THE
MATHEMATICS
STUDENT

IDITED BY

S. M. SHAH
WITH THE ASSISTANCE OF

P. T. BATEMAN P. L. BHATNAGAR HANSRAJ GUPTA
V. S. KRISHNAN S. MINAKSHISUNDARAM C. RACINE
K. G. RAMANATHAN M. S. RAMANUJAN B. R. SETH
J. A. SIDDIQI XK. VENKATACHALIENGAR
M. VENKATARAMAN

VYol. XXVI

1958

PUBLISHED BY
THE INDIAN MATHEMATICAL SOCIETY



PRINTED AT THE
COMMERCIAL PRINTING PRESS PRIVATE LIMITED
BOMBAY



CONTENTS

PAPERS

Ram Barrasu: On the possibility of steady Beltrami flow in

a viscous liquid . . . . . . . 21
L. BRuTyaN :  Advances in mathematics in U.S.S.R.. . 173
S. C. CEAKRABARTI Y few identities on higher differences 17
S. H. Dwivepi: On entire functions of finite order 169

L.C. Hsu: A few usoful modification of Newton’s approximation
method of solving real equations . . . 145

L. C. Hsu: The uniform approximation to the Lipschitz class of
functions by a kind of trigonometric polynomials . 155

P. JEa: On the characteristic equation of rectilinear con-
gruence . . . . . . . . 9

S. K. LagksamMana Rao: Turan’s inequality for general Laguerre
and Hermite functions . . . . . . 1

P.S. Rav : On positive definite quadratic forms . 165
M. V.SusBa Rao: Some properties of quadratic residues 7

M. V. SueBa Rao: On representation of numbers as sum of
two squares . . . . . . . . 161

MATHEMATICAL NOTES

A. A. GNaNaDos : Concurrent §-normals o 182
M. PERISASTRI : A note on odd perfect numbers . . 179
P.S. Ravu: The general conic and the conicoid . . 178

M. SATYANARAYANA: A note on Fermat and Mersenne’s
numbers . . . . . . . . 177



i CONTENTS

CLASSROOM NOTES
V. BALASUBRAMANIA SArMA : Invariants . . . 186
V. BALASUBRAMANIA SARMA : A note on invariants . 187

N. L. Maria ;: Bisectors of the angles between the lines ax® -+

+ 2hay +by? =0 . . . s . . 25
R. RagHAVENDRAY : Concurrence of the nornials o . 183
VAKRAGL : An extension of the operator formula . . 185
QUESTIONS AND SOLUTIONS: . . . 27

BOOK REVIEWS

AvuTHORS : R. V. ANDREE, p. 29; C. BrirLEY and R. V. ANDREE,
p. 189 ; V. ANNAPURNIAH, D. 189 ; LAKSHMICHANDRA JAIN, p. 190.
P. C. MAHALANOBI% p. 190.

Reviewers : V. KRISENAMOORTHY, p. 29 ; A. R. Koxaxw, p. 190;
GorarHa Prasap, p. 190 ; J. A. SippIiqr, p. 189.

NEWS AND NOTICES: pp. 31-32, 139-140, 193-196.
REPORTS OF MEETINGS:

Report of the Twenty-third Conference of the Indian Mathematical
Society : p. 33-138.



TURAN’S INEQUALITY FOR THE GENERAL
LAGUERRE AND HERMITE FUNCTIONS

By 8. K. LAKSHMANA RAO

0. It is well known ([2 1, [3], [4]) that the orthogonal-polynomials

P¥(), L (x) and H,(x) satisfy the inequality of Turan, viz.
[fu(x)]2 “fn—*-l(x) fn-—l(w) >0

over suitable ranges of z, with appropriate restrictions on the para-

meters like A and a. Recently K. Venkatachaliengar and the author

have shown [4] that the inequality of Turan holds also for the
solution P(x) of the differential equation

(1—8%) " — (@) + )y’ +n(n+22)y =0 (0.1)
with n = any real, positive number and A > 0, by taking P{M(x)

as the solution of (0.1) which is regular at = 1 and corresponding
to the conditions (y),_,> 0and (¥'),.; > 0.

