2a from each other. Show that the range is

|
o, O
2a Cot —.

a Cot -

6.3 Range of projection:
6.3.1 To detéermine when the horizontal range of a projectile is maximum, given
the magnitude u of the velocity of projection.

- If u is the initial velocity and o is the angle of projection, the range R on
the horizontal plane through the point of projection is given by
2u®Sina Cos a _ U°Sin2 o

g g

R =

(1)

Now g being a constant, for a given value of u, the value of R is greatest
when sin 2o (8 greatest

when sin 2a = 1

This happens when 2o =2 90°
(ie) a = 45°
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Hence a maximum when the particle is projected at an angle of 45°to the
horizontal (ie) the direction of projection for maximum horizontal range bisects the

angle between the horizontal and the vertical. Also when o = 45° from (1),—

g

2
(ie) The maximum horizontal range is Eg—

6.3.2 To show that for a given initial velocity of projection, there are in general
two possible directions of projections so as to obtain a given horizontal range.
(U.Q)

Let u be the velocity of projection of a particle, and o the necessary angle
of projection so as to get a given horizontal range equal to K.

2
Then 5_ _u Sin2 a
1 g
- Sin2a= & (1)
u

Since u and k are given and g is a constant, the R.H.S of (1) is a known
positive quantity. If gk<u®.

We can determine an acute angle 6 whose since is exactly equal to _g_;
u”
Then (1) becomes sin2a = sin © (2)
'.2a=60ra=g.
2
Since sin (180°—6) = sin 0, (2) can also be written as
Sin 2a = Sin (180°-0)
20 = 180°-6.
«= 9 (4)
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From (3) and (4), we find that there are two values of « and so two
directions of projection, each giving the same range k.

Let a1 and o, be these two values of a.

Thenao 4 = -2— and a», = 90° — 9

S04 O = 90°

As 0<90°, a4 < 45° and so a, >45°

Now 45° — o4 = 45° — —2—

and o, — 45° = 90° — : 9

9 _ 450 = 450
2

(le) 45° — o1 =02 450 (5)
But 45°is the angle of projection to get maximum horizontal range will the
same initial velocity. So (5) show that the two direction a1 & o> are equally

inclined to the direction of maximum range. This is shown in fig(a)

In fig (a) OT, and OT, are the directions a; & a, necessary to get a given
‘range k. OT is the direction giving maximum horizontal range.

/1,0T =/XOT - /XOT,

= 45°- a,
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T,0T = AOT, -/XOT
= gy- 45°

aﬂd/ﬁo T =[420T

In other words, OT bisects the angle between OT, and OT..

If U =gk, from (1), Sin 2o = 1
Then 2a = 90° or a = 45°,

Only one value of o is possible and this corresponds to the case of
maximum range.

If u® < gk, the R.H.S of (1) is greater than 1 and so we cannot get a real
value for a.

2
(ie) There is no angle of projection to get a range greater than”—, which is
g g ge d g

really the maximum range possible.

Note:
To get a given horizontal range k, we find that u® >gk. So the minimum

value of u = /gk .

Example: 1
If h and h' be the greatest heights in the two paths of a projectile with a

given velocity for a given range R, prove that = 4 ./lhh’

Solution:
Let cand o' be the two angles of projection with a given velocity u to get
a given range R.

Then we know that o+ o' = 90°
(ie) a' = 90° - a (1)

2 .
Also R = 2u°Sin a Cos a (2)

g
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2@ 2
he Y5 a Sg‘ < (3)

) 2Qin2.
h1 = u Sln o (4)
29

3 Qi o1 2a; : °_
Hence vhpT =Y 'SinaSina' u Sin o Sin (90° - ) Using (1)

29 29
pen ,
- WSinaCosa _ R Using (2)
29 4
Example: 2

A shell bursts on contact with the ground and pieces from it fly in all
directions with all velocities upto 30metres per second. Show that a man 30m
away is in danger for 5 secs nearly. '

Solution:
Here the given velocity u = 30m, and the given range R = 301

Since R = Y_SiN2«
g 3
We have
. gR  9.81x30
= = =.327.
Sin 20 7 = 30x30 3 .

From the tables,

20 = 19° 8 or 160° 58
(le) o = 9°32" or 80° 27+
2 2

These are the two angles‘of projection to get the given range.
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Let t; and t, be the two times of flight for the two particular places which fly
1 i
in the directions 9° 32% and 80° 27% respectively.

These two places will strike the man and so he is in danger for the interval
t>-t; secs.

i |
2u Sing9° 321 2 x 30Sing° 32—1-
Now, t, = 2 _ 2 _1.014
g 9.8
1 ! 1 i
2u Sin80° 27 > 2 x 30Sin80° 27 >
t, = = = 6032
2 g 9.81

Period of danger = t, —t,
=6.032 - 21.014 = 5. 018

= 5 secs. (nearly)

Example: 3

The range of a rifle bullet is 1000m. When « is the angle of projection.
Show that if the bullet is fired with the same elevation from a can traveling 36km/h
towards the target, the range will be increased by

1000 Vtana m
7

(g = 9.8 m/sec?)

Solution:
Let u m/sec be the velocity of projection.
The horizontal range.

- ZUZSinra Cos a
g

R = 1000 (given ) (1)

Also R = —3— (ucos a). (u Sin a)

= 2 (horizontal velocity) x (initial vertical velocity)
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When the bullet is fired from a moving car, the horizontal velocity is
increased and the increases.

= 36 km/h = w = 10m/sec.

60 x 60
Now horizontal velocity = u Cos a + 10
As there is no change in the vertical motion, new initial vertical velocity = u Sin a.

Hence in the second case, horizontal range

R' = —3— (ucos a+ 10) (u Sina ) using the form given in (2)

2u? Sina Cos a
d

R'— R° =§ (U cos o+ 10) (u Sino.) -

_ 20u Sin o
g

(3)

From (1)
U2 = gx 1000 - 500g
2sina Cos a sina Cos a

Putting this value of u in (3)

R'-R=

20 Sin a y 500g
g sina Cos a

20x10xftana x5

Jo

200,/tan o V5 _ 200+tana v5 x 410
Jo8 J98

200 Jtana \/gx\/gx\/f
72

1000 ,/tan o m
7 .

and this is the increase in the range.
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Example:
A body is projected with the same velocity at two different angles cover the

same horizontal range R. If T, and T, be the two times of flight prove that
1
R = —2~ gT1 Tz.

Solution:
We know that, with a given velocity of projection, w,

We can obtain a given horizontal range R, with two angles of projection,
aq,o0or 90 - a4, For the two paths, the times of flight are given by,

T, = 2u St_{\ocf,
9
and T, = 2u Sin(90 —,a!_) = 2u Sinay ,
g g
. 191_1 T, = 3_9. 2u Sina, . 2u Smal
2 2 g g
- u? Sin2 o,
g
= R.
R= oy T
. 2 L1 b 2.
Exercise:-

1) If R be the horizontal range of a projectile and h its greatest height, prove that
the maximum horizontal range with the same velocity of Projection in
16h? + R?

gh

2) Prove that in any trajectory over a horizontal plane, the horizontal range is a
maximum when it is equal to four times the greatest height.

3) A shot projected with velocity V at an elevation of 45° reaches a point P on
the horizontal plane through the point of projection. Show that in order to hit
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a mark is h feet above P, if the shot is projected at the same elevation, the

2
velocity of projection must be increased to M 1
(v? - gh)?

6.4 Range on a inclined plane:
6.4,1 From a point on a plane, which is inclined at an angle B with the
horizon a particle is projected with a velocity u at an angle o with the horizontal

in a plane passing through'the, normal to the inclined plane and the line of
greatest slope. To find the range on the inclined plane (U.Qj.

Salution:
Let P be the point of projection and the particle strike the inclined plane at
Q. Then PQ in the range on the inclined plane,

<

Let PQ =r. Taking P as the origin and the horizontal and the vertical
through P as the axes of X and Y respectively. The equation to the path is,

gx?

Y =x tana — 5 3
2u-Cos” o

(1)

" Draw QN 1" to the horizontal plane through P. The coordinates of Q are
(r Cosf3, r Sin B).

Substituting these in (1)

gr? Cos*p
2u®Cos? o

rSing =r Casf . tana —

Multiplying by 2u®’Cos®a and canceling r throughout,
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We have,

2u’Cos? o S inf3 =2u®CosP Sin o Cos a — grCos?3.

¢ _ 2u® Cosp Sin a Cos a — 2u®Cos’a sinp
g Cos? 3

_ 2u? Cosa (Sina Cosp — Cosa Sinp)
g Cos?p

2u? Cosa Sin(a - B)

(ile) r = 3 Cos?h

Aliter;
We can study separately the motion of the particle along the inclined plag\e

and the motion 1"to the plane. The initial velocity u can be resolved into two
components i) u Cos (a-3) along PQ, the inclined plane. And

ii) uSin{a-f),L" to the inclined plane.

The acceleration g can be resolved into two components i) g Cosp L' to
the inclined plane in the downward direction and ii) g sin B along the inclined
" plane towards P. This resolution is shown in the figure.

Let T be the time which the particle takes to go from P to Q.

After time T, the particle is again on the inclined plane and so, during time
T, the distance traveled L' to the inclined plane is = O.

- O =u Sin{a - B) T——;-g cosp. T2

2u Sin(a. - B)
g Cosp

(ie) T=

This is the time of flight on the inclined plane. During this time, the
horizontal velocity remains constant and u Cos ao. So, horizontal distance
described intime T = PN =u Cos aT.
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But PN = PQ Cos 3.

L PQ.Cos B =ucCos aT.

u Cos o
o) pQ = UCOSC
(ie) Cosf3
_uCosa 2uSin(a-p)
Cosp = gCosp
pq = 2u? Sin(a — B) Cosa

g Cos?p

6.4.2 To find the greatest distance of the projectile from the inclined plane and
show that it is attained in half the total time of flight: ‘

Let us consider the motion 1" to the inclined plane. As explained in range
on an inclined plane. The initial velocity in this direction is u sin (o —) and this is

subject to an acceleration g Cos f3 is the same direction but acting downwards.

Let Y be the distance traveled by the particle in this direction in time T.

Then
Y=uSin(a—B).T-%gCosB.t2 (1)

Differentiating with respect to t.

%%zusin(u—[}) — g Cos .t
2
and (:St/z = --g Cos 3 =negative.

So y is maximum. when %{— = 0.

(ie) when u sin (aa-f3) —g Cos 3.t =O
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uSin(a-8) (3)

(ie) t = gCos b

Substituting (3) in (1) maximum value of A

. 2 @in2 _
uSin(a-B) -—1—gCos g Y ?In ((21 B)
gCos f3 2 g Cos“ 3

usin (a-p0).

_ u’Sin® (a-B) u?®Sin®(a-p)
g° Cos? 3 2g Cos? B

2 2
_ u” Sin (S-B) (4)
2gCos” 3

(4) in the greatest distance of the projectile from the inclined plane. Also,
from (3), time to this greatest distance

uSin(a-p)

and this is clearly half of the time of flight.
gCos f3

Aliter:
When the particle is at the greatest distance from the inclined plane, it will

have all its velocity only parallel to the inclined plane. Hence the component
velocity L' to the inclined plane is zero. So, if S is the greatest distance

We have O = [u Sin (a-B)]* 2g CosB.S
u? Sin? (a.-B)

(ie) S = 2g Cos3

Also if t is the corresponding time,

O =usin (a-B) - g Cospt

uSin(a-p)

(Or) t= g Cos B

6.4.3 To determine when the range on the inclined plane is maximum, given the
magnitude u of the velocity of projection:-
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From the Range of inclined plane

The range R on the inclined plane is given by

2u? Cosa Sin{a - B)

R =
g Cos?p

2
=§_é‘gs_25[sm (2 a—B) — Sin B] (1)

Now u and (3 are given.
Z

The quantity out side the bracket, ——--u—?_— is constant.
g Cos“p

So R is maximum, when the value of the expression inside the bracket is a
maximum

(ie) when Sin (2a -B) is greatest.

(ie) When 2o —B= -g-

(ie) o = —+ = for maximum range.

N

T
4
When o takes this value, a-B= (20 -B) -a

= 90°- « (2)
Referring to fig.

a-=B= /TPN —/QPN =/4'PQ

and 90°- o = Z_/Y_PT

Hence from (2),/FPQ =APT.

(ie) PT, the direction of projection for maximum range bisects the angle
between the vertical and the inclined plane.
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From (1), the value of maximum range

u? u?

) g Cos?p (1-Sin p)= g (1+ Sinp)

6.4.5 To show that, for a given initial velocity of projection, there are in general,
two possible directions of projection so as to obtain a given range on an inclined

plane:

Let u be the velocity of projection of a particle and «the necessary angle
of projection so as to get a given range k on an inclined plane of inclined plane of
inclination 3 to the horizontal.

Then Kk = 2u? Sin(« — B) Cosa | u? (Sin(2a—[2))—8inB (1)
g Cos’f3 g Cos*p
From (1) Sin (2 —B) = 95%’339+smﬁ (2)
u

Since k, u, B are given the R.H.S of (2) is a known positive quantity. So we

: o k Cos? :
can determine an acute angel O whose since is exactly to g——S:S—E + Sinp.

Then (2) becomes, Sin (2a-3) = Sin 6 (3)

(ie)2 a—-p3 = 6 or a=92—+—2 (4)

(ife) o = 90° — %+ (5)

N

From (4) and (5)

We find that there are two value of a and so two directions of projection, each
giving the same range k.

Let «; and o, these two values of a.

Then a1 = —+—= and o, = 900-9__4_&
2 2

N|D
N |
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NOW( 45°+E—)-—a1= 45°+E-—-—_9_—E = 450—.9_
2 2 2 2 2
° B o B 8_ ... 0
and ~—( 45° + =)= 90° — — P __45° — D= 45°— —
a2 = ( 2) 2+2 5 >
e (4504-%)—(11 :(12 -(450-{-—[32) (6)

But 45°+% is the angle of projection for maximum range on the inclined plane.

So (6) shows that the two directions o4 and o, are equally inclined to the
direction of maximum range.

Note:

The direction of projection is expressed as, an elevation to the horizontal.
We can also take the elevation relative to the inclined plane. In problems, It
should be carefully found out which of these angles is given.

6.4.5 Motion on the surface of smooth inclined plane:

Let a particle be projected with velocity u on the surface of a smooth
inclined plane ABCD of slope 3 is a direction inclined at an angle ato the line of

greatest slope of the plane. The acceleration due to gravity can be resolved into
two components, one, g SinPis the direction of the line of greatest slope and the
other g Cosp L' to the inclined plane. But this component g Cos B is opposed by
an equal normal reaction of the inclined plane and So, the particle moves with an
acceleration g Sinp parallel to the line of greatest slope.

D C

Example:1

If u and v be the oblique components of the initial velocity in the vertical
direction and is the direction of the line of greatest slope, show that the range on

the inclined plane is 2%;—/.
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Solution:

P is the point of projection and PX, PY are the horizontal and the vertical
through P.PQ is the line of greatest slope of the inclined plane, with inclination §.

PT is the initial direction of projection at an angle o to the horizontal

Let PT = the initial velocity u on some scale.

From T, draw TL| PY and TM| PQ as show is the figure.

The PM(=TL) and PL (=MT) are the oblique components of the initial
velocity u in the vertical direction and is the direction of the line of greatest slope

respectively.
From A PTL

We have

TL _ PL _ PT
Sin/TPL _ Sin/PTL _ Sin/PLT

[TPL =/TPX =/LPX = o —f

/PTL = alternateMPT = 90°- o
/[PLT = 180° - ({PTL +TPL )

= 180° - 90°- a+o-B) = 90°+ B
Also PT =u. TL =U and PL = V.

Substituting in (1)

212

(1)



We have

u v
Sin (o —p) Sin (90°—o)  Sin (30° +p)

(ie) R AR
Sin{c.~B) Cosa CosB
LU= uSin (OL-—B)& V = u Cosa

Cosp3 Cosp3

Uv _ 2uSin (o —B) x - uCosa
g  gCosp Cosp

2

_ 2u®Sin (o - B)Cosa
g Cos*p

Example: 2 (U.Q)

Show that, for a given velocity of projection the maximum range down an
inclined plane of inclination a bears to the maximum range up the inclined plane
the ratio—-————1 h ana .
1-Sina
Solution:-

Let u be the given velobcity of projection and 0 the inclihation of the
direction of projection with the plane.

The velocity u can be resolved into two components u Cos©@along the
upward inclined plane and u Cos0 1"to the inclined plane and down wards.
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Consider the motion perpendicular to the inclined plane. Le T be the time
of flight. Distance traveled L"to the inclined plane in Time T is = O.

. O =u Sin e.T-ngCos a. T?

2U Sind

ie) T = )
(1e) g Cosa

During this time, the distance traveled along the plane

= u Sin e.T-%gCos a.T?

u Cos 6. M—lgsma.
gCosa 2 g

4u? _ Sin?6
2 Cos?u

2u? Sin® Coso ) 2u? Sina. Sin?%6

g? Cos’a g Cos’a
2 .
= _2_u__S_|2r1g (CosaCos 0 - Sina Sin 0)
g Cos“a
2 . R
= 3L§_|2rﬁ Cos (6+a)
g Cos“a
u2
= 2Cos (60+a) Sin 6
gCos” a
u2

= T [Sin (20+a ) — Sin a )]

This is the range R, up the inclined plane.
R, is maximum, when Sin (20+a ) = 1

~. Maximum range up the plane

u2 u2
=Y (1-Sin o) = ,
g Cos? a g (1+ Sina)

214



When the particle is projected down the plane from B at the same angle to
2u Sin®

the plane, the time of flight has the same value
g Cosa

But the component of

the u Cos 6 downwards and the component acceleration g Sin o also downwards.
Hence range down the plane

Rz = distance traveled along the plane in time T

= u Cos 9.T+%g$in o. T?

2 .
= _2_9_..5_'2_9 (Cosa Cos 8+ Sina Sin 08)
g Cos“a

2 .
= 24 S0 cos (0-a)
g Cos“a

u2

g Cos? a

[Sin (26-a) - Sin «]

R2 is maximum, when sin (26-a) =1

So maximum range down the plane

u? u?
= —— (1+ Sin a) = _
g Cos? a ( ) g (1-Sina)
_ Max. range down the plane _ u? g(1+ Sina)
" Max. range up the plane g (1-Sina)’ u?
=1+SMQ
1- Sin o

Note:
The range R, down the plane can be get from the range R, up the plane by
changing ainto - a
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Example: 3 (U.Q) _
A particle is projected at an angle awith a velocity u and it strikes up an
inclined plane of inclination B at right angles to the plane. Prove that

i) Cot B =2 tan (x-B)
i) Cot B =tan o- 2tanf3.

If the plane is struck horizontally, show that tana = 2tan 3.

Solution:
The initial velocity and acceleration are split into components along the

plane and L' to the plane as explained we have shown that the time of

2uSin (o — B) (1)

time of flightin T =
g Cosp

0 UIS M)

P u Cos «a N

Since the particle strikes the inclined plane normally its velocity parallel to
the inclined normally, its velocity parallel to the inclined plane at the end of the
time Tis = O

(ie)O=ucos (@a-B)—gSinp T

u cos(a - B) (2)

orT = -
g Sinf

Equating (1) and (2)

We have
2uSin (o —p) _ uCos (o —p)
g Cosp3 g Sinf
(ie) Cotp = 2 tan (a -p) (i)
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(u) Cot B = 2(tano - tanp)
1+ tana tanf

Cross multiplying

Cotp +tana=2tan a— 2 tanp (or)
Cotp =tana- 2 tanB (ii)

If the plane is stuck horizontally, the vertical velocity of the projectile at the
end of time T is = O,

Initial vertical velocity = u sina

and acceleration in this direction = g downwards
Vertical velocity intime T = u sin a -gT

u Sina
g

~usina-gT=0orT=

(3)
Equating (1) and (3)
We have

2uSin (@ -B) _ uSina
g Cosf g

or 2 Sin(a -f) = Sin o Cosp
(ie) 2 (Sina CosP - Cos a SinB) = Sin o CosP
(ie) Sin o CosP =2 Cos a Sinp ortan o =2 tanp.

Exercise
1) A particle is projected from the top of a plane inclined at 60° to the
horizontal. If the direction of projection is i) 30° above the horizontal and

i) 30° below the horizontal, Show that the range down the plane in the
first case is doubles that in the second.

2) A particle projected with velocity u strikes at right angles a plane through
the point of projection inclined at an angle 8 to the horizon. Show that the

height of the point struck above the horizontal plane through the point of

2 Q2
247 SN P 4ng that the time of flight in — 29
g (I+3Sin“pB) g1+ 3 Sin%B

projection is
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UNIT - VII
IMPACT

7.1 Introduction : )

A solid body has a definite shape. When a force in applied at any point of it
tending to change its shape, in general, all solids which we meet with in nature
yield slightly and get more or less deformed near the point. Immediately, internal
forces come into play tending to restore the body to its original form and as soon
as the disturbing force in removed, the body regains its original shape. The
internal force which acts, when a body tends to recover its original shape after a
deformation or compression is called the force of restitution. Also the property
which causes a solid body to recover its shape is called elasticity. If a body does
not tend to recover its shape, it will cause no force of restitution and such a body
is said to be inelastic.

Suppose a ball is dropped from any height h upon a hard floor. It strikes
the floor with a velocity u= /2gh and makes an impact. Soon it rebounds and"

moves vértically upwards with a velocity V. The height hy; to which it rebounds is
2

given by h, = —\2/—9— (ie ) V = ,/2gh, .

Generally we find that h; < h. So v < u. As soon as the ball strikes, the
floor, the impulsive action of the floor rapidly stops the downward velocity of the
ball and at the same time causes a temporary compression near the point of
contact. Due to the elastic property of the solid, the ball tends to regain its original
from quickly. It presses the floor and receives an equal and opposite impuisive
reaction from it and with a new upward velocity, it rebounds.

Now, bodies made of various materials are elastic in different degrees. If
balls of different materials (like, iron, glass, lead, etc ) are dropped from the same
height upon floors of different constitution (like wooden floor, marble floor etc) it
will be found that the heights to which they rebound after striking the floor will be
different. In all these cases, the velocity of the ball on reaching the floor is the
same, as it is dropped from the same height. But the velocity of the ball after
impact is ot the same in each case as the height to which it rebounds is
different. Thus due to the elastic property of solid bodies, a change in velocity
takes place when they strike each other.
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If v = u, the velocity with which the ball leaves the floor is the same as that
with which it strikes it. In this case, the ball is said to be elastic. If v = 0, the ball
does not rebound at ali. It is said to be inelastic. More generally, when a body
completely regains is shape after a collision, it is said to be perfectly elastic. If it

does not come to its original shape, it is said to be perfectly inelastic. These two
cases of bodies are only ideal.

In this chapter, we shall study some simple cases of the impact of elastic
bodies. We shall consider the cases of particles in collision with particles, or
planes and of sphere in collision with planes or spheres. In all cases, we consider
the impinging bodies to be smooth, so that the only mutual action they can have
on each other will be along the common normal at the point where they touch.

7.1.1 Definitions :

Two bodies are said to impinge directly when the direction of motion of
each before impact is along the common normal at the point where they touch.

They are said to be impinge obliquely, if the direction of motion of either

body or both or both is not along the common normal at the point where they
touch.

The common normal at the point of contact is called the line of impact.
Thus in the case of two spheres, the line of impact in the line joining their centres.

7.1.2 Fundamental Laws of Impact :

The following three general principles hold good when two smooth moving
bodies make an impact.

1.Newton‘s Experimental Law :

Newton studies the rebound of elastic bodies experimentaily and the result
of his experiments is embodies in the following law :-

When two bodies impinge directly, their relative velocity after, impact bears
a constant ratio to their relative velocity before impact, resolved in the same
direction and is of opposite sign.

The constant ratio depends on the material of which the bodies are made
and is independent of their masses. It is generally denoted by e, and is called the

coefficient (or modulus ) of elasticity (or restitution or resilience).

This law can be put symbolically as follows :
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If u, , u, are the components of the velocity of two impinging bodies along
their common normal before impact and vy , v, their components velocities along
the same line after impact, all components being measured in the same direction
and e is the coefficient of restitution.

Then =—e.

The quantity e, which is a positive number, is never greater than unity. It
lies between 0 and 1. Its value differs widely for different bodies; for two glass
balls it is about 0.9 ; for ivory 0.8; while for lead it is 0.2. For two balls, one of lead
and the other of iron, its value is about 0.13. Thus, when one or both the bodies
are altered, e becomes different but so long as both the bodies remain the same,
e is constant. Bodies for which e = 0 are said to be inelastic while for perfectly
elastic bodies, e = 1. Probably, there are no bodies in nature coming strictly under
either of these headings. Newton’'s law is purely empirical and is true only
approximately, like many experimental laws.

Motion of two smooth bodies L' to the line of Impact:

When two smooth bodies impinge, the only force between them at the time
of impact in the mutual reaction which acts along the common normal. There is no
force acting along the common tangent and hence there is no change of velocity

in that direction. Hence the velocity of either body resolved in a direction L' to the
line of impact is not attached by impact.

7.1.3 Priniciple of conservation of momentum :

We can apply the law of conservation of momenturn in the case of two
impinging bodies. The algebric sum of the momenta of the impinging bodies after
impact in equal to the algebraic sum of their momenta before impact all momenta,
being measured along the common normal.

The above three principles are sufficient to study the changes in the
motion of two impinging elastic bodies.

We shall now proceed to discuss particular cases.
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Impact on a fixed plane

7.2 Impact of a smooth sphere on a fixed smooth plane :
A smooth sphere, or particle, whose mass is m and whose coefficient of

restitution is e, impinges obliquely on a smooth fixed plane; to find its velocity and
direction of motion after impact.

N
™\
71 9“605 E
Vv
D
6
C 7
U Sin K
A _/P B

Let AB the plane and P the point at which the sphere strikes it. The
common normal at P is the vertical line at P passing through the centre of the
sphere. Let it be PC. This is the line of impact. Let the velocity of the sphere
before impact be u at an angle o with CP and v its velocity after impact at an
angle 6 with CN as shown in the figure. Since the plane and the sphere are
smooth, the only force acting impact is the implusive reaction and this is along the
common normal. There is no force parallel to the plane during impact. Hence the
velocity of the sphere resolved in a direction parallel to the plane is unaitered by
the impact.

Hence V Sin 6 = u Sin a (1)
By Newton's experimental law, the relative velocity of the sphere along the
common normal after impact in (-e) times its relative velocity along the common

normal before impact, Hence

vcos 6 —0 = —e(—ucosa —0)

1

(ie) vcos 8 = eucos o (2)

Squaring (1) and (2 ) and adding
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We have

Vi=u?(Sin? a +e?cos? a )

(ie) v = u 4/Sina + e2 Cos? o (3)
Dividing (2) by (1)
We have Cot 6 = e Cot « (4)
Hence (3) and (4)
give the velocity and direction of motion after impact

Corrollary : 1
If e = 1, we find that from (3), v=u and from (4). 0 = «,

Hence if a perfectly elastic sphere impinges on a fixed smooth plane, its
velocity is not altered by impact and the angle of reflection is equal to the angle of
incidence.

Corrollary: 2
If e =0, then from (2)

V cos 6 =0 and
From (3), V=usin a
Hgnce Cos =0.
(ie) 6= 90°
‘ Hence the inelastic sphere slides along the plane with velocity u sina .

Corollary: 3
If the impact is direct, we have o= 0. Then® = 0 and from (3),

V =eu

Hence if an elastic sphere strikes a plane normally with velocity u, it will
rebound in the same direction with velocity eu.
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Corollary: 4

The impulse of the pressure on the plane is equal and opposite to the
impulse of the pressure on the sphere. The impulse | on the sphere is measured
by the change in momentum of the sphere along the common normal.
| =mV Cos0 — (mu Cos a) =m(rCos 6 +uCosa)

=m(euCos a +uCos a) =mu Cos a(1 +e)

Corollary: 5
Loss of kinetic energy due to the impact

T muwz— Lmv

2

= — mu? - -;—mu2 (Sina + 2 Cos?a )
= — mu? (1 -Sin? o —e®Cos® o)

= — mu? (Cos? a— e? Cos?a)

= — (1 -¢e%) mu?Cos® a.

If the sphere is perfectly elastic.

e = 1 and loss of kinetic energy is zero.

Example: 1 (U.Q)
A smooth circuiar table is surrounded by a smooth rim whose interior
surface is vertical. Show that a ball projected along the table from a point A on

the rim in a direction making an angle a with the radius through A will return to
the point of projection after two impacts if

tan o = %/
vi+e+e?
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Prove along that, when the ball returns to the point of projection, its
velocity is to its original velocity as e®® : 1 '

Solution:-

Let the ball starting from A return to it after two reflections at B and C. At
B, the point of the first impact. the common normal is the radius OB and at C, the
point of the second impact, the common normal is OC.

Let /JOBC = B and/QCA = v.
Then/OCB = B and /OAC = v

Considering the impact at B, and applying equation (4). Of Impact of a
smooth sphere.

We have Cot 3 = e Cot «

(ie) tan 3 = % tan « (1)

Similarly,
Considering the impact at C,

Cot y =e Cot 3.

tan y = 21; tan B = —ejz— tan o (2

Now, In AABC, [A +/B+[C =20 +2B+2y =180°
(ie) .o+ B+y =90%°0r aa=90°— (B+7y)

~.tan a=tan (90°— B+7y ) = Cot (B+7v)

224



_ 1 _1-tanftany
tan(B + v) tanp + tany

(ie) tan o (tanP+tany) =1 —tanp tany.

1
(ie) tan a (1 tana+—1—tana) —1——1-tanoa~7tanoc

e e e e
ie) tan?a |4 _1_]= tan® o sing (1) & (2)
e e e’

(ie) tan® «o (é —1?+g1~5-] =1

e’ =1

2
(or) tan?a (1+e_+e}

e3

(ie) tan*o = —— (3)
1+e+e

(or)

al3/2)

vi+e+e?

tan a =

Let u be the velocity of projection from A, V be the velocity of the ball after
the first impact at B. and W be the velocity after the second impact at C.

Applying equation (3)

V? = u? (Sinfa + e® Cos?a) and

W2 = v? (Sin?B+e? Cos?B)

W? = u? (Sina + e Cos?a ) (Sin®B+e?Cos?p)

= u® Cos®a (tan® a + e?) . Cos?B (tan?B+e?)
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u?(tan?® o + e?) (tan? p+e?)
(1+tan? o) (1+tan? B)

i

u?(tan® o +e?) (~j-2—tan2 o +e?)y
= Using (1)

M+tan®a) (1+ —1—2tan2 o)
e

u?(tan® a +e?) (tana +e*)
(1+tana) (e? +tan® a)

u®(tan?o +e?)
(1+tan® o)

4
e
u? > + et
1+e+e

= Substituting from(2)

e4
T —7
[ 1+e+e }

u(e® +e? +e° +ef)
1+e+e? +e’

= 2 e?

W=u.e(%)orW:u=e(%):1

Example: 2 (U.Q)
A particle falls from a height h upon a fixed horizontal plane; it e be the
coefficient of the restitution. Show that the whole distance described before the

2
particle has finished rebounding is h[::+ez]. Show along that the whole time
-e

. 1+e
taken is 2h/
1—-e A

Solution:
Let the velocity of the particle on first hitting the plane. Then u?=2gh.

After the first impact, the particle rebounds with a velocity eu and ascends
a certain height, retraces its path and makes a second impact with the plane. With
velocity eu. Aftervthe second impact, it rebounds with a velocity e?u and the
process is repeated a number of times. The velocities after the thirds, fourth etc
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impacts are e®u, e*u etc. The height ascended after the first impact with velocity
y = (velocity)®  e®u®

29 29

The height ascended after the second impact with velocity e’u = e*u®/2g and so
on.

. Total distance traveled before the particle stops rebounding

2 .2 4, .2 6, .2
e u e u e U
=h+2( + + +nn. ]

29 29 29

2,,2
=h + 2eu (1+e?+e® +......... to o)
29
2. .2 2
~h+ 8V 1 _h e“.2gh 1
g 1-e? h 1-e?

2e? 1+e?
= 1+ =h.
( 1—e2) [1—e2)

Considering the motion before the first impact we have the initial velocity = 0,
acceleration = g, final velocity = u and so if t is the time taken,

u=0 + gt.
Lt Y velocity
g g

Time interval between the first and second impact is
= 2 x time taken for gravity to reduce the velocity eu to O.
= 2. velocity/g = 2eul/g.

Similarly time interval between the second and third impacts = 2e®u/g and so on.

So total time taken

eu e?u e’u o
+ + +..ee to infinity
g g g

=Y,
g
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1 u 2e
=E+—zﬂ(1+e+e2+ ....... toa)=£+zeu. =—-[1+——]
g d g g9 1-e g{ 1-e
_u (1+e)_ Zgh(1+eJ
g 1-e g \1-e

"1+e) |2h

Total time = L1—eJ S :

Example: 3

A particle of elasticity ‘e’ is dropped from a vertical height '‘a’ upon the
highest point of a plane which is of length b and is inclined at an angle o to the
horizon and descends to the bottom in three jumps. Show that

b = 4ae(1+e) (1+e?) (1+e+e?) Sin «
Solution:

The downwards vertical velocity at A before string = ,/293 and ‘et this be =

This can be resolved into

Two components as u cosa L' to the inclined plane and u sin o parallel to
the plane. At the impact at A, there is no force parallel to the plane and there is
only the impulsive reaction normal to the plane. So the component u sin o is not
affected by impact while the component u cos o is reversed as eu Cosa. Hence
the particle describes a parabola and strikes the plane at B with a velocity

eu Cosa L"to it after impact this is reversed as e’u Cosa . The particle strikes the
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inclined plane at C with a velocity e’u Cosa normal to it, which is reversed as e’u
Cosa.

Let t;, t,, t; be the times taken to describe the paths AB, BC and CD
respectively.

Consider the motion, ."to the inclined plane. Distance traveled is that
direction in the time t; = 0. Applying the formula “S = ut+ 2 ft2”

We have

O=euCos a.t,—¥%gcos a.t?

gCos a g

{ = 2euCosa _ 2eu
1 = .

3
Similarly, t; = —2-?- and t; = 2eu :

Hence the total time taken from Ato D

2e3uy

=ty + totHty = (1+e+e?)

In this period, the particle has described a distance b down the inclined
plane, starting with an initial velocity u Sin o and acted on by an acceleration
g sin o.

Sb=uSin aty +t, +t3) + %g Sin a (ti+t+t3)?

2eu 4e°y?

(ie) b = u Sin a.———(1+e+e2)+—;—gSin . 2

x (1+e+e?)

2eu?Sina 2e?u?Sina

(1+e+e?)+ (1+e +e?)?

2eu’Sina 2e?u?Sina

1

(1+e+e?)+ (1+e+e?)?
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2 .
= 28UT Sina oL e?y (14 e(1+e+e?)]

g

_ 2e 2ga. Sina (1+e+e2) (1+e) (1+e?)

g

b = 4ae Sin a (1+e) (1+e?) (1+e+e?)

Example: 4(U.Q)
A particle is projected from a point on an inclined plane and at the r"

impact, it strikes the plane L'and at the n" impact is at the point of projection.
Show that e"—2e"+1=0.

Solution:
Let o be the inclination of the plane to the horizontal and u the velocity of

projection at an angle 0 to the inclined plane. This velocity can be resolved into

two components, u Cos0 along the upward inclined plane and u Sind 1L"to the
inclined plane. The acceleration g can be resolved into two components, gSina

along the downward inclined plane and g Cosa 1" to the inclined plane and
downwards.