In the present paper we prove Turan’s inequality for solutions
L), H,(x) of the differential equations
2y +(@+1—2)y +ny =0, (0.2)
Yy’ — 2xy" + 2 ny = 0, (0.3)
when 7 is any real, positive index. We also observe incidentally -
that some of the relations to be noticed below are of characteriza-
tional nature when » is taken to be a positive integer.

1. Turan’s inequality for L (x). We take the solution L{? {x) of
the differential equation (0.2) in the form

L;g)@):(”Z“)@(—n,a+1;x), (L.1)

where @ (a, b; ) denotes the confluent hypergeometric function in
Humbert’s notation. This solution is regular at the origin for any
real index n> —1 and real a> — 1 and reduces to the Laguerre
polynomial L® (xr) when » =0,1,2,... From the relations in
confluent hypergeometric functions [1] we obtain
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(n +1) LY (@) — (20 + o + 1 —2) LP(2) + (n + o) L2, (x)
=0,n>0 (1.2)

x g— L@ (x) =n L (x) — (n + ) LP, (), n>0 (1.3)
%

o 19 (@) = (0 +1) I, (2) — (ke 1—2 (), n>—1 (L4
2P @ I W= 10 @, m> -1 (L5
Differentiating the Turan expression
A, (@) = [LY ()] — L, (x) L2, (z)
and eliminating (% L | (%) as also one of the terms d—(i L(z),
we obtain
i L (x) _d_ L@

g—An (112) - An (x) = | d " dz "
A
LY (@) — LP (1) L™ (x) — L@, (%)

()

Subtracting the second column from the first and using (1.5), (1.3)
to rewrite the first row terms and then multiplying throughout
by z, we have

o2 A )~ A, (o)

_ | P @ (n + 1) Ly @) — (4 « + 1) IS (3)
L2y () — 2L (@) + LY, (v) LY (@) — Ly ()|

Using (1.2) to eliminate L{*), (z) in the first row and then evaluating
the determinant, we get after some simplification

52 A, (@) - 200

=L @) LY (@) — (« + 1) (I () +
H L2 @) {2, (=) — (20 + & —a) L@ (@) + L§2, (=)}
or finally, the relation
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d
2 2 Ay @ —(1—at2) A, @

=L (x) {LA, () — 2 L () + L2, (@)}, n> 0, a > — 1. (1.6)
‘We deduce from this that

j—x (€™ a* ™1 A, () = e 2%~ L (w) {L$Y, (@) — 2L (@) +
+L®, @)}, n>0,a>—1.  (17)

Now it follows that the relative extrema of the function
e~%x*~1 A (x) occur at the zeros of L (x) and L{,(z) — 2L{(x)
+ L) | (). Since 7 and « are real, L{¥ (x) has only a finite number
of real zeros [1]. Let ¢B) : B1, Bas Bs--- and (8) : 8y, 8y, O... denote
the zeros of L (x) and L, (¥) — 2L () + L2, (x) respectively,

the zeros on the positive real axis only being considered. Clearly

we have
o (B) = — L&, (B) L, (B)
_ P e (B >0forn>0 x>0,
n+1
and

A, (8) = (I (8))® — (2L (8) — L2, (8)) L2, (9) -
=[LP (8) — L, (3] >0

Thus A, (x) remains non-negative at all the relative extrema of the
function e~?z*~! A, (x) on the positive z-axis and hence we have

A, @) = (L9 @) — L, @) L2, @) >0,2> 0,n> 0, &> 0
which is Turan’s inequality for the function L{? (z).
2. Turan’s inequality for H,(z). We take the solution H,(x) of
the equation (0.3) in the form
H, (x) = 2% ¢ D, (v (2)2),
where D,(x) is the parabolic cylinder function so that [1]
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H,(z) = 2" {__P% i) (f " l;xz) 4P

T2 —n/2) P
T(—12) . (l—n 3
+P(—n/2)w®(_’2"’é’”2)}' (2.1)

This is regular at the origin and reduces to the polynomial H, (x)
when n is a non-negative integer. From the relations on D, (z) [1]
we notice that

H,\, (@) =22 H, () — 2 H,_, (), 2.2)
3 B =2 H,,@) (2.3)

and therefore also the relation
d
H,(z) =2¢ H,_, (x) — Ia H, (=) (2.4)

‘We have then
B (&) = (Hp @) — Hoy1 (@) Ho s (2)
= (H, (2))* — [22H, (5) — 2nH,_, (#)] H,_, ()
= H, (z) [H, (®) — 2zH, (x)] + 2n [H, 1 (ac)]2
= H, (@) [~ H'py (@)] + H', @) H,_, (%)
or
H,_,@ H, @)

An (x) = ,
H'n—l (x) H;z (:l;)

(2.5)

expressing the Turan expression A (z) as the Wronskian of H,_ ()
and H, (z).