Consider motion L"to the plane.
Let t, be the time upto the first impact Distance traveled 1'to the plane in

time t, is O. (ie) O =u Sin 0.ty — % g Cos oc.tf

- _2uSinb
"1 gCos®

The particle strikes the plane the first time with a velocity u Sin 6 L'to it

and after this impact this component is reversed as eu Sin 6. Hence time interval
between the first and second impacts.

= 2eu Sin 6/g Cos «.

The particle strikes the plane a second time with a velocity eu Sin 6 L"to it and
after the second impact, this component is reversed as e’u Sin 9.
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Hence time interval between the second and third impacts = 2e®u Sin e/g Cos «
and so on. - )

Time till the r'™™ impact

_2uSind@  2euSin6  2e?uSind
= + -+ S TP tor terms.

g Cosa gCos u gCos o

= g_l:lf_l_f_\_ii (l+e+e?+...... tor terms)
g Cosa

_ 2uSine (1-¢' (1)
gCosa |{ 1-e

At the end of this time, the particle strikes the plane 1'. So the velocity
parallel to the plane at that instant = 0

Hence u Cos 06— g Sin «. 2uSinb 1-e _,
gCosa 1-e
(ie) Cos 6 Cos a(1—e) =2 Sin a Sin 6(1 —e") (2)

Putting r = n is (1)

2uSine  1-e"

Time till the n impact = .
g Cosa 1—-e

Now, it is at the point of projection.

Hence the distance traveled parallel to the plane upto this time = 0.

(o) uCos o 2uSiN0 1-e" 1 o f(2usine 1-e")" _
" gCosa  1-e 2 gCosa 1-e ‘
(ie) Cos 0. Cos a(1—e)=Sin a Sin 8(1-¢e") (3)

Dividing (2) by (3)
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We have

_ 2(1-¢")
1-e"

(ie)2 -2e"=1—¢"
ore"-2e"+1=0
Example :5

A ball is thrown from a point on a smooth horizontal ground with a speed V
at an angle o to the horizon. If e be the coefficient of restitution, Show that the

total time for which the ball rebounds on the ground is %\%gl—%%and the horizontal
2 .

distance traveled by it is V” Sin 2a
g(1-e)

Solution:
The initial horizontal and vertical components of the velocity are V Cosa

and V Sin a. The particle describes a parabola and strikes the horizontal plane
normally with velocity u Sin o .

Due to impact, the horizontal velocity is not affected wh'ile the vertical
component is reversed as e' Sin o.

Similarly the vertical components of the velocity after the second, third etc.,
impacts are e’V Sin «, e’ V Sin a etc.

Let t4, t5, t; etc be the time for the successive trajectories. t; = 2V Sina
g
V Si 2y/ Si '
t; = 2eV Sina gsma 3 = 2e VgSma and so on. So total time that elapses before the

party stops rebounding.

- 2VSina _ 2eVSina  2e’Sina

232



_2VSind 1 2VSina
g 1-e g(1-e)

Through out this time, the horizontal component V Cosa is not affected.
So horizontal distance described during this time.

=V Cos o 2V Sina
g(1-e)
- V2 Sin 2a
g(1-e)

Example: 6
An elastic sphere is projected from a given point O with given velocity V at
an inclination o to the horizontal and after hitting a smooth vertical wall at a

2 .
distance d from O returns to O. Prove that d= v ng 20 . 1ee where e is the
+

coefficient of restitution.

Solution:
Let the particle strike the wall at A. From O to A, the partucle describes a
parabola under gravity with constant horizontal velocity V Cosa. Let t; be the

time for this VCos a.t,=d (1)
//’/ ev CosK\\ V Cos K
e G
e A
/
/
/
/
| A
l
|
\
\
\
\JNM\K V CosK
0 a’ B

At the impact at A there is no force parallel to the wall. The component \

Cos o being Lto the wall is reveised as ev Cosa. The particle will describe
another parabola with constant horizontal velocity ev Cos a and return to O. Let t,
be the time for this return journey. Thenev Cos o . t2=d (2)
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But the vertical motion is not affected by impact and throughout the interval
t, + t, it is subject to retardation by g only.

As the particle returns to O, vertical distance described in time t; + t;=0

S O=VSin a(ty +t) — —;- g (t; + t,)? or

2V zin a (3)

ort; +t; =

Substituting for t4, t; from (1) and (2) is (3).

We have

d d 2V Sina

T ——— + ———
V Cos a eV Cosa g .

. d(e+1) 2v Sin a
(ie) — =
ev Cos o g

2 ev? Sin a Cosa

or d=
g(l+e)
d = V2 Sin 2a e
o g  1+e
Exercise

1) a) An elastic ball of mass m falls from a height h on a fixed horizontal plane
and rebounds show that the loss of K.E. by the impact is mgh(1 — e?).
b) A particle falls from a height h is time t upon a fixed horizontal plane. Prove
that it repounds and reaches a maximum height e’h is time etc.

2) A Particle dropped through a vertical distance of 20 metres, Strikes the
highest point of a plane which is of length 12m and is inclined at 30° to the
horizon. If the particle descends to the bottom is three jumps. Show that
e(1+e) (1+e?) (1+e+e?) = 0.3. ‘
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IMPULSES
7.3 Impulsive Forces

7.3.1 Impulse:
The term impulse of force is defined as follows:

i) The impulse of a constant F during a time interval T is defined to be
the product FT.

Let f be the constant acceleration produced on a particle of mass on which
F acts and u, v be respectively the velocity at the beginning and end of the period.
T. Then

V-U=f Tand F = mf
Hence the impulse | = FT =mfT =m(v—-u)
= Change of momentum produced.

3) The impulse of a variable force F during a time interval T is defined to be the
time integral of the force for the interval.

T
(ie) Impulse | = LF dt .

This is got as follows

During a short interval of time At, the force F can be taken to be constant and
hence elementary impulse in this interval = F. At.

Hence the impulse during the whole time T for which the force F acts in the
sum of such impulises and

T T
= LT tzo FAt = 0jF.dt
Since F is variable. F=m %‘{-

;
So impulse = Im.%\{-dt =[mv]i_, = mv -mu
o
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Where u and v are the velocities at the beginning and end of ;the interval
and hence this is also equal to the change of momentum produced. Thus whether
a force is a variable or constant, its impulse = Change of momentum produced.

7.32 Impulsive Force:
The change of momentum produced by a variable force P acting on a body

iz
of mass on fromtimet=t;tot=t; is jP.dt.

t

Suppose P is very large but the time interval t, — t, during which it acts is

very small. It is quite possible that the above definite integral tends to a finite
limit. Such a force is called an impulsive force. This an impulsive force is one of
large magnitude which acts for a very shot period of time and yet produces a finite
change of momentum.

Theoretically an impulsive force should be infinitely great and the time
during. Which it acts must be very small. This of course is never realised is
practice, but approximate example are (1) the force produced by a hammer. Blow
(2) the impact of a bullet on a target in such cases the measurement of the
magnitude of the actual force is impracticable but the change in momentum
produced may be easily measured, Thus an impulsive force is measured by its
impulse.

(ie) The change of momentum it produces.

Since an impulsive force acts only for short time on a particle, during this
time the distance traveled by a particle having a finite velocity is negligible. Also
suppose a body is acted upon by a impulsive and finite torces simultaneously.
Since the time of action of the impulsive forces is very short, during this time the
effect of the ordinary finite forces can be neglected.

7.34 Impact of two bodies:

If two bodies A and B impinge on each other then we know, by Newton’s
third law that the action of A on B is equal and opposite to that of B on A, during
the period in which they are in contact, and further these forces of action and
reaction act along the common normal to the surfaces which are in contact.
Hence the impulse of the force exerted by A on is equal and opposite to that of
the forces exerted by B on A. It follows that the change is momentum of A is
equal and opposite to the change is momentum of B, the moments being
measured along the common normal.
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Hence taken together, the total change of moments of A and B is zero. In
other words the sum of the momenta of the bodies, measured along the common
normal is not altered by impact. This is called the principle of conservation of
Linear Momentum which is used is dealing with problems in which is used is
dealing with problems in which impacts or impulsive forces occur.

Loss of Kinetic Energy is Impact:

Let a mass m, moving with velocity v, Strike a mass M, which is free to
move is the direction of m’'s motion. After impact. Let the two move together as a
single body with velocity V. As there is no loss of momentum due to the impact.

(m+ M)V =MV (1)
The kinetic energy before impact = —;— mV?
The K.E after impact = yz (m + M)V?2
'l 2y 72
= = (m+my . MV o= lm( m )VZ
2 (m + M) 2 m+ M
Since - is < 1, the K.E after impact is clearly less than 1 mV? which in
m+M 2

the K.E before impact. Hence there is a loss of kinetic energy due to impact and

hence the principle of energy must never be used in problem. Where impulsive
forces occur.

7.3.5 Motion of a Shot and gun:

When a gun fired, Power is immediate coverted into a gas at a very high
pressure and this gas in trying to expand, forces the shot forwards. An equal and
opposite reaction is exerted on the gun. The forward momentum generated in the
shot at the instant when it leaves the bared is equal to the backward momentum
-generated in the gun. This, if m and M be the masses of the shot and the gun, V
being the muzzle velocity will which the shot emerges from the gum, the gun will
recoil with a velocity given by MV = mv.

When the barrel of the gun is elevated, we cannot say that the momenta of
the shot and the gun are equal and opposite. In this case, the horizontal
momentum of the gun will be equal and opposite to the horizontal momentum of
the shot. The vertical momentum imparted to the gun will be at once destroyed by
~ the impulsive pressure of the plane on which it stanch.
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7.3.4 Impact of water on a surface:

In the case of a jet of water impinging against a fixed surface or a
continous fall of rain on the ground we are dealing with a series of successive
impacts or impulsive forces. We can calculate the amount of momentum
destroyed per second and this will give us the average force on the surface.

Worked Examples

Example: 1
A 100gm. Cricket ball moving horizontally at 24 m./sec was hit straight

back with a speed of 15 m/sec if the contact lasted —2—16 second find the average

- force exested by the bat.

Let F dignes be the average force exerted by bat on the ball and 1 be its
impulse.

| = Change of momentum produced.
= 100 [24-(-15)] = 3900 units
we know that | — ft

= 53%0_ = 78, 000 dynes

20

AF= 1
t

Example: 2

A jet of water leaves a nozzle of 3cm. diameter at a speed of 2m/sec. and
impinges normally on a plane enclastic wall so that the velocity of the water is
destroyed on reaching the wall. Cailculate in gm. Weight the thrust on the wall.

2
Area of cross section on the nozzle = (%) = 7.07 cm?

As water issue forth with a velocity of 200cm/sec a colour of length 200cm
is discharged every second

.Volume of water discharged per second

= 7.07 x 200 = 1414cm?
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Since denity of water = 1 gm/cm®, mass of water discharged per.sec. = 1414gms,
and its velocity in 200cm/sec which is reduced to zero after striking the wall.

. The momentum destroyed parsec.
= 1414 x 200 = 2,82,8000 units (absolute)
. Thrust on the wall = 2828000

= 2828000/981 or 288.2 gm/ut

Example 3:

8 centimeters of rain fall in certain district is 24 hours. Assuming that the
drops fall freely from a height of 109meter find the pressure in the ground per
square kilometer of the district. :

The velocity of rain in striking the ground

= J2gx109 = v2x981x 109

= J2x9x109x109

= 327 J2 cm./sec.

Volume of vain that falls on a sgq.cm in 24 hours
= 1% x 8 = 8cc.

-.Mass of rain that falls on a sgq.cm in one sec.

=8 x 1 x 1 = 1 gms

24x60x60 10,800

~ .Momentum destroyes parsec. Due to reaction of the ground on the rain drops

10;00 % 327\/§units.

The impulsive pressure on the ground is equal to the number of units of
momentum destroyed parsec.

239~



3272

10800

c.pressure on the ground per sq.cm = dynes

3272

x 10" dynes
10800

Pressure per sq.km =

_ 3274/2x10"°
10800 x 981

Pressure per sg.km = 324 gms.wt .

\/_2—><108
4
Example: 4
A shot of mass m penetrates a thickness of a fixed plate of mass M. If M
were free to move and the resistance supposed to be uniform. Show that the
Mt
+m

thickness penetrated is

Solution:
Let u denote the initial velocity of the shot and F the force of resistance-of
the plate to the shot which is equal and opposite to that on the plate by the shot.

Let f be the retardation due to the resistance. In the first case, when the
plate is fixed, the velocity u of the shot is reduced to O by retardation f in a
distance t.

u2

. O=uy?>—-2ftorf= —.
2t

mu?

F=mf= : (1)

2t -

In the second case when the plate is free to move, as the shot penetrates

the plate, the velocity of the shot diminishes due to the resisting force F and the
- velocity of the plate increases from zero due to the equal and opposition reaction
acting on it. The penetration will last as long as the velocity of the shot is greater
than the velocity of the plate and it will stop when both the plate and the shot

acquire a common velocity v (say).

Let X be the distance moved by the plate upto this instant and Y the
thickness penertrated by the shot into the plate. Then X + Y is the distance
traveled by the shot in space.
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u
—) >
Yy

< Yy >

By the principle of conservation of momentum for the shot and the plate
considered as a compound body,

We have
(M+m)V=mu , (2)

The acceleration due to F on the plate of mass
F mu?

M= —
M 2tM

Using (1)

Due to this acceleration, the velocity of the plate increases from O to V in a
distance X,

V2 = = X (or)
2tM M
X = V3M
= 2 (3)
mu

Considering the motion of the shot in space, its velocity decreases from u
to v in a distance X + Y due to the retardation f.

Vi E Ut - 2f L (X + YY)

2 2 2 2 2 2
us —v us —wv t(uc —-v
OMXFY = = 5 755 © ( " : (4)
2(“)

(4) - (3) gives

_ tu? ~v?) _ vitM
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u? mu?
. v2t _ vZtM
u? mu?
%t
=t—- — (m+M)
u

2
=t— tz(m+M)( mu )
mu m+M

substituting for v from (2)

tm Mt

and this is the thickness penerated.

y:t_..

m+M m+ M

Example: 5
A shot of mass 100kg is fired with a velocity of 250m. Per sec from a gun

of mass 400 quintals. Find the velocity of recoil of the gun. If the gun is resting on
an incline of 3 in 5 and the shot in fired horizontally, find the velocity of recoil of

the gun.
Solution:

Let Vcm per sec, be the velocity of recoil of the gun. In the first case since
the momentum of the gun is equal and opposite to that of the shot,

We have

400 x 100 x 100 x v = 100 x 1000 x 250 x 100

(ie) 4 x 10" =25 x 10% or vV = -25:2 = 6.25cm/sec.

In the second case the gun is resting on an inclined_;;vlane whose inclination to the
horizon is o, . It is given that

Sin u= E
5
- Cos a = —i
5

242



Momentum of the shot parallel to the plane

100 x 1000 x 250 x 100 Cos «

25x108x%x20x108

=2 x 10°
Momentum of the gun paraltel to the plane
=400 x 100 x 1000 x V

=4x10"v=2x10°

9 2
= 2x10° 107 _ s6cm/sec.
4x107 2
Example: 6

A gun of mass M fires a shell of mass on, the elevation of the gun being o .
If the gun can recoil freely in the horizontal direction show that the angle 6 which
the path of the shell initially makes with the horizontal is given by the equation

tan0= f1+%ﬂ tana . Further, assuming that the whole energy of the explosion is
\ J

transferred to the shell and the gun, show that the muzzle energy of the shell is
less than what it would be if the gun were fixed, in the ratio M: M + m Cos? 9.

Solution:

Let AB represent the barrel of the gun. As the shot the berrel, the gun is
moving backward. Let U be this backward. Let U be this backward velocity of gun.
Let v be the velocity of the shot relative to the gun. The velocity will be in the
direction of the barrel AB. Let v be the actual velocity of the shot at an angle 0 to
the horizontal as shown in the figure. We know that v is the resultant of V and U.

Vv
V
u
< B
A
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Resolving V horizontally and verticalily.
We have V cos® =V Cosa - U .. (1)

and V sin6 =V sina
(2)
V Sina (3)

e 1), g =
Dividing (2) by (1) , tan V Cosa -U

Also the horizontal forward momentum of the shot is the horizontal
backward momentum of the gun

i.e., muCos0 = Mu (4)

i.e. m(vcos a-u)=Muusing (1)

(m+Mu

mvCos 0 = (m+M) u (or) v = ———2 (5)
m Cosa

Putting this value of v from (5) in (3),

we have
(m+Mu g |
tang = . MmCosa _ (m+M)Sina
(m+M)u Cosa -4 (m +M) Cosc — m Cosa.
m Coso.

_ (m+M)Sina _ (m-{-M] (m )
= M. = = tano =| —+1|tano
m Cosa m M

Energy of explosion = energy of shot + energy of gun

=1 mv2 e
2

mu?

1
2

If the gun had been fixed all the energy to explosion wouid have been
transferred to the shot.

. Muzzle energy of the shot
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when the gun is fixed = LI

1 v 2

oy 2

Reguired ration = 2 3 = ;nv =
-2«mv2+—:2-Mu2 mv< +Mu

0 MZUQ |
m2 cosz'e

2 2
m. ;Vluz + Mu
m 0

J Substituting for V from (4)
2

< cos

- mM32U? _ M
mM2u? + M2m2u? Cos?6 M+m Cos?0

Example: 7

A mass m after falling freely through a distance ‘a’ begins to raise a mass
M greater that itself and connected with it by means of an inextensible string
passing over a fixed puliey. Show that M will have returned to its original position

on the end of time _2m_ |2a .

Find also what fraction of the kineti¢c energy of m. is destroyed at the
instant when M is jerked into motion.