By differentiating A, (x) we get
d

H, @) H,@®)
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_ H, () H, (x)
T | exH,_ () — 2 — V) H, ,(») 2H', (%) — 2nH, (x)
— 2 A, (@) — 2H,_, (2) H, (@),
or equivalently the relation
3
dx

Hence e=? A, (x) has its extrema values at th® zeros of H, , (%)
and H, (z). Let (a):«y, oy, ag,..., and (B8): By, Ba, Bss-.. be the real
zeros of H, (x) and H,_, (x) respectively. We find that

Ay(a) = —H, (2)H, ;(a) =2n(H,_,(x))?>0, forn>0

(5% Ap(@) = — 2% H,_, (a) H, (). 6)

" and

A, (B) = (H,(B)* > 0.
Hence e~*A, (xr) is non-negative at all its relative extrema on
the z-axis when » > 0, and thus we have
A, (x) > 0 for all real « and for n> 0 (2.7

which is Turan’s inequality for the general sdlution H, (%).

3. Case of n = a non-negative integer. Characteristic relations. The
relations deduced in Sections 1, 2 are certainly valid when
n=0,1,2,. We find that relation (1.6)or (1.7) is characteristic
-for the Laguerre polynomial while the relations (2.5) or (2.6) are )
characteristic for the Hermite polynomial. Since the proofs are
quite similar in all these cases we content ourselves by giving the
proof in the last case only.

TaroREM. If fox), fi(®), fal@),... i8 & set of polynomials such
that
(i) f.(x) has degree n,

@) L (F U@~ fars @ fora @) = = 277 fos(0) 1)

and if
(iii) f, (@) = landf; (x) =2z, then
fo®) =H, (@) forn =0, 1, 2,...
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To prove this, we take f, (z) = H, (¢), 0 <7 <n and set, f,,, (x)=
H,. ,(#)+g() in (ii). Clearly g(z) is to be a polynomial of degree
3 n + 1. We obtain from (ii)

c%o [ e (—9(@) Hn_l(x))] =0,

80 til&t

g(x) = 6 _a polynomial of degree < + 1.,
Hﬂ—l (w)

The integration constant ¢ can only be zero, whence g(x) = 0 or
Jos1 (®) = H,; (v) and hence the theorem.
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SOME PROPERTIES OF QUADRATIC RESIDUES
By M. V. SUBBA RAO

1. In this note we obtain two results on quadratic residues which
include as special cases Hansraj Gupta’s generalization [1] of*the
two results of J. B. Kelly [2]. Let p be an odd prime, and R,
L, 1=1,2 ..., 5 —1, denote respectively the set of integers
of the form p'q, (p, q¢) = 1, for which ¢ is a quadratic residue or
non-residue modulo p™~*. Let ¢ be an arbitrary integer and S any
set of integers, and ¢ @ S denote the set of integers obtained by
adding ¢ to each of the elements of S. Let r;, ; be arbitrary members
of R, L,respectively. Let j = p~1 [p[4], k = p™ i1 [ (p—3)/4],
where as usual [#] stands for the greatest integer not exceeding x ;
m = p" 41 or 0 according as p=1or—1 (mod 4); m, =p" " 1—m.
Then we will show

TaeorEM 1. Hach of the sets I, ® R;; rdD L, exactly gives j
members of each of the sets L;, R; together with m members which
are multiples of p**tl. These m numbers are made up of ¢(p®%)
numbers of the form p*q, (p,q) =1, a = 12,...,n. -

TarorEM 2. (a) The set 7, @ E; exacily gives K members of R
and k + p"~ = numbers of L; together with my, nwmbers which are

multiples of p**t.
(b) The set 1, ® L; exactly gives k members of L; and k + prit
members of R; and m, numbers which are multiples of p**.