Solution:
Velocity of m when it has fallen through a distance ‘a’ = 1/521:;2:\ = U (say).
Now the string becomes tight and thére is a jerk in theé string. This jerk is
in the nature of an impulsive force, being a very great force acting for a short

time. As a result of this impulsive action, the system acquires a common velocity
V and than finite motion begins. M rise upwards with this velocity.



By the principle of conservation of momentum.

(M+m) v = mu = m4/2ga (1)

Let f be the c‘ommon acceleration of the system.

TN

(M-m) ;

M+m

We know that f = M

This acceleration will be acting an M downwards. M has a velocity upwards.

So it will rise to a certain height from its first position for a time t given by
O =V -ft

e t= Vv VM+m) _ m,/2ag

FMem) - m-mg oY

Subsequently M will trace its path and reach its previous position after a further
interval of time.

. Total time taken by M to reach its original position

_ A, _ 2m4/2ag 2m |2a
=2t = =
M-mlg M-mY\g

K.E. of the system before the jerk = % mu’ = mag

K.E. of the system after the jerk = -;_—(I\/I+m)v2

1 m?u?® _ mag

m’ag _ mMag
M+m M+m

Hence Loss of K.E = mag -

-. Fraction of the K. E. destroyed

mMag . M
~ mag =
m -+ M m-+M
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Exercise:

1) a) A shall explodes and breaks into two fragments of masses m,, m, moving
with initial velocities U, and U, respectively in opposite directions. Show that

m,m,

there in a gain in kinetic energy of magnitude (U.Q) 1 (uy + uz)®.

m1+m2

2) b) A shell lying in a straight smooth horizontal tube suddenly explodes and

breaks into portions of masses m,; and m. if d is the distance apart of the masses
mm, d?

m,+m, t?

after a time t, show that the work done by the explosion is 1

3) A shot of mass m is discharged from a gun of mass nm with a relative velocity
V. Find the velocities of the shot and the gun and show that the total kinetic

nm
V2

1
energy generated is — ]
N+

7.4 Direct Impact of two smooth spheres:

A smooth sphere of mass m, impinges directly with velocity vy an another
smooth sphere of mass m, Moving in the same direction with velocity u;; if the
coefficient of restitution is e, to find their velocities after the impact.

AB is the line of impact, i.e the common normal. Due to the impact, there
is no tangential force and hence , for either sphere the velocity along the
tangement is not altered by impact. But before impact, the spheres had been
roving only along the line AB (as this is a case of direct impact). Hence for
either sphere, tangential velocity after impact = its tangent velocity before Impact
= O. So after impact, the spheres wili move only in the direction AB. Let their
velocities be V, and V,

By newton’s experimental law, the relative velocity of m, with respect to m;
after impact is (-e) times the corresponding relative velocity before impact.
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Vo = Vq = -e (up — uy) (1)

By the principle of conservation of momentum, the total momentum along
the common normal after impact is equal to the total momentum in the same
direction before impact.

SoMy U Mo Vo = MyUug + Ms Us (2)
(2) —(1) X my gives
Va (M + mz) = myvy + mavatem; (Ux-uUy)

= myu; (1+e) + (my-emy) u,

Vg = m2u2(1+e)+ (m1 “emz)~‘1 (3)
m, +m,

(1) x my + (2) gives
Vo (Mqy+m3) = -emy (Ux-uq) +myau+mot,

= myuq(1+e) + (m, — em;) U,

LV = mt“1(1+e)+ (mz —em M, (4)

Equation (3) and (4) give the velocities of the spheres after impact.

Note:-

if one sphere say m, is moving originally in a direction opposite to that of
m, the sign of u, will be negative. Also it is most important that the directions of
v, and v, must be specified clearly. Usually we take the positive direction as from
left to right and then assume that both v, and v, are in the direction. If either of
them is actually in the opposite direction the value obtained for it will turn to the

negative.

In writing equation (1) corresponding to Newton’s law the velocities must
be subtracted in the same order on the both sides. In all problems it is letter to
draw a diagram showing clearly the positive direction and the directions of the

velocities of the bodies.
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Corollary. 1

If the two spheres are perfectly elastic and of equal mass, then e = 1 and
m,; = m,. then from equations(3) and (4), we have

m,.u,.2+0 —u, and V, ~-Mmu.2+0

V1 =
2m, 2m,

Uy

i.e. if two equal perfectly elastic spheres impinge directly, they interchange their
velocities.

Corollary. 2
The impulse of the blow on the sphere

A of mass m, = change of momentum of A
= my (U4-Uz).

T UL L ICLATEN
1 2

L

-

m,u,(1+e)+myu, - em,u, - mu, — m,u,
L m; +m,

- m,[m,u,(1+e) - mu, (1+e)]
m,; +m,

The impulsive blow on m, will be equal and opposite to the impulsive blow
an m.

7.4.1 Loss of kinetic energy due to direct impact of two smooth
spheres:
Two spheres of given masses with given velocities impinge directly; to

show that there is a loss of kinetic energy and to find the amount.
Let m,, m, be the masses of the spheres, u; and u,, vi and v, be their

velocities before and after impact and & the coefficient of restitution.
By Newton’s faw,

Vo — vy = -e(Uz-Uy) (1)

249



By the principle of conservation of momentum,

maVvq+ Mav; = MUy + mou,

Total kinetic energy before impact = —;—

And total kinetic energy after impact =% mqv, + -;— MyV,>

Change in K.E = initial K.E - Final K.E.

1 1 2 1

1
= - m1v12 + — m2V22 - Myvy — n'lZVZ2

2 2 2 2

1

2

2

[~- m2 (Uz—Vvz) = my (us— vy) from (2) ]

1
E mq (Ui— vy) [us+ vy — (Uz+v,)]

—21- My (U= vq) [Us— va = (U2 — vy) ]

= L my (U= V1) [us - us + & (U — uy) ] using (1)

2

- % My(Us— V1) (U= u, ) (1 — e)

Now from (2), my (us_—v4) =my (v —u,)

2 2

1
!’1'11!.112 + 5 mzuz2

1
— Mg (U= Vq) (Ur+ vq) — —2‘m2 (U= Vv3) (Uxtvy)

1 1
— My (U— vy) (Us+ vy) + Em1 (Vi—Uu,) (uxt+vy)

U, — Vv vi—u U, -V, +V, —U
o1 = and each = 1.1 22
m, m, m, +m,
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ie. Each = (U, —U2)+ (V2 —*V1)
m, +m,

(U1 _Uz)—e(uz —U1)
m, +m,

using (1)

- (U ~u,) (1+e)
m, +m,

m, (u, -u,) (1+e)

SeUgm Vg = and substituting this in (3)
m, +m,
Change in K.E. = - mm, (U, —u,) (1+e)u, ~u,) (1-e)
2 m, +m,

_ 1 mm,(u, ~u,) (1—e2)
2 m, +m,

(4)

As e<1 , the expression (4) is always positive and so the initial K.E. of the
system is greater than the final K.E. So there is actually a loss of total K.E. by a
collision. Only in the case, when e=1 (ie). Only when the bodies are perfectly
- elastic, the expression (4) becomes zero and hence the total K.E. is unchanged
by impact.

Example: 1

A ball of mass 8gm. Moving with a velocity of 10cm per sec. tmpinges
directly on another of mass 24gms, moving at 2 cm per sec in the same direction.

ife = yz find the velocities after impact. Also calculate the loss in kinetic energy.

Solution:

)y N Positive
N B 7 v,/ Direction

Fig (a)
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Let V, and V, cm persec. Be the velocities of the masses 8gm and 24gm
respectively, after impact.

1
By Newton’s law, V,- V4 = 3 (2-10) = 4 (1)

By the principle of momentum ,
24 V/,+ 8V, =24 x2 +8x10 =128

l.e 3 Vo+V, =16 (2)

Solving (1) and (2), V, = 1cm/sec.,V, = 5cm/sec.

1

The K.E. before impact = -;- 8.10% + 5 24.22
= 448 dynes
The K.E. after impact = —;- 8.17 + % 24.5% = 304 dynes

.. Loss in K.E = 144 dynes
Example: 2
If the 24 gm,. Mass in the preview question be moving in a direction

opposite to that of the 8gm mass finds the velocities after impact.

Solution:

Let V, and V., em/sec. Be the velocities of the 8gm and 24gms mass respectively
after impact.

By Newton’s law
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Vo -V == = (-2-10) =6 (1)

1
2
By censervation of momentum,

24V, + 8V = 24x(-2) +8 x10 = 32 ie. 3v, + V; =4 (2)

Solving (1) and (2), V4, = — cm/sec, V, = g— cm/sec.

1
2

The negative sign of v, shows that the direction of motion of the 8gm.mass
is reversed as we had taken the direction left to right as positive and assumed V

to be in this direction. Since V, is positive the 24 gm. Ball moves from left to right
after impact, so that its direction of motion is also reversed.

Example:3 (U.Q)
A ball overtakes another ball of m times its mass, which is moving with %”‘

of its velocity in the same direction if the impact reduces the first ball to rest,
+n

m
m(n-1)°

prove that the coefficient of elastic-ity IS

n
n-2

Deduce that m>

Solution:

Taking A B in fig.(a).(Ex.1) as the positive direction. Let the mass of the
first ball be k and u its velocity along AB before impact. Then, for the second ball,

mass is mk and % is the velocity before impact. After impact the first ball is

reduced to rest and let V be the velocity of the second ball.

By Newton's law of impact, we have

eu(n-1)

V-0 = - [-‘i—u) (ie) V =
n n

(1)

By principle of conservation of momentum along AB,

kxO + mk.v = Ku+mk. —:; u-
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i.e.mv=u+mu=i(ma+—n—) (2)
v

substituting the value of V from (1) and (2), we have

meu(n-1) _ u(m+n) or e = (M +n)
n n m(n —1)

Now e is positive and less then
~m(n-1) > m+nie. mn— 2 m>n

n

~m(n-2)>norm >
n-2

Example:4

Two equal spheres A and B of masses 2 gm. and 30 gm respectively lie on
a smooth floor. So that their line of centers is perpendicular to a fixed vertical
wall. A being nearer to the wall. A is projected to words B. Show that, if the
coefficient of restitution between the two spheres and that between the first

sphere and the wall is -gthen. A Will be reduced to rest after its second impact

with B.

Solution:

Consider the impact between A and B. Taking AB as the positive direction.
Let the velocity of A before impact be u.B is at rest.

After the impact, Let the velocities of A & B be V, & V, respectively in the same
direction.

By Newton’s rule, v, — vy = -e (O-u) = g—u (1)
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By conservation of momentum along AB,

30v, +2v, =30 x 0+2 u (i,e) 15 vy +v,=uU (2)

Solving (1) and (2), we get vq = — g and v, = -1%

: u .
Since v, is negative, the velocity A after the impact towards the wall and = Ewhlle

the velocity of B is % away from the wall.

Now A strikes the wall with a velocityg. After this impact, its velocity will

be reversed as a e. (g) = % %= % with the velociﬂl . A moves in the direction
AB, away from the wall and strike B a second time let the velocities of A and B be
vs and v, after this impact in the direction AB. ~

For convenience the velocity distribution can be noted as follows:-

A (2) B(30)
Before impact 3u al
: 10 10
After impact Vi Va4
By Newton'’s rule,
u  3u 3u
Vgs — V3 = - - =
a (10 10) 25 (%)
By conservation of momentum,
30 v, + 2vy =30 . L 4 p 3U - 18U
10 10 5
. Ou
i.e. 15vy + vz = —
a4t Vs = — (4)

muitiplying (3) by 15 we have
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15v4-15v3=%l (5)

subtracting (5) from (4), 16 vz = 0 or v; =0.

i.e A is reduced to rest after its second impact with R.

Example: 5
Two equal marble balls A,B lie in a horizontal circular groove at the

opposite ends of a diameter, A is projected along the grove and after time t

impinges on B; show that a second impact takes place after a further interval ;t.

Solution:
Let the ball A move with velocity u. As there is no tangential force acting

on A at any point of its path, its speed remains the same through-out. Hence it
impinges on B with a velocity u.

(/A
-

Since the time from AtoBis =t

we get

ut=nru="T" (1)

Let v and v' be the velocity of A and B respectively after impact.
Then by the principle of momentum.

mv+ mv' = mu (m being the mass of each ball)

(i.e) v+v' = u (2)
Also, by Newton' v-v' = -e (v-0)

(i.e) v-v' = —eu (3)
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Solving (2) and (3), we get V = -;- (-e): v = 2 (1+e)

s
2

Clearly v'is greater than V. Hence B will move in advance of A. Let it strike a
again t, secs. After the first impact.

The velocity of B relative to A, after the first impact
=v'-v = eu from (3)

Before striking again, B should cover a distance equal length to the
circumference relative to A.

(v =v).ty =2nr (ie) eut,; = 2nr

= Zm= using (1)

. The second impact occurs %} secs. after the first.

Exercise:

1) a) Two balls impinge directly and interchange their velocities after impact.
Prove that they are perfectly elastic and are of equal masses.

2) A ball A impinges directly on a exactly equal and similar ball B lying on a
smooth horizontal plane. If the coefficient of restitution is e, prove that
after impact, the velocity of B will be to that of A as 1+e:1-e. '

3) A ball impinges directly on a second ball of twice its mass which is
moving in the same direction as the first but with one ~ seventh of its
velocity. Given that coefficient of restitution is %Show that first ball will

come to rest after the impact?

7.5 Oblique impact of two smooth spheres:

A smooth sphere of mass m, impinge obliquity with velocity and another
smooth sphere of mass m; moving with velocity u,. |f the direction of motion
before impact make angles o, and o respectively with the line joining the centre
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of the spheres and if the co-efficient of restitution be e. To find the velocities and
directions of motion after impact.

u

u MmMp\ S 2
1 zr mz
A6, 6.

Let the velocities of the spheres after impact be v, and v, in directions
inclined at angle 8, and 6, respectively to the line of centres. Since the spheres
are smooth, there is no force perpendicular to the line of centers and therefore,
for each sphere the velocities in the tangential direction are not affected by
impact.

oV Sin G1=U1 Sin a4 (1)

and v, Sin 0, = u, Sina, | (2)

By Newson's law concerning velocities along the
common normal AB,

V, CosbB,; —V,; Cos®o
=-e (U Cos a,—u; Cos ay) (3)

By the principle of conservation of momentum along AB,

m,.v, CosB,+ my,. Cos04 =my.u, Cos a1+ my.u; Cosa (4)
(4) — (3) x mz'gives

L4

Vi Cos 04 (Mmy +my) = muu, Cosa ,+my u; Cosa +e my(u; Cos a; - Uy Cosa )
u, Cosa, (m, —em, )+ m,u, Cosa, (1+e)

i.e. vi Cos0q = 5
m, +m,

(4) + (3) x m, gives

V2 Cos 0, =2 Cosa, (m, —em, )+ m,u, Cosa, (1+e) (6)

m, +m,
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From (1) and (5) by squaring and adding, we obtain v.2and by division, we
have tan 6,. Similarly from (2) and (6), we get v,2 and tan 6,. Hence the motion
after impact is completely determined.

Corollary 1:
If the two spheres are perfectly elastic and of equal mass, then e = 1 and
mi; = Mo,

Then, from equation (5) and (6), we have

O +myu, Cosa,.2
2m,

V4 ‘COSG; = us Cos o 2

O+ MU Cosa1.2
and v, Cos 0, = = uy Cos a4
2m1

Hence if two equal perfectly elastic spheres impinge they interchange their
_ velocities in the direction of the line of centres.

Corollary 2:
Usually, in most problems on oblique impact one of the spheres is at rest.
Suppose m, is at rest i.e. u; =0.

From equation (2), v, Sin 6, =0 i.e 6=0.

Hence m; moves along AB after impact. This is seen independently, since
the only force on m, during impact is along the line of centres.

Corollary 3:
The impulse of the blow on the sphere A of mass m;

= Change of momentum of A along the common normal

=my (Vi c0S047— Uy Cos ay)

_ u, Cos a.,{m, —em, }+m,u, Cos a,{1+e€
= my 1 1( 1 2) 22 1( )—U1COSC1.1
my [myu, Cos oy —em,u, Cos o, + m,u, Cos a, +em, u,Cos a,

—mu;Cos a1 — Myuy COS(X1
my + my

i
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m,|m,u, Cos a, (1+e)-m,u, Cos a, (1+e)|
m, +m,

m,m,{1+ e
= 1 2( ) (UQCOS(IZ"‘U1 Cos (11)
m, +m,

The impulsive blow on m; will be equal and opposite of the impulsive blow
on m,.

7.5.1 Loss of kinetic energy due to oblique impact of two smooth
spheres:

Two spheres of masses m; and mj, moving with velocities u; and u, at
angles o, and o, with their line of centers come into collision. To find an
expression for the loss of kinetic energy: -

The velocities perpendicular to the line of centres are not altered by
impact. Hence the loss of kinetic energy in the case of oblique impact is therefore
the same as in the case of direct impact if we replace in the expression (4) on
page. No 256 the quantities u; and u, by u; Cosay and u; Cos a, respectively.
m,m

72 (1-e?) (u; Cosa - u; Cos o)’
m, +m,

There fore the loss is J—

We shall now derive this independently. Let v; and v, by the velocities of
the spheres after impact in directions inclined at angles 0, and O, respectively to
the line of centres. As explained in the tangential velocity of each sphere is not
altered by impact.

ooV 8in0y =uqs Sin g L. (1) and V,8in8; = u; Sina » (2)
By Newton’s rule

v, Cos 0, - vy cos0,=-e (Uu;Cos a,-u; Cos a,) . (3)
By conservation of momentra

m, v, Cos0, + my v, CosO;=m,u; Cos a,+ myus Cos a,
i.e. my (U Cos a4 -vy CosOqy=my(vy; Cos6;, -u; CosOy) (4)

Change in K.E.
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. 1 .
m,u,’ (Coszoc1 + San2a1)+ > m,u,’ (Coszoa2 + Sln"‘az)

- %mmz (003261 + Sin261)— —;— mov,” (003262 + Sin?%6, )

%mmf Cos?a, +%m2u§ Cosa, —% m,vZ Cos?0,

— 2-myu Cos™, (using (1) and (2)

= —%m1 (u12 Cos’a, — v? Cos291)+%m2 (u§ Cos?a, - V3 Cos"ez)

= -;,-m, (u1 Cos a, + v, Cos 91)(111 Cos o, -V, C°591)

+-;— (u, Cosa, + v, Cos8,) (u2 Cosa, -V, Cosez)

=.;. m, (u| Cosa, + v, Cos@k) [uI Cos a; —u,Cos a_,_]——% (u,Cosa, +v,Co0s80,)

m, (U, Cos a1 —uy Cos6,] using (3)

= % m, (u; Cosea y — V; Cos 04) (uy Cos o — vy CosBy)

— u,Cosa s, — Vvy COSO,

= y2m1 (us Cosa v, Cos04) [uy Cosay —u; Cosay)
+ e (u;Cosa; — u; Cosa4) ] Using (3)
1

2 my (U4 Cos'ou -V, Cos0,) (uy Cosa— u, Cosay) (1-8) (5)
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' Now from

u, Cosa, -V,Cosb,  V, Cosb, —u,Cosa,

m, m,

u, Cosa, — V,Cos8, + V,Cos6, —u,Cosa,
m, +m,

and each =

(u, Cosa, —u,Cosa, +(V,Cosb, - V,Cos0,)
m, +m,

u, Cosa, —~u,Cosa, — e(u, Cosa, —u,Cosa,) Using (3)
m, +m,

(u; Cosa, —u, Cosa,)(1+e)
m, +m,

m,(1+e)
m, +m,

.Uy Cos ay =V, Cos 04 F (u, Cosa, —u, Cos a,)

Substituting in (5)

1 mm,(1+e)

Change in K.E=— (u,Cosat; —u,Cosa,)
m, +m,
x (uy Cosa 1 —uz Cosay) (1-e)
=1 MMz 1_e)? (u, Cosa, —u, COS a,)?
2 m,+m,

If the spheres are perfectly elastic, e = 1 and the lass of kinetic energy is zero.

7.5.2. Dissipation of energy due to impact:

We have found that in any impact, except where the coefficient of
restitution of unity, some kinetic energy is lost. This missing kinetic energy is
converted into other forms of energy and chiefly reappears in the shape the heat.
Hence the principle of conservation of energy will not hold good in problem of

impact.
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Example: 1

A ball of mass 8gms. Moving with velocity 4cms. Per sec. Impinges on a
ball of mass 4gms. Moving with velocity 2cm. Per.sec.if their velocities before
impact be inclined at angle 30° and 60° to the line joining their centres at the

moment of impact find their velocities after impact when

1\
e= —.
2

Refer to oblique impact. m; = 8; u;y = 4; a1 =30°m; = 4; u; = 2;

oL 22600

Let V, and V, be the velocities after impact in directions making 6, and 6;
respectively with AB. The tangential velocity of each sphere is not affected by

impact.

. VySin 8; =4Sin30°=2
and V, Sin 6, = 2 Sin 60° = /3
By Newton’s law,

V2 Cos6, -V, Cos 6, =—e (2 Cos 60° — 4 Cos 30°

T 14 ﬁ)
2 2 2

_ 1 .
—5(2J§ 1)

By conservation of momenta along AB,

4V, Cos 6, + 8V, CosB, =4.2 Cos 60° + 8.4 Cos 30°

=4 + 163

ie. V,Cos0,+2V,Cos 8,=1+443

- 3V, Co080,=1+43— _15(2\/5__ 1) = 3+2\/§

1+2\/§

i.,e. V, Cos 0% = >
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From (4), Vo Cos 8, =1+ 4+/3 —1-—-243 =243 (6)

15243 Y
From(1)and(5)Vf=22+{ *2 J
-4+ 1+4J§+12 _ 29+4J§
4 4

SV = \,Eg—%‘-‘—‘[—i cm. per sec.

Dividing (1) by (5)

4

1+2\/§

tan6, =

From (2) and (6)
VZ=3+12=15and
Vs = 15 cm/sec

Dividing (2) by (6)

N =

tan 0, =

Example : (U.Q)

~ A smooth sphere of mass m impinges obliquely on a smooth sphere of
mass M which is at rest. Show that if m = eM the directions of motion after impact
are at right angles. (e is the coefficient of restitution).

Solution:

Considering the sphere M, its tangential velocity before impact is zero and
hence after impact also, its tangential velocity in zero. (--During impact, there is
no force acting along the common tangent). Hence after impact, M will move
along AB. Let its velocity be V,. Let the velocity of m be V at an angle 0 to AB,

after impact.
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By Newton’s rule,
V2-V;Cos 6 =—¢e (0O-uCos a)
(ie) V.-V, Cos 0 =euCos o (1)
By conservation of momenta alang AB,

M.V, + mV, Cos0=M.O + m.u Cos « (2)_
Multiplying (1) by M and subtracting from (2), |

mv, Cos0+ MV, Cos0 = mu Cos a— Meu Cosa

uCosa(m-eM) _ uCosaO (-m = eM)

(te) V, Cos 0 = :
m+M m+M

= 0.
..Cos 0 =0 or 6=90°
(ie) The direction of motion of m is perpendicular to AB.

Example: 2

Two equal elastic balls moving in opposite parallel direetion with equal
speeds impinge on one another. If the inclination of their direction of motion to the

line of centres be tan”’ («/g) where e is the coefficient of restitution, show that
their direction of motion will be turned through a right angle.

Solution:
Let m be the mass of either sphere. AB is the line of impact.
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Before impact, the directions of motion are LA and BM making the same
acute angle a with AB as shown is the figure. Let u be their velocity.

After impact, let the sphere A proceed in the direction AK with velocity V;,
at an angle 6, to AB and the sphere B proceed in the direction BN with velocity V.
at an angle 6,to AB

The tangential velocity of either sphere is not affected by impact
S.Vq Sin 84 =u Sin o (1)
V, Sin6, =u Sin a (2)
By Newton'’s law, (resolving all velocities along AB)
V,Cos 0,-V,Cos 6, =—e(—uCos a—uCos a)
(ie) V,Co0s 0,—-V,Cos 0, =2euCos a (3)
By conservation of momenta along AB

m(V, Cos 0,) + m.V, Cos 6; =m (—u Cos a)+mu Cos o..

(ie) Vo, Cos 0, +V,Cos 8,=0 (4)
(4) — (3) gives 2V, Cos 6y =— 2 eu Cos o

..V1Cos 67 =—eu Cos a (5)
From (4) V, Cos 0,=—V,; Cos6,=eu Cos a (6)

Dividing (1) by (5)
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1
tan g, = - < tan a= - -;- \/—5 ((-. :"tan'1\/g) given

1 1
=T == =— Cot
JE tan o “

=tan (90° + a)

J.0. = 90° + a.
Dividing (2) by (6) tan6, = —;- tan oo = Cot a = tan (90° — o)

92 = 90° — o .
Hence their directions of motion are turned through a right angle.

Example: 3

Two equal billiard balls are in contract on a smooth table and a third equai
ball, moving along their common tangent, strikes then simultaneously. Prove that

% (1-- €®) of its kinetic energy is lost by the impact, e being the coefficient of

restitution for each pair of balls.

Solution:-

Let A be the centre of the impinging ball, and B,C the centres of the other
two balls at rest. Since the balls are equal, AABC is equilateral. Let u be the
velocity of A before impact. After impact, let V be the velocity of A and V, the
common velocity of B and C. V will be in the same line as u. While B and C. Will
move along AB and AC respectively. Let m be the mass of each ball. We apply
the principle of conservation of momentum for all the 3 balls along the direction of
motion of A.
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.mV + 2m.V, Cos 30° = mu.

(ie) V + Vi3=u (1)
Applying Newton's Law along AB for the spheres A and B.

We have

V,—V Cos 30°=—¢e (0 —u Cos 30°

(ie) Vy — V43 _ eu3
2 2
or—V /3 +2V, =eu.3 (2)

Multiplying (1) by /3 and adding to (2)

We have
5V, = u/3 (1+e) or V, = “‘/5(5.”—‘?’ (3)
From (1), V=u =V, 43 = u— 221+8) (;’“e) = e (2;33) | (4)

The loss of kinetic energy.

Initial K.E - final K.E.

.== %muz— (yzmvz +%mv12 +y2mv12)

-~ 1 2 __ ; 2 __ 2
= Emu A mV mV1

1, . (2-3¢)) _ m.3u®*(1+e)?
=™ T Jpmut e T

I
I
3
o

1, [1_(4—12e+9e2)_ 6

% 55 (1+2e+ez)]
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2 _an2l-
1 [25—4+12e—96235-—6—12e 6e }

) 2
lmuz ] (_15__§_e__l=_1-mu2_§_(1_ez)
2 25 2 5

i

%(1—e2)xthe original K.E.

Exercise:

1)

2)

3)

A sphere of mass m moving on a horizontal plane with velocity impinges
obliquely on a sphere of mass m' at rest on the same plane. If e = 1 and
m = m' prove that the directions of motion after impact are at right angles.

If two equal perfectly elastic sphere impinge obliquely, Prove ‘that they
interchange their velocities in the direction of the line of centres.

Two equal perfectly elastic balls impinge if their directions of motion before
impact be at right angles. Show that their directions of motion after impact
are also at right angles.
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UNIT - VIl
SIMPLE HARMONIC MOTION

8.1 Introduction:

A very common and important type of motion occurring in nature is that
which involves oscillations backwards and forwards about some fixed point. For
instance, suppose one end of an elastic string is tied to a fixed point and a heavy
particle is attached to the other end. If the particle is disturbed vertically from its
position of equilibrium, it is found that it oscillates to and from about this position
clearly the particle cannot be moving under constant acceleration. It is found that
it has an acceleration, which is always directed towards the equilibrium position
and varies in magnitude as the distance of the particle from that position. This
kind of motion occurs frequently in nature and since it is of the type which
produces all musical notes. It is called Simple Harmonic Motion (S . H . M). The
oscillations of a simple pendulum and the transverse vibrations of a plucked violin
string are examples of Simple Harmonic motion.

8.1.1 Simple Harmonic Motion in a straight line :

Definition :

When a particle moves in a straight line so that its acceleration is always
directed towards a fixed point in the line and proportional to the distance from that
point, its motion is called Simple Harmonic Motion.

‘Let O be a fixed. point on the straight line A'OA on which a particle is

having Simple Harmonic motion. Take O as the Origin and OA as the x-axis.

X
Al Pl—/—> O <— P A

Let P be the position of the particle at time t. Such that OP = x. The
magnitude of the acceleration at P = : , where : is a positive constant. As this

acceleration acts towards O, the acceleration at p is the positive direction of the
X-axis is - [ «.
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Hence the equation of motion of p is
™% x (1)

Here it must be noted that for a position of P to the right of O. The
2
x — coordinate x is positive and so the acceleration %;(; is negative. directed

towards O. If P’ is a position of the particle to the left of O, x is negative and so

2

X in positive. again towards O.

the acceleration >
dt

Hence the same equation of motion (1) holds good for all positions of P on
the line.

Equation (1) is the fundamental differential equation rebresenting a
S.H.M.we now proceed to solve it.

If v is the velocity of the particle at time t (1) can be written as

d [ dx d d dx
— = l==(v)=—.v..—
dt dt

dt dt dx
dv dx dv
= —— =V.—
dt dt dt
dv -
— = —uX.
dx K
vdv =-puXdX

(2)
Integrating (2)

2 2
We have A pX
2 2

+C (3)

Where C is the constant of integration.

Initally let the particle start from rest at the point A where OA = a and let us
measure time also from this instant

271



Hence when x = a, v =0.

Putting these in (3)

2 2
o=-H_.c (or c = K8

g TC¢ on 2
vi=—px? +2c

2na®

2 _ _ x2 K
A X" + 2
vi=—pux?+pna? =p (a?-x?). (4)

sV =t4u(a® -x?)

Equation (4) gives the velocity v carresponding to any displacement x.

Now, as t increases, x decreases.

SO% = v=-qu{a® - x%) (5)

(or) \/_‘2_—‘-’__13-=,/Edt.
a”—-X

integrating Cos ~'x/a= Ju t+A.
initially whent=0,x=a

Cos '1=0+A

(ie) A=0.
-Hence Cos ™ % = Jut
'.% =Cos\/ﬁ
. x = aCos (it )

Equation (6 ) gives the displacement x in terms of time t .
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When the particle comes to O, x = 0 and by (5) .
Its velocity then = - a \/u

So the particle passes through O and immediately the acceleration aiters
its direction and tends to decrease the velocity.

From (5) v=0 when x = -a
So the particle comes to rest at a point A’ to the left of O such that OA = OA’

If then retraces its path passes through O, an again is instantaneously at
rest at A. The whole motion of the particle is an oscillation from A to A’ and back.

To get the time from Ato A'.

Put x =-ain (6)

We have Cos Jut=-1=cos =«

The time from A to A’ and back = 2n

m

We have Equation (6 } can be written as

X=acosﬁt=acos(ﬁt+2n)

acos (Jut+4n)etc

=acos<\/ﬂ(t+%)

acos\/ﬁ(t+—4—5)etc.

m
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This shows that the displacement of the particle at any particular time t , in

repeated at times . t, + -2—7}- . & +4_7: etc.
N Vi

Differentiating ( 6 )

—C:T)t(—=-aﬁ8in not

H

-a.fu Sin (Ju t+27)

=-a \/u Sin(Jp t+4n)etc.

=-§JESinJﬁ(t+2T:)

-a\/p_LSin\/;(t+in—)etc.
i

e 2
This shows that the values of %)t(- are the same if t is increased by —-—\/E or
' H

2n . Hence after a time 2n
Ju Vu
particular point moving with the same velocity in the same direction as-before,
having covered the whole path of the motion just once. The particle is said to be

2
the period “r

m

8.1.2 Definitions:

The period or the periodic time of a simple harmor -~ mntiar, is the
internal of time that elapses from any instant till a subsequenent it.ziznl when the
particle is again moving through the same position with the same velocity in the
same direction. The frequency of the oscillation is the number of complete
oscillations that the particle makes in one second. So frequency is the reciprocal

by any multiple of the particle is again at the same

of the period and in equal to \/:l- /27w .

274



The distance through which the particle moves away from the centre of
motion on either side of it is called the amplitude of the oscillation.

Thus in the above case amplitude = OA = OA' = a.

We notice that the periodic time being = %_T-t— is independent of the
L
amplitude which is the distance from the centre at which the particle started. It
depends only on the constant, which is the acceleration at unit distance from the
centre.

Note:
2
1) Since %tTX = — pux, maximum accelerziinn corresponds to the greatest

value of x and so it is numerically = p.a =u. (amplitude).

2) Since v = /u(a? —x? , the greatest value of v is got at x = 0 and it

.

is = a./i= pn. (amplitude)

General solution of the S . H . M equation :-
2

The S . H .M equation is %{; = — UX.

d?x

(ie) dt?

+pux =0 (1)

(1) is a linear differential equation of the second order with constant
coefficients. Its most general solution is of the form

x = A Cos Jut+ B Sin \fut (2)
where A and B are arbitrary constants.

" Other forms of the solution equivalent to (2) are x= C Cos (\/},_Lt + g) (3)

and x =D Sin (Jut+ a) \ (4)
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The constants A and B in (2), C and Min (3) and D and o in (4) are
known if we know the values of x and %3:- corresponding to a given time t .

From (3) and (4) , the maximum value of x = C or D.

Hence if a is the amplitude of the motion, the forms (3) and (4) can be
respectively put as.

X=a Cos (Jut+ ¢) (5)
X=a Sin (Jpt+ o) (6)

When the solution of the S .H . M equation is expressed as
X =aCos (\/Et + ¢) the quantity Mis called the epoch. The phaseofa S. H .M

at any instant is the time that has clasped since the particle was at its maximum
distance in the positive direction.

From the equation (5) , x is maximum when Cos (ﬁt +g)=1.
If t, is the value of t

If t, is the value of t |,

ﬁto= e=0

(ie) to = - ——

m

Hence phase attimet=1t-{,

=t+_€__

m

_ \/;,_1 t+e
Vi
Note
Two simple harmonic motions of the same period can be represented by

X, = a; Cos (\/;._Lt + g,)
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X, =3, Cos (Jut+ &,)

€1 — €y

Tn

Then difference in phase =

If €, = €, , the motion are in the same phase .
If € - €, = =, they are in opposite phases.

8.1. 3 Geometrical Representation of a Simple Harmonic Motion

Let a point Q describe with uniform angular velocity w, a circle of radius a
and centre O of which A'OA is fixed diameter. Let P be the foot of the foot of the
perpendicular from O on AA,

As O moves round the circle, P will moves to and from on the diameter.

We can show that the motion of P along AA' is simple harmonic, with O at
centre.

Let Q move in the direction AOA’ as shown in the figure. As Q moves
unifermly in a ¢ircle, its only acceleration i w? , OQ along QO

The velocity of Q in the circle is w. QO along the tangent QT.

The velocity and acceleration of P must be the same as the resolved parts
alohg AA’ of the velocity and acceleration of Q.

" Hence acceleration of P = w? . QO . Cos < POQ

| PO
=w?. Q0. 9
W Q0

= w? . PO towards O.
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(ie) thevacceleration of P is always directed towards O and proportionai to
its distance from O. Hence the motion of P is simple harmonic.

The various formulae of a S.H.M derived can be deduced by considering
the motion of Q along the circle.

Taking O as the_origin and OA as the positive direction of measuring
displacement, let OP = X and[’QOP =0

velocity of Q = aw along QT.
Hence velocity of P = resolved part of velocity of Q along AA’ .
=am . Cos [TQN =a® SinJOQN

FQ
a

am Sin 6 =a® .

= ©» /OQ? - OP?

o +Ja? -x? (in magnitude ) (1)

and this velocity of P is along AO towards O .

As Q moves round the circle from A to A’ and back to A, P moves from A to
A’ through O and back A .

Hence the periodic time of the S . H . M described by P

= Time taken for Q to describe the circle

= (2)
()

Also, if t is the time from A to Q

éds-1(5J
a

®

t:g =
)
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w= Cos ™’ (-:-) or x = a Cos ot (3)

The acceleration of P towards O.= @2 . PO and putting ©? = Jﬁ

(ie) o = Jp in(1),(2), (3)

We get

(i) the velocity of P = fu . {a? —x? in magnitude
2n

(i) the periodic time of P = —

Jn

(iiv) the displacement x = a Cos Jﬁt

These are the formulae derived.

8.1.4 Change now the equation :

2

A differential equation of the form %tTX =—-pux where : is a positi\ie

: . . : 27 . .
number, always represents a simple harmonic motion of period —— which is

I

independent of the amplitude. The centre of the S.H.M is the origin from where
the displacement x is measured.,

Consider now the equation.

d?x
= =-ux+o 1
e i (1)
2
This can be written as ax —p| X — ¢ (2)
dt? K
Put x—%=x (3)
When x = d x=0
11
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So this means that we are transferring the origin for measuring

displacement, to the point distance 2 from the original origin.

n
Differentiating (3) twice
d?x d?x d?x
= and hence (2) becomes —— = —puX (4)
dt? dt? (2) dt? "

(4) clearly represents a simple harmonic motion about the new origin.
- Worked Examples

Example: 1

A particle is moving with S.H.M and while making an oscillation from one
extreme position to the other, its distance from the centre of oscillation at 3
consecutive seconds are X;' X, Xs. Prove that the period of oscillation is

27
Cos-l| X1t %a +x3)
( 27
Solution :
If a is the amplitude, : the constant of the S.HM and X is the
displacement at time t, we know that x = a Cos ,/ﬁt (1)

Let at three consective seconds t;, ti+1, t,+2 the corresponding
displacements be X, , Xz, X3 .

Then X, = a Cos \/Eh (2)
X, =a Cos i (t; +1) = a Cos (Jut; + /1) (3)
and X; =aCos Ju (t +2)=aCos(\/E+2\/ﬁ) (4)

X, +X; = a [ Cos (yfut, +24/p ) + Cos fut, ]

Jut, +2\/;+\/ECOSM+2\/;_\/Et1
2 2

=a.2Cos
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= 2a Cos (fut, + 41 ) Cos Ju

=2 x; Cos +/u
Xy + X, 1 [ X+ X
= Co = a2
™ s u or Ju =Cos ( L ]
Period = 2n = 2n
"/; Cos™ X1 + %q
2x2

Example : 2

If the displacement of a moving point at any time given by an equation of

the form X = a Cos wt +b Sin wt , Show that the motion is a simple harmonic
motion.

ifa=3,b=4,6w= 2 determine the period amplitude, maximum velocity
and maximum acceleration of the motion.

Solution:
X=aw Sinot+ b Sinwt (1)

We have to show that the acceleration varies directly as the displacement .

Differentiating (1) w .r to t.

=" aw Sinot + bo Cos ot (2)

2
947X _ _ 202 Cosot - bo? Sinot
dt?

= -2 [aCosmt+bSincnt]=~m2 X (3
(3) shows that the motion is simple harmonic

The constant p of the S.HM = w?.
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Period=—2—7i = 2_7t = 12-2£ = 1t Secs

m ®

Amplitude is greatest value of X .

When X is maximum %):— =0

-am sinot+bw Cosmt=0
(ie) a Sinot=b Cos ot

ortanowt = §=-§ using the given values. When tana)t=%, Sin ot = %x Cosmt 5

Putting these values in (1) greatest value of x

_3a+4b _ 33+44

5 5 ?

=ax—3—+bxi
5 5

amplitude =5.
Using the formulae.
Max . acceleration = p . amplitude =4 x 5 = 20

Max . velocity = \/; .amplitude =2 x5=10

Example : 3

A horizontal shelf moves vertically with S.H.M whose complete period is
one second,; find the greatest amplitude in centimeters. It can have, so that an
object resting on the shelf may always remain in contact.

Solutions :
Let m be the mass of an object lying on the shelf, O the centre of the

S.H.M and P the position of m at time t .

Let OP = X.
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The forces acting on the mass at P are

i) its weight mg acting vertically downwards and

ii) the normal reaction R due to the shelf acting upwards.
Resultant force on the mass = mg — R and

mg - R
m

so the acceleration on it =

and this acts towards O .

Since the particle is moving with S.H.M towards O. acceleration at
P=u. PO=pux.

SpUX = mg -R
m
(ie)R=mg-mpx=m(g- pux) (1)
: 27 .
Period of the SHM = — =1 (given)

In

L =27n (or) W =4n?

From (1) ,R=m (g = 4 n%x)

For the mass to remain always in contact with the shelf, reaction R must
not be negative.

m(g—4 n*) =0

(ie) (g—4 n2x) 20 or x < —%
47
. Greatest value of X = 492 = 282 =248 cms
' T

Example : 4
A particle P, of mass.m, moves in a straight line OX under a force mp

(distance ) directed towards a point A which moves in the straight line OX with
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constant acceleration o. Show that the motion of P is simple harmonic of period
2n/ﬁf about a moving centre which is always at a distance _a/\/;t_ behind A.

Solution :
Let at time t, the particle be at P where OP = x.

< X >
o B A P
< y >

and A be such that OA =y .

The equation of motion of P is

2
?:{T; = - u.PA (since the acceleration is towards A)
=-p(x-y) (1)
d?y
The equation of motion of A is prea o (2)

Subtracting (2) from (1)

We have
3:;‘ —::Z =-px-y)-a=-p (X~V+%J (3)
Putx-y+ 2 =2 (4)
m
Differentiating (4) ::;‘ - j:f = ::f

Hence (3) becomes

d?z

preaiiaiad 2t (8)
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. . C 2
. The displacement Z is simple harmonic and the period is = T

N

The centre of the S.H.M represented by (5) is clearly the new origin from
where Z is measured.

NowZ=x-y + L =-ap+ 2
1L it
If B is a point behind A such that

BA = — .
K
We have Z = AP + BA = BP.

(ie) Z denotes the displacement of P measured from B .

. The motion of P is simple harmonic about B, a moving centre which is

always at a distance £ behind A.
1

Example : §

A particle of mass m is oscillating is a straight line about a centre of force
O, towards which when at a distance r, the force is m.n’r and ‘a’ is the amplitude

of the oscillation. When at a distance a+/3/ 2 from O, the particle receives a blow
in the direction of motion which generates a velocity na. If this velocity be away
from O, show that the new amplitude is a /3.

Solution :
Here the constant p of the S.H.M = n?,

If V is the velocity at a distance x from o,

V? = n? (a? - x* ) since amplitude = a.

av3 [az 32’ ] _n2a?

Wh nx-—— vZ = n°
4 4

(ie) v= tna/2
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Since the additional velocity now given to the particle is away from Q is the
direction of its previous motion,

We must take the positive sign for v.

Hence the new total velocity = n?a + na

_ 3na

2
' The subsequent motion is again simple harmonic.

If V is the velocity at any distance x from O, is the subsequent motion,
vZ=n? (A% - X?) (1)

where A is the new amplitude.
The new initial condition is that

When X = 3—2@,v =§gi

Substituting in (1)

on? a? 2 A2_332
4 4

(ie) A% = + = 3a’

or A =a /3 which is the new amplitude

Example : 6

Show that the energy of a system executing S.H.M is proportional to the
square of the amplitude and of the frequency.

Solution:
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The acceleration ~of the particle executing S.H.M at a distance x from
O = pux.

Hence the force acting on the particle
= mux, m being its mass .

If the particle is given a slight displacement dx from P, work done against
the force

=mupx . dx.

Hence total work done is displacing the particle to a distance

x 2
= —mu 2
X = Imux dx =mp > (1)

(o]
This work done is stored as the potential energy of the particle at P.

If V is the velocity at P.

We know that V2 = p(a® — x?), a being the amplitude

N | -

. Kinetic energy at P = % mv? mup@2-x?) . (2)

Adding (1) and (2)
The total energy at P

2

=mlJ.x m’.l 2 _ml.la
5 > (@® - x*)= 5 (3)

If nis the frequency.

We know that n = 1 1 = ‘/E
penod 2n 2n

Jr
i =2mn or Ju=4™n
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Putting this values of in (3)

The total energy = 1/2m. 4x2 n*a? = 22 ma® n? and this is proportional to

a? and n.

Example : 7 (U . Q)

Show that in S.H.M of amplitude a and period T the velocity v at a distance
x from the centre is given by the relation v? T2 = 4 n®(a’® — x?).

Find the new amplitude if the velocity were doubled when the particle is at
a distance a/2 from the centre, the period remaining the same.

Solution :

We know that v =  (a

And periodic is T = 2n
_411:2
H -‘T—z
4 2

2 _ T‘Nz (az

no

2—X2)

or V2T?=4x?(a%2-x*).

The velocity v, of the particle at x = —:- is given by

Now the initial condition will be that when x =

V=2v, =2 (3y)

2
2

a
=3u—

From the equation of S.H.M

2

N | D

[V3n) 2
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d?x dv
We get —=v —=—pux
o Vax - ¢

Vdv = - puxdx

Or Integrating V2 = - ux? + A,

Using the condition that at x =%, v=2v, = /3ua

2 2
2 =.ux?+13p . —p13E _x2|,
\ ux+3u4 u( 2

Amplitude is that value of x where velocity is zero.

2
132 _x2=0 or x=—[-12_—§—a.

Example 8 (U . Q)
If vi and v, are the velocities of a particle moving in S.H.M at distance x;
and x; from the centre. Show that the time of complete oscillation in

2 _ 2

21{ il "g]. [Nov . 93]
Vz = Vq

Solution :

We know that v¥ = | (a? = x?)

vf = (a2 - x12 ):V% =}.L(32 - X%)
v% —v12 =|.t(x12 —x%)
2 2
Ve =V
.'.;,L=—§-—-i2 (1)
Xy - X3
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(2 2

X< — X
Also periodic time = 2% _on —-—12———5— by (1)
e V2 ~Vq

Example :

The position of a particle moving in a straight line is given x = a cos nt + b sinnt

Prove that it excutes S.H.M of period —2;?— and amplitude \/(az + bz) :

Solution :
Differentiating the given relation.

We get

Ve = % = —an Sinnt + bnCosnt

- d?x
7 dt?

= —an? Cosnt — bn? sinnt =— n®x

Hence the motion is S.H.M of period

Amplitude is the distance between the centre and the position of
instantaneous rest where velocity is zero.

Puttingv =20
We get

—an Sinnt + bn Cosnt =0

- tannt = P— or Sinnt = b

a va® +b?
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a

Putting for Sinnt and Cosnt in

and Cosnt =

X = a cosnt + b Sinnt

We get Amplitude = a

a +b b
Ja? +b? JaZ+b?
Amplitude = f(a? +b?

-

Example : 9
A particle moves in a straight line. The velocity v at a distance x from a

fixed point in the line is given by v> = o -Bx?. Where K and 2 are positive
constants. Show that the motion is simple harmonic. Find period and amplitude

Solution :
We have vZ = a— Bx?

Differentiating both sides w. r. to t.
We get

2v-g-v—=—[32xd—x
dt dt

(ie) 2vx=-2Bxv

or X=-fBx
This is of the form X = - n® x where n? = B. Hence the motion is simple

harmonic of period 2rn/n=2n/\B.

Further, the velocity vanishes when o — Bx? =0

(ie) when x = + \/a/B

291



Hence the motion is confined to a distance Jo/B on either side of the

origin.
Hence the amplitude is Jo/B .

Example : 10
The velocity of a particle moving in a straight line is given by the equation

V = k Ja2 -x? where K and a are constants and x is the distance of the

particular from a fixed point on the line. Prove that the motion is simple harmonic
and find its amplitude. ‘

Solution :-

V =K \a? - x?
VZ - K2 (aZ - x2)

Differentiating both sides w. r. to x,

We get
2v. Y _ K2 (—2x)
dx
dv 2 2 . d?x 2
or V., — = —K*X — k“x (ie) ——=-Kk“x
(or) dx (ie) —

Above equation shows that acceleration varies as the distance of the
particle from a fixed point and is directed towards the fixed point and is directed
towards the fixed point.

The motion is simple harmonic of period ng :

Example : 11

A body moving in a straight line OAB with S.H.M has zero velocity at the
points A and B whose distance from O are a and b respectively and has a velocity
v when half way between them show that complete period is n (b - a)/v .
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Solution :-
Since the velocities at A and B are zero and as such they are the positions
of instantaneous restand AB=0OB-0OA=b-a2a

b-a

- Amplitude = 1/2 AB = = A say.

Now in SHMvZ= pu (A?=x?)

At the centre x =0 and V=v given.

b-a)? 2v
V2=MA2=M(-—§—) or Ju =%

2

:/%

s T =

=2 (bz';a) - b ; a)

Example :

The maximum velocity of a particle executing S.H.M is 2ft / sec and its
périod is % sec. Find the amplitude.
8slution :«

If X = -n® x be the equation of S.H.M and a be the amplitude, then the
veldeity v at a distance x is given by

V2 = n? (a2 = x?)

‘ The velocity is a maximum when x = 0 ((ie) at the origin) the maximum
velocity is na.

Further , the period is %:1

Here na =2 and _zh_n:l

These equations give a = (1/5x) ft.
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Example :12
A particle moving with S.H.M of period ™ sec has a maximum velocity of

2.4 metres / sec. Find the amplitude and the velocity at a distance of 0.9 metres
from the central position.

Solution :

We have E =7

n
andna =24 and
hence a= 1.2 metres.

Also v? = n? (a% - x?)
when x =0.9
we have v = 27 [ (1.2)* — (0.9)* ]

v =+/2.52 metres / sec

Example :13
A particle is performing S.H.M of period T about a centre O and it passes
through a point P with velocity v in the direction OP. Show that the time elapses

before it returns to P is L tan™' (vt/2n . op)
LY

Solution :
Let the equation of motion be
X =-n?x where ﬁzT
n

The equation can be written as
2 2 - d
(D + n“)x=0where D = p

The solution of this second order linear equation with constant coefficients
is given by

X = A cosnt + B sinnt | (1)
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Where A and B are arbitrary constants.
Further X = - An sinnt + Bn cosnt (2)

If we measure time from the instant when the particle is at P. we have
x=0Pand x =vwhent=0.

Equations (1) and (2) witht =0 then give, OP = A and V = Bn
=-nOPsinnt +vcosnt
Time to reach the extreme position in the direction OP is obtained. When
x =0

Vv
n.OP

we have tan nt =

t =%tan‘1 [v/n.OP]

(ie)
T,
=5 tan™' [VT/2n. OP]

T

Time that elapses before the particle returns to P = 2t

—
-

LI VT/2r . OP]
T

Example : 14 :
A mass m lie on a horizontal shelf making vertical simple harmonic
oscillations of amplitude 1 foot and period 1 sec. Show that the mass leaves the

shelf at a height of 8/ ft above the mean position that it then finally reaches a
. n? 4 .
height of 16 + — | ft above the mean position.

2
18

Solution: -
At a height x above the mean positian O. the acceleration of the shelf (and
hence that of the mass m on the shelf) is n? x towards O. the forces acting on the

mass are its own weight mg vertically downwards and the reaction R of the shelf
vertically upwards.
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. The equation of motion of the mass is given by m (n? x) = mg - R
(ie) R = mg ~ mn? x.

The particle leaves the shelf when R = 3

(ie) when x = —%
n

But En’_‘_ = period = 1 sec

NnN=2nx

2
Hence the particles leaves the shelf at a height x = 92 =43 T = 82 feet above
n ¢ 7
the mean position. Further the velocity v of the mass just when it leaves the shelf
is given by

: 2
vi= n?(a? - x?)=4zn? [1-(—8?) ]
)

for-28)
T

with v as initial velocity the mass travels upwards a further distance y under the
retardation g before its velocity vanishes.

we have O = v? — 2gy

, 256

V2 4r 5

y: = T

2g 64

[ _4) 4
16 2

The total height to which the mass rises above the mean position

(ie)

8 ., .8
nz nz 16 nz
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Exercise:

1. A mass of 1 gm vibrates through a millimeter on each side of the midpoint of
its path 256 times per sec; if the motion be simple harmonic, find the
maximum velocity.

2. InaS.HMiffbe the acceleration and v the velocity at any time and T is the
periodic time, prove that f2 T2 + 4 12 v? is constant.

3. If a body of mass m executing S.H.M makes n complete oscillations per sec.
Show that the difference of its K.E. When at the centre and when at a
distance x from the centre is given by 2m ™ n? x ?

4. A particle moving in S.H.M along a straight line between the points A A’ . P
' is a point in AA’ such that AP : PA’ = 1 : 3. Show that the time from A to P is
half the time taken from P to A’ .

5. At the end of 3 consecutive seconds, the distances of a point moving with
S.H.M from its mean position measured in the same direction are 1, 5, 5

units. Show that the period of one complete oscillation is %Esecs where

Cos'e = —?1 )
5

8.2 Composition of Simple Harmonic Motion

8.2.1 Composition of two Simple Harmonic Motions of the same period
and in the same straight tine:

Since the period is dependent only on the constant u. The two separéte
S.H.M are expressed by the same differential equations.

Let x, and x, be the displacements for the separate motions. Then we can

take \

X1 = a4 Cos(,/ﬁf—pe1 ) and x; = a, cos(\/th+ez).

Let X be the resultant displacement
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Then x = Xx; + X2

= a, cos (Jut + €, ) +a, cos (\/H + E,).
= cos fpt (a; COS &, + @, COS &,)

—.Sin \/ut (a) sin €, + a; sin €, ).

=cos\[E.Acose——sin\ﬁE.Asine (1)
where A cos € = ay COS €, + 83 COS &, (2)
and Asine =a;sine, +axsine, (3)

we can find the new constants A and €
Squaring (2) and (3) and adding
A? = a? +aZ +2a,a, cos(e, —€;) (4)
Dividing (3) by (2)

a, sine, + a, sine, (5)
a, cos €, + a, €OS &,

tane =

Now (1) becomes x = A (cos ,\/E cos € — sin it sine )

= A Cos (it 4 ¢) (6)

The resultant displacement given by (6) also represents a S.H.M of the same
period as the individual motions. A new amplitude is the diagonal of the
parallelogram whose sides are the original amplitudes a; and a, inclined to one
another at an angle e, — €,, the difference of the epochs.
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8.2.2 Composition of two Simple Harmonic Motions of the same period
in two perpendicular directions:

If a particle possesses two S.H.M in L' directions and of the same period,
we can prove that its path is an ellipse. Take the two L' lines as the axes of X
and Y. The displacements of the particle due to the separate motions can be
taken as

X = a, cos .fut (1)
Y = a; cos (fut + €) (2)

The path of the particle is obtained by eliminating t between (1) and (2)

From (2)

y =a, cos \/ut.cos € —a, sin fjut sine

2 X . X2
=a“cose —-a, sine [1-—
a, a;
2
L X COS € . X
(ie) y _ =-sine |1-—
aZ a1 a1

Squaring

2 2
X°COS“ e 2Xycose . X .
y _eXy =sm”e~-~—~-2 sin? e

a; aj a; 2, a;
2 2
(ie) xz 2 s+ y_2 =sin® e (3)
a? a,a, a2
This is of the form ax® + 2hxy +by®? = A (4)
Where a = —15- h=- cose’b=l2
a, a, a a;

Clearly (4) represents conic with centre at the origin.
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1 cos’e _sin’e

Also, ab — h? = =
a’a? a’a? a‘a}

=+ Ve

Hence (4) represents an ellipse.

If e =0, equation (3) gives -5— - ;‘-’— = 0 which is a straight line.
1 2

If € = n, (3) gives X + Y -0 which is also a straight line.

a, a,

. 2 2
If € = % , (3) gives ié‘+'y—2' = 1 which is an ellipse whose principal axes are
ay a;

along the axes of x and y.

f < =" and a; = a, , the path in the circle x* + y* = a].

kid
2

Example : 1
Show that the resultant of two §.H.M in the same direction and of equal
periodic time, the amplitude of one being twice that of the other and its phase a

quarter of a period in advance, is a S.H.M of amplitude J5 times that of the first

L : tan™' 2
and whose phase is in advance of the first by

of a period.

Solution:
Referring to composition of two S.H.M of the same period and in the same
straight line.

Let the separate displacements be

X, = ay cos (it + &) and (1)
X, = a; cos (it +€3) (2)

Here a, = 2a, and —2—" = phase difference

M
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1 2n

-

2 I

. _ T

X
2
we know that the resultant displacement is

x=Acos(\/E+e) (3)

where A, = 2112 + a% + 2a1 a, Ccos (e1 —62)

= a12 + 4'&112 +412 co:-:.(—90°)=5a.‘2

. Amplitude of the resultant motion = A = a,+/5 .

a, sine; +a, sine,
a, cos &, + a, CoS €,

Also tan e =

_ a, sine, + 2a, sin (90° +¢,)
a, cos €, + 2a, cos (90° + &,)

§ine _sine, + 2C0S €,
cose CoOs &, — 2sin g,

(ie)

Sinecose, —2sinesine, =sine, cOSe + 2C0S &, COS €
or sin(e-g,) =2cos(e~¢)
(ie) tan(e-g,)=2

(or) e-g, =tan™" 2

€ — €, M’tar't"’1 2:___'tal'1"1 Z(Zn)

N O TR W
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-1
= tan_ 2 of a period .
27

This is the phase difference of the resultant Simple harmonic motion.

Exercise: -

1)

2)

Two simple harmonic motions in the same straight line of equal period and
differing in phase by % are impressed simultaneously on a particle. If the

amplitudes are 4 and 6, find the amplitude and phase of the resulting motion.

A particle possesses two S.H.M of the some period with amplitudes a and b
and phase difference g is two L' directions. Show that the particle traces

an ellipse whose semi major and minor axes are a and b.
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UNIT - IX
CENTRAL ORBITS

9.1 Introduction:

in the previous chapters, we have considered some particular case of
motion of a particle in two dimensions. To fix the position of a particle in a plane,
we require two coordination and to study the motion of the particle. We require its

component velocities and accelerations in two mutually 1"directions. We had
previously used cartesian coordinates. In this chapter we shall use polar
coordinates

9.2 Components of velocity and Acceleration Velocity and

Acceleration in polar coordinates:
Let P be the position of moving particle at time t. Taking O as the pole and

OX as the initial line, let the polar coordinates of P be (r,0). OP=ris the position

vector of P. Hence the velocity of P = % (r) since r has modulus r and amplitude

0, % (r) will have components r along OP and ro to OP.

Hence the velocity vector v at P has components ralong OP in the

direction in which r increases and ro L' to OP.

In the direction in which 0 increases. These are respectively called the
radial and transverse components of v.

The acceleration vector at P is the derivative of the velocity vector V. The

radial component of v is a vector which modulus r and amplitude 0. Hence the
derivative of r will have components
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o ad . .
)y —(r)=r
) = )
along OP in the direction in which r increases and
. d :
ii) r—(06)=r06
) dt()
1" to OP in the direction in which O iricreases. This is shown in fig. (a).

The transverse component of v is a vector with modulus r 6 and amplitude

T
=—+0.
o 5+

Hence the derivative of r 0 with have components.
. d

i) — (rO)=r0+0r

) o (ro)

along the line of r 6

(ie) in the direction L' to OP and
i) r9£(£+9]=ré 2
dt { 2
in the direction L' to the line of r 8

(ie) in the direction PO.

(This component is towards O, as it is ih the direction in which ¢ increases)

This is shown in fig. (b).

O  Derivative X @) Derivative
of 1 of r
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Hence the totals of the components of acceleration are 1 - ro 2 in direction

OP and 18 + 2r0 in the L' direction.

Now, 1
r

.i(r2 0) = -1—(r2 0 + 2rro)
dt r

=rQ+2ro

.. Acceleration L "to OP is also = 1-%02 0).

r

The above results are collected in a table of reference.

Magnitude
1. Radial component of )
velocity
2. Transverse component :
e ro
Of velocity
3. Radial component of 2
acceleration
4. Transverse component 1d (r20)
Of acceleration r at

Theorem:-

Direction

Along the radius
vector

Perpendicular to

the radius vector.

Along the radius
vector

Perpendicular
the radius vector.

Sense

In the direction
in which r
increases.

In the direction
in which 6
increases.

In the direction
in which r
increases

In the direction
in which 6
increases.

9.2.1 The velocities of a particie along and L' to the radius vector from a fixed
point are a and b. Find the acceleration components along 1" to the radius

vector and the equation of the path.

Solution:-
We are given that

r=a and ro=>b .
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) dr a
(e — = —
rd0 b
) dr a
el — = —dO
(ie) ; 5

On integration, we get

(ie) r = Ke atb \which is an equiangular spiral.

Further, Since r=a
We have r = 0

the radial acceleration = r — r 0?2
= 0-2(ro)y
r

b2

r

and the transverse acceleration.

1 d,, -
= —-.—(r° 9
r dt( )
. 1 d .
Transverse acceleration = - Et-(r.re)

=1 -—d—(r.b) by
r dt r

= _1_ba = E.E
r r
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Corollary:
The magnitude of the resultant velocity of P

= Jr2+(rof = r2+r20? .

and the magnitude of the resultant acceleration

9.22 Equations of Motion in Polar Coordinates:

If R and S are the components of the external force acting on a particle of
mass m is the radial and transverse directions, we have the equation

R=m(r-r0) (1)
N\
and S=m.1.i(r2(-)J
r dt

If R and S are known functions of the coordinates r, 6 and the time t, the
differential equations (1) and (2) can be solved to find r and 6 as functions of t
and by eliminating t, the polar equation to the path is got.

Note on the equiangular spiral:

Some equations in this chapter will relate to the curve called the
equiangular spiral. This curve has the important property that the tangent at any
point P on. It makes a constant angle with the radius vector OP.

Let OP (=r) and OQ (= r + Ar) be two consecutive radi vectors such that
the included angle POQ =A 0.
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Draw QL L "to OP.
ThenOL =(r+ Ar)Cos AOQ =r+ Ar approximately.
Hence PL =OL - OP = Ar
and LQ=(r+ Ar)Sin A0 =(r+ Ar) A0 nearly
=r A0 to the first order of smallness

Hence tanfpL = 2 - M

F[- AT .

In the limit as Ar and A 6 both — O the point Q tends to coincide with P.
The chord QP becomes in the limiting position, the tangent at P. Let ¢ be the

angle made by the tangent at P with OP.

L
Then ¢ = Q—P/ QPL

Hence tan ¢ = "™ tan ZQPL = bm ¢ A0 _ . a0
Ar—-»Q Ar--0 Ar dr

(ie) tan ¢ =7 a0
dr

This formula is an important-one in dealing with curves in polar coordinates
and it gives the angle between the radius vector and the tangent. Now for the
equiangular spiral, at any point P on it the angle ¢ is constant.

Let $ = a. Thentan ¢ =tan a.

(ie) r -3% = tan o

(or) gri = Cot a.d0

Integrating, log r = () Cot a + constant

(le) r = ae teot u
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This is the polar equation to the equiangular spiral.

This shape of the curve is as shown beiow.

Worked Examples

Example : 1
The velocities of a particle along and L' to a radius vector from a fixed

origin are Ar? and u0? where p and A are constants. Show that the equation to
the path of the particle is %+ C= 5%— where C is a constant.
r
Show also that the accelerations along and perpendicular to the radius

2n4 - 30
vector are 2 A% r® ——ﬂ—re— and (lrez 4,210 J
, r
Solution:
Radial velocity = 3—§ = Ar? (1)
Transverse velocity = rde = uf°?
ransverse velogity = 1=+ = (2)
Dividing (2) by (1)
We have
do uo? . .do
e (&) Az =izar
, A K
Integrating, ~— =- — +C
g g 0 2r?
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(ie) _er‘?:?;_u: (3)

(3) is the equation to the path.

Differenting (1), — =% 2r—

=222 r’ using (1)

Radial acceleration

2 2
r-re? = d—r——r(—d—q)

dt? _dt
2 \2 4
=2722r% (“0 } =252 MO king (2)
Lor r

= | -

Example : 2

Show that the path of a point P which possesses two constant velocities u
and v, the first of which is in a fixed direction and the second of which is
perpendicular to the radius OP drawn from a fixed point O is a conic whose focus

. ... u
is O and whose eccentricity is —.
v

Solution:
Take O as the pole and the line OX parallel to the given direction as the
initial line P has two velocities u parallel to OX and v perpendicular to OP.
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Resolving the velocities along and perpendicular to OP,

We have %zucose (1)

r ﬁ=v—usim~) : (2)
dr

To get the equation to the path, we have to eliminate t

\"4
P T;
6
'e) X
Dividing (2) by (1)
We have
, dd v -uSin0
dr uCoso
(ie) uCosQ 4o = dr or d(usnrin 0) _ dr
V-uSino r v—-using r
Integrating,

-log (v—usin 0 ) + log A = log r where log A is the constant of integration

(le)logr+log(v—-usin 0)=log A

AL

(ie)r(v=uSin 0 )=A orr v—usin 0
‘ (i‘t\—)lﬂ-—-U—Sin9=1+E Cos(90° + 6)
(ie) \V /r Vv vV (1)
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. ¢
This lstheform—r'- =1+eCos (0 + a) (2)

Caomparing (1) and (2) ¢

We have ﬁ=€—, e-_-u and o = 90°

v

We knaow from Analytical Geometry that (2) is the polar equation to a conic whose

focus is at the pole, semi — latus rectum is + eccentricity is e and whose major

axis makes an angle o . with the intial line. Hence (1) is a conic whose focus is at

O, semi — latus rectum is é. eccentricity is Y and whose major axis is
Vv v

perpendicular to the initial line

Example : 3

A point P describes a curve with constant velocity and its angular velocity
about a given fixed point O varies inversely as the distance from O; Show that the
curve is an equiangular spiral whose pole is O and that the acceleration of the
point is along the normal at P and varies inversely as OP.

Soliution ;
Taking O as the pole, Let P be (r ,0 ).

Resultant velocity of P

r

= \/r 2.4+r?9? = constant (given)

If this velocity = k

We have

312



ré+r20? =k?2 (1)

Also angular velocity about O
e k .
6= - (given) (2)

From (1) and (2)

7\.2
r2+r2—~;—=k2
re

(ie) r?=k?2-2% or r= vk? - A2 (3)

Eliminate t from (2) and (3)

~ -r_ ~ k2 - A‘Z .
do (EIE) 0 A
dt
(ie) ar N oA do
r A
2 42
Integrating log r = —kx—le +B
LD VLT
(or) r=e * +B= e e
2 _ 42
Putting e® = a and -——E—k—k = Cot o
The above becomes r = ae *C» (4)

Hence the path is an equiangular spiral, whose pole is O .

Differentiating (3) , r =0
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;\'2 A2

. . N
Radial acceleration =r —r0?2 = —r. —
r

™~

r

The negative sign shows that the radial acceleration at P is along PO.
Transverse accelerati.on
1d
r

’
. —(r?e)=—.
d( ) r

-t

i

%r 2 k2 =r% from (3)

Resultant acceleration of P

Ll

rj r

22V [ 2
( - l +[J-\/k2—7uz]
\

_ \/;f 5 (K2 32) /Azkz _ ke

r r? V r? r
Thus the resultant acceleration varies inversely as r.

(ie) as QP. Let this acceleration be along PN making an angle B with PO.

Component L' to PO
Component along PO

tan 3 =

k? — 22
But Cot a = EEEr— from equation (4)

Hence tan B = Cot o = tan (90° - «)

(ie) p=90°-a or B+ a =90°
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Hence NPT = 90° where PT is the tangent at P.
Hence PN is normal at P.

Example : 4

A smooth straight thin tube resolves with uniform angular velocity o in a
vertical plane about one extremity which is fixed. If at zero time the tube be
horizontal, and a particle inside it be at a distance ‘a’ from the fixed end, and be
moving with velocity V along the tube Show that the distance at time t is

aCosh ont+ 'y _ g“ Sin h wt + 92 Sinomt
W  2mn° 20

Solution :
Let at time t, P be the position of the particle of mass m on the tube OB.

The forces acting at P are
i) its weight mg vertically downwards and
~ii) normal reaction R __" to OB.

Let P be (r, 0)
: do :
Angular velocity = 0 = a9t =m (given)

Integrating 6 = ot + A
Initially whent=0, 0 =0
A=0

.. 0

ot (1)
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Resolving along the radius vector OB,

m(r —r02)=-mgCos(90° —0) =-mg Sin 6
r—ro? =—gSind=-gSinet (using (1))
(ie) (D? - w?)r=-g Sin ot

where D = —(—d—
at

The complementary function Y is found such that (D= w?)Y=0

The solution of this differential equation is Y = Ae ' +Be ™
Where A and B are constants.
The particular integral u of the equation (2) is given by

(D? - ®?)u = - g Sinwt

u=-- — Sinmt =~ zg S 5 Siﬁ(ﬂt
D¢ —w - —

u= gz Sinmt

Hence the general solution of (2) is

9
5 2

20

r=Y +u=Ae"' +Be'“'+ Sin ot

The initial conditions are: whent=0

r=a andr=v
Hence (5) gives A + B = a

Differentiating (5)
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r = Awe"!' - Bwe "'+ g Cos wt

€3]

Putting t = 0 and r=vin (7)

We have

Ao ~Bo + = =y (ory A-B=Y__8
@

t =a Coshot + (i_.—%—] Sinhot + —2_ Sinot

®© 2 202

Example : 5
A particle moves with uniform speed v along a cardioid r =

(7)

(8)

a(1+ Cos 0)

show that its angular velocity about the pole is { v sec ( 8/2) / 2a } and that the

radial acceleratign is constant .
Solution :
Sincer=a(1+ Cos 0)
We have r==a Sing 0
The radial velocity f =-a Sin6 0
The transverse velocity = ro

=a(1+Cos0) 0
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We are given that
r2+r29? =v?

(ie) a2Sin2002+a%(t+Cos0)?02=v?
(ie) 6°a° [Sin2 0 + (1+ Cos 9)2]= v?

or 02.2a2 [1+ Cosb] = v?

or 02.4a% Cos? (0/2) = v?

or 02.2a Cos? (6/2) = v
v _ vsec (8/2)

() 0= 33Cos (6/2) 2a

The angular velocity about the pole is [v Sec (8/2) / 2a]

Substituting for 0 is (1)

We get
3/
r = —aSinE).VSec (6/2)
2a
= -a.2 Sin—e- Cos _G_.VSec (9/2)
2 2 2a
r = -V Sin(9/2)
r = -V Cos(0/2).120
- _VCos(0/2).1/2. YSec W 2)
2a
. V2
r= ——.
4a
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The radial acceleration
=r - rg?

VZ
~—-a{(1+Cos0)0?
4a

]

5 _ 2
- Y pacost (9] [VSec(o/2) |
4a V2 | 2a J
_ V2 V2 _ ~ 3v2
4a 2a 4a

which is a constant.

Example : 6 (U . Q)

A particle of mass m moves along the curve r = a (1+ Cos9)under the
action of a force Q in the positive direction of the initial line . If the angular u
velocity of the particle about the pole be constant and is equal to . find the
values of P and Q and show that the K.E of the particle at any point of the path is

( 2P+3Q)
a —_—
8

Sofution :

Giventhatr=a (1 + Cos 6 )and 6 = «

. wehaver =—aSino . 6 =—aq Sin 0

and T =—aw Cos0 .0 =—aw2Cos O

The equations of motion of the particle are

m(r - r62)=-—P+QCosO

/
and m. - 2 rz())] = — Q Sino
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Sin 6 = v, a constant and r = - aw? CosH
These equations give
—P+Q.Cos 6 =—mwn?[aCos 0 +r]

=—mon?[aCos ®+a(1+Cos 8)]

= —mwo?a[2Cos 6 + 1] (1)
and —QSind =—2mw?aSin 0 (2)
Eliminating Q from (1) and (2)
We get
—~PSIN0 =—mn2a[25in0Cos0+SinB]—-2mw?aSin 6 Cos 6
=—mo?aSin 6 [4Coso +1]
(ie) P=—mw2alt+ 4 Cosé]

mo?a 1+4.r_a]i Sincer=a (1 + Cos 0)
a

- —

=mw?a [4r -3a] .
Substituting the value of P in (1)

We get
QCos 0 =P-—-mmw?a(2Cos 6 +1)

=mwn?a(1+4Cos0)—mo “a(2Cos 6 + 1)
QCos 6 =2mw?a . Cos 0O
(ie) Q =2mo % a

Thus the values of P and Q are determined
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Further,
2P + 3Q 2me? [4r - 3a] + 6mo’a

8 8

e

= mw?r {3)

The velocity components of the particle along the radial and transverse

directionarer andr 6

S The K. E = .%m (!‘2 + FZGZ)

u

%m [(aw Sin6)® + a1+ Cos 0)® w?)

-;—mmzaz[Sin2 6 +(1+ Cos 0)?]

—;-mmzaz[2+2CosO]

Emm2322[1+Cose}

K.E mw?ar

Using (3) in this we see that

K. E ;a.[ﬁ‘;i@j

Example : 7 (U.Q)

A point P describes an equiangular spiral with constant angular velocity
about O. Show that the acceleration varies as OP and has a direction making with
the tangent at P the same constant angle which OP makes.

-~

Solution:-

Let r = ae "“'* be the equation of the equiangular spiral.

So that a is the constant angte which the radius vector OP makes with the
tangent at P.
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We have
=f ae" %"  QPcota = rOCota = roCota

where o is the constant angular velocity about O.
Differentiating once again.
Wegeti =roCota = re® Cot? a
~. The radial acceleration of the particle
=r - rp?
= ro’Cot? o0 —r ©?

= ro?(Cot? a — 1)

The transverse acceleration = 1 ——-(;jt (r?0)
r
1d
= — —— r W
r dt (re)

= —;m 2rr= 2or =20 (ro Cota)

If ¢ be the angle which the resultant acceleration making with the radius

vector OP
2
Then tan ¢ = 2m° r Cot o 2Cotua
rm? (Cot? « -1) Cot? a—1
= tan 2«
L = 2a

(ie) The direction of the acceleration makes with the tangent at P an angle

=(200 —a)=a.

(ie) The same constant angle o which OP makes with the tangent at P.
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Exercise:

1)

2)

3)

The velocities of a particle along and L' to the radius vector from a fixed
origin are a and b. Find the path and the accelerations along and
perpendicuiar to the radius.

If the angular velocity of a particle about a point in its plane of motion be
constant, prove that the transverse component of its acceleration is
proportional to the radial component of its velocity.

A point P moves in a parabola in such a manner that the component velocity
at right angles to the radius vector from the focus is constant. Vector from
the focus is constant. Show that the acceleration of the point is constant in
magnitude. '
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UNIT-X
Differential Equation of a Central Orbit

10.1. Differential Equation of Central orbit:
A particle of mass m moves in a plane under the action of a force m F

directed towards a fixed point in its plane. Show that its angular momentum is
2
constant and that the differential equation of its path is gé% +u=F/h%, where

= 1/r, r be being the radius vector from the fixed point to the particle. 6 is the
vectorial angle and h, a constant.

Solution:

Let P be the position of the particle at any time t and let(r,0) be the polar
co-ordinates of P with respect to the fixed centre of force as pole. The
acceleration of the particle along OF and perpendicular to OP are
F—r 62 and% Edf (r20). The only force acting on P is mF towards C. Therefore the
equations of motion a, c.

X
m (f =re?) = —mF and (1)
1 d
m. - —(r6)=0 2
i dt( ) (2)
The Second equation gives r?6= a constant say = r’6 =h (3)

. Then we have

Put r= 1
r
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2
- — h2u2 E.Li
do?

Substituting for ¥ and 6 in equ (1), we have

Which gives the differential equation of the central orbit in polar co-

ordinates. The velocity components of the particle along OP and 1" to OP are r

and r6 respectively and hence the linear moments in those directions are mt and

mr0 respectively. Taking moments of these vectors about O, we see that mr has

no moment about O and mr@ has moment given by r(mr6) = mr?6.
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The moment of momentum (ie, the angular momentum) of the
particle about O is mr20 . But r20=a constant = h. Hence the angular momentum
of the particle about O is a constant = mh.

10.1.1 Perpendicular from the pole on the tangent Formulae in polai
Coordinates:
Let ¢ be the angle made by the tangent at P with he radius vector OP.

We know that tané=r % (1)

From O draw OL 1"to the tangent at P and let OL = P.

Then Sin¢ = ﬂ'— = —?

=r Sin 2}
oP o P ¢ (2]

o/p

Let us eliminate ¢ between (1) and (2)

1 1 1
From (2), = — — Cosec?
( ) P2 r2Sin2¢ r2 ¢

r12(1_+Cot2 o)

2
—1-2— {14- —12— (E—J ] Substituting from (1)

r r do
. 1 1 1 (dr)?
e) — = — — | — 3
@ o =%+ =+ (55) @
1 dr _ dr du _ 1 du
Usingr= — , = . =— — . —
u' do du de u? do
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Hence (3) becomes

1 ) 0 1 ’du]2 o1,
— =u u* . — | — | .(ie) —==u"+|— 4
p? rut ) h () 4)

10.2 Pedal Equation of the central orbit:

A particle P is describing a central orbit with a central acceleration F
towards the pole O. If P be the length of the perpendicular from the pole on the
h?dp

3

. h being the constant angular
p-dr

tangent at the point P, Prove that F =

momentum of the particle about O.

Solution:
From the geometry of a plane curve, we have

B B (g_
p? r? r? dGJ
Taking u = 1,we have oo = — A dr
r do ré do
2
Therefore, B u? &+ (E[] .
p? . do

Differentiating both sides w.r.t.r, we have

P ar ar <46 d
:

2 dp , du 2du d(du)
do

2
=2udu+2du d“u do

dr dr = do? dr

2
o4 du+2du d“u

dr dr ~ de?

_,du d2u+u
dr | de?
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-

-2 g u=%)

r

2
But —ge—g- + U = B‘zE’E where h is the constant angular momentum of the particle
n
about O. Therefore
_2 49 _ _2 F
p3 dr l.2 h2u2
2
ie, h* gop F.
P2 dr
Problem: 1

Show that the velocity V at any point P(r,0) in a central orbit is given by
V = h/p, where h is the constant angular momentum of the particie about O.

~ Solution:
At the point P(r, 0), the particle has a velocity V whose components along

the radius vector and perpendicular to the radius vector are rand ro respectively.
Therefore,

V2 - r.2 + rzez
Butr® ® =h . 8 = h/r® and therefore

V2 = r? + r? (h/r?)?
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1 .
=h2'5? ie V =h/p.
Note:
From (1), we have - -—
" / |
. , 1 1 'dr\z
Vizh? | —+ — —
7T ) |
dr\?
..h2 u2 ( )
[ |38
u =1/r.

10.2.2 Pedal equation of some of the well-known curves:

(1) Circle-pole at any point:
Let C be the centre 'a’ the radius, O the pole where OC = C.

Let P be any point on the circle and OL be the L'from O on the tangent at

OP =rand OL = P.
From AQOPC,

C?=r?+ a%-2ra Cos [JOPC

r’ + a? - 2ra Cos /POL

r2+a2—2ra.-€-

C? =r*+a’-2ap
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Hence the pedal equations of the circle for a general position of the pole is
c?=r?+ a’—-2ap. When C = a, the pole is on the circumference and the equation.

(2) Parabola — Pole at focus:-
To get the (p,r) equation to a parabola, we assume the geometrical

property that if the tangent at P meets the tangent at the vertex A in Y and S is
the focus, then SY is L"to PY and the triangles SAY and SYP are similar.

Y P
90°
P r
A
a S
SA SY
Hence =
SY SP
e) 2 = P or P2=ar.
p r

(3) Ellipse or Hyperbola Pole at focus:
Let S and S' be the foci of the ellipse and SY and SY, S'Y' be the 1™ to
the tangent at P. Taking S as the pole,

Let SP =,

S'P =r', SY = P. s'Y' =P
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Let a and b be the semiaxes.

To find the (p,r) eqguation we assume the following geometrical properties
of the ellipse.

i) SP + S'P = 2a

(ie) r+r' = 2a

i) SY.S'Y'=p?
(ie) PP' = b?

iii) The tangent at P is equally inclined to the focal distances so that SPY and
s'PY’ are similar triangles.

1
So we have P _ ET
r r
2 1
Now D—z—- = ppﬁ Using (ii)
p p*
1 i
=P - L (usingiii)
p r
= ~2——a—r1£ Using (1)
= .gé_ - 1
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b* 2a . : .
Hence — = — - 1isthe (p.r) equation to the ellipse.

p* r

By a similar argument, the (p,r) equation of the branch of the hyperbola

b‘ _ 2a

nearer to the focus is — = - 1.
p&

(4) Equiangular Spiral:
In any curve P =r Sin ¢ in the usual rotation.

In the equilateral spiral, ¢= Constant = a (say)
Hence P =r Sin « = Kr is the (p,r) equation to the spiral.

10.2.3 Velocities in a central orbit :

In every central orbit the areal velocity is constant and the linear velocity
varies inversely as the 1.’ from the centre upon the tangent to the path.

Let at time t the particle be at P(r,0) and at time t + At |

Letitbe atQ (r+ Ar, 0 + AB)

Sectorial area OPQ described by the radius vector OP

Area of AOPQ nearly

= % OP . 0Q Si_POQ
1 }
= N r{(r+ Ar)Sin \O

% r’ A 0, to the first order of smallness.

The rate of description of the area traced out by the radius vector joining
the particle to a fixed point is called the areal.
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Hence in the central orbit, areal velocity of P

- o 1,280 _1.0.d0 1, (1)
1t—+02 At 2 dt 2

Since r20 = constant = h from equation (3) of Differential equation of
central orbit.

Hence h = twice the areal velocity and as h is a constant, the areal velocity
is constant. In other words, equal areas are described by the radius vector in
equal times.

We can get another expression for the areal velocity.

Let As be the length of the arc PQ. Draw OL 1" to PQ.

Sectorial area POQ = APOQ nearly

-—
—

1
— PQ . OL
2

As At — O, Q tends to coincide with P along the curve and the chord QP
becomes the tangent at P. Length PQ = As nearly and OL becomes the 1" from
O on the tangent at P. Let OL = P,

Hence areal velocity

1 As 1..ds 1
= Llm — ==.P = —-P—=—=PV 2
‘%1—’0 2 At 2 ( )
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and %?— is the rate of describing S and so in the linear velocity of P.
Hence combining (1) and (2).

1 1
areal velocity = —h = =PV
y=3 >

or h=PV (ie) V=

Tl

.. Hence Linear velocity varies inversely as OP.
10.2.4 Two fold problems in central orbits :

It is clear that two types of problems arise in connection with central orbits.
They are

i) Given the orbit, to find the law of force to the pole.
ii) Given the law of force, to find the path.

We shall first take up (1)
The differential equation to the central orbit in polar coorbinates is

d?u P

u+ — = .
d0¢  h4u?

) 2
Hence P = h? y? u+g—Li
do?

Since the orbit is given, u is known as a function of 6 flence by
differentiation, P can be got from the above equation.

In a few cases, we may know the (p, r) equation to the path. To find P we

2
can use the equation P = h” dp

P® dr



Example: 1 (U.Q) 4
Find the law of force towards the pole under which the curve r" = a" Cos n0
can be described .

Solution
Letr"=a" Cos nO

) 1 , )
Sincer = = the equation is u” @" cos n0 = 1 (1)
Taking logarithms.

nlogu+ nlog a+ logCosno =0 (2)

Differentiating (2) with respect to 0.

1 du n Sin N0
n. — — - ——— =0
u do Cos n0
i du
ie) — = u tanno 3
(ie) 90 (3)

Differentiating (3) with respect ta 0,

2
d-u :unSec2n9+tanne.9l-j—
do? do

= nu Sec 2n0 + utan 2 no using (3)

dzU 2 2
u+ —— = u+nuSec“nb +utan°nod
do-
= nusecinO +usec’no
=(n+ 1) usec®na
=(n+1)u.u®.a”
using (1) to

Substitute for sec 2 no

=(n+1)a® u "’
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d?u 2,2 2 2n+1
d@zw,' = h* u* (n+1)a“" . u

P =h?u? (u+

5 oy n 1
=(n+1)a®h? u*™® =(n+1)a?h’. - (4)
r2r!3 ‘

(ie) P « -él—s Which means that the central acceleration varies
r _

inversely as the (2n + 3) rd power of the distance.

Note :
From (4), P is positive only when n + 1 > 0.

(ie) n>-1

For values of n < -1, P will be negative and in such cases, the central forces will
be a repulsive one. The above case is a comprehensive one giving the law of
force for describing the following well known curves corresponding to particular
values of n. ‘ :

i) when n = 1, the equation is r = a Cos 0. The curve is a circle and

Poc%s.
2 2

i) when n = 2, the equation is r* = a“ Cos 26 . This is the Lemniscate of
- 1
Bernowli and P « %7.

i} When n = —, the equation is r'? = a "? Cos 9/2 .

1
2

(ie) r=aCos®9/2==(1+Cos 0)

a
2

This is a cardioid and P « 14
r

iv) Whenn = - —, the equatioﬁ is r% =a—y2 Cos9

1
2
. 12 _ 12 0

(ie) a'“=r Cosé.
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Sor = 3 = 2a
Cos” 6/2 1+Cos6

(ie) -?F?- = 1+ Cos9

This is a parabola and P oc—1—

~

r‘.
v) When n=— 2, the equation is

-2

a2 Cos 20

,
(ie) r’ Cos 26 = a’
This is a rectangular hyperbola. In this case the actual value of P = — a™® h?r
The negative sign of P shows that the central force is a repulsive one.

Example :2
Find the law of force to an internal point under which a body will describe a
circle.

Solution:
From pedal equation of some of the weil — known curves the pedal
equation of the circle for a general position of the pole is

C?=r?+a®—2aP (1)

Differentiating with respect tor,

O =2r—2a 9—9-
dr

: dp r
e) —=—
(ie) dr a

*

Now the central acceleration.

P =

2 2 2 o2
h .dp LI 28h 2 al — Substituting for 3 from (1)
p® dr pla (r*+a’-c?)
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Example: 3(U.Q) )

A Particle moves in an ellipse under a force which is always towards its
focus. Find the law of force, the velocity at any point of the path and its periodic
time.

Solution:
Referred to the focus as the focus as the pole, the polar equation to the

ellipse is §=1+e Coso (1)

Where e is the eccentricity and ¢ is the semi-latus rectum,.

1 _ 1+eCos#6
r e

From (1), u =

du _ eSin® d’u _ e Coso
Hence — =— and = — —
do ¢ do? 14

U+ d’u _ 1+eCos8 _ eCost _ 1
de ¢ 4 ¢
P d®u 1
We know that = U+—0 = -—
ha h?u® " do? ¢
2.2 2
Hence P = h :j = —L-;— where p = —

(ie) The force varies inversely as the square of the distance from the pole.

We have the result

S+ (du]z [Re fer 1" from the pole on the tangent FQrmula]

P2 do) |in polar coordinates

_ (1+ e Cosb)? N (e Si,nGJ2
4 f
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1+ 2e CosH + e2
/}2

Also h = Pv where v is the linear velocity

2 2 5
Hence v = h"™ _ h”" (1+2e Cos6 + e?)
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Now if a and b are the semi-axies of the ellipse,

We know that

b2  a2(1-e?)
a a

¢ = = a(1-e?).

Hence Putting ¢ = a(1-e?)is (2),

VZ=p [% - —;—] giving the velocity V.

A real velocity in the orbit = % h and this is constant.

The total area of the ellipse = nab.

Periodic time T = rab _ 2Zrab

C(Joh) h
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2rab . h?
, Since p = -~

znab.«/é_ Since €=b%.
a2,

Example: 4

A Particle moves in a curve under a central attraction so that its velocity at
any point is equal to that in a circle at the same distance and under the same
attraction. Show that the path is an equiangular spiral and that the law of force is
that of the inverse cube.

Solution:

Let the central acceleration be P. If V is the velocity in a circle at a
distance r under the normal acceleration P, then

Yri=|= (le) V2 = Pr (1)

Since V is also the velocity in the central orbit, h = pVorV = E

h2

Putting this is (1), I;-z- = Pr. (2)
We know that
_ h? dp
P P2 dr (3)

Substituting (3) is (2)

h? _ h? dp
P P dr’
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Integrating, /
IogP=|59r+IogA
(ie) P = Ar

(4) is clearly the (p,r) equation to an equiangular spiral.

From (4) , 112=A
r

Substituting this in (3),

(ie) P arls

Exercise:

1) Find the law of force towards the pole under which the following curves can be
described

) r?=a?Cos 26 ii) 1/ =a}4c°s_g.

iii) " Cosnf=a"iv) r"=ACosn+BSinno
[Hint: The equation can be taken as r" = A Cos(n6 +a )]

via=rSinno viyr=a Sinnb

vii) -‘:1 =e"0.8

2) Find the central acceleration under which the conic % = 1+e CosOcan be

described.

3) ‘The velocity at any point of a central orbit is one half of what it would be for a
circular orbit at the some distance obtain the law of forces.
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