In either case these m, numbers are made up of ¢(p"~“) numbers
of the form (p%*q), (p, ) =1, a=¢+1,1+2,...,n

The special cases of these theorems for 7 = 0 include, and in fact
go beyond Gupta’s results [1].

2. These results can be proved directly on the same lines as in [1].
A direct proof is therefore omitted. What is of interest here is the
fact that these can be immediately deduced and are indeed implied
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in the class algebra worked out in [3]. Let us illustrabte this by
proving Theorem 1.

From the system of equations (4) in [3] we have, if
p =1 (mod 4),
B, @ L;=(1/4) ¢ (0" ) K; = (1/4) ¢ (2"7%) (B; + Ly).
If z is a member of R;, and if 2 @ I, contributes B terms to the
term containing B; on the right side (B is evidently .the same
for any choice of # of B; by considerations of symmetry), noting

that R;, L, each contain (1/2)¢(p" %) terms, on equating the
total number of terms on both sides, we have

B (112) $(p"~%) = (1/4) 6 (279 (1/2) 4 (p"79),
B=(1/4) ¢ (p™).
A similar method applies for finding the contribution to L,

The case when p = — 1 (mod 4) can be dealt with similarly by using
equations (B) of [3].
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ON THE CHARACTERISTIC EQUATION OF A
RECTILINEAR CONGRUENCE*

By P. JHA?

1. The coefficients of the two forms of Kummer and two functions
p and ¢ fatroduced in connection with a rectilinear congruence [1]
satisfy three partial differential equations. The elil.nina,tion of pandg
from these three equations leads to a single differential equation [2]
connecting the coefficients of the two forms. Like the Gauss charac-
teristic equation, this is not integrable. The object of the present
paper is to integrate this equation, called the characteristic equation,
in some special cases and to obtain the equation of the middle
surface of the congruence. Some peculiar congruences have been
constructed, e.g. a congruence whose limit distance is constant
and another for which the product of the distances of a focus
from the limits is constant. In some particularscases, it has been
possible to construct the congruence. The notations are those of

Weatherburn [3].

9. Taking r to be the vector position of any point on the director
surface and d the unit vector along the ray at the point, we¢ may
write, r; = ad; + pd; +pd and r,=«'d, + p'd; +qd, where the
suffixes 1 and 2 denote partial differentiation with respect to » and

v respectively.

For simplicity in calculation, we take f= d;.d, = 0. Then
w=ale, B=0"lg, p=d.r;, &' =ble, B'=clg, ¢ = d.r,.

+ This paper is a part of my Ph.D. thesis submitted to Patns University
in September 1956. ’
* We recall that, according to [8], the fundamental forms for a rectilinear

congruence are defined as
edu? + 2fdudv + g dv? (= dd. dd)

and
adu? + (b + b") dudv + ¢ dv? (= dr.dd),

wheree = &% f = d,. dp, ¢ = d;% a =T, 4,5 =15, dy, b =r.dyc =5 dy
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As rydu + 1,dv (= dr) is a perfect differential, we get 4
0 J . ,
E (od; + Bd; + pd) = ™ («'dy + B'dy +gd).

Taking dot product of both sides of this relation with d;, d,, d
and simplifying, we get

bel €y 51 b'g,
q——h+ %%wg+w%—e—2w,
p ; + 57 egz( g -+ ce) Seg’

Pe—q =b"—b

Hence, by eliminating p and ¢ from these equations, we get [2,
p. 4977,
b’ be,y

b g
b—b—— 6 G0 G ___]__
ovlbL g T o7 202 2eg” 3 (69 + o) = 2eg

— [ E a2 0T )

We call this equation (A) as the characteristic equation. When
the parametric curves on the unit sphere are not orthogonal, there
is a similar but somewhat complicated relation. This relation or as
it is called the characteristic equation, and the given value of b-b’,
give b and b’ separately whence p and ¢ can be determined and
therefore r = [(r; du +1,dv), the corresponding point on the
director surface, can be obtained by quadrature. Given any two
binary quadratic forms, one of which represents the square of the
line element of a unit sphere, the corresponding rectilinear con-
gruence can be constructed, because corresponding to any point
on the unit sphere giving the direction of the ray we can, by solving
the characteristic equation and getting the values of & and b’
geparately, get the corresponding point r on the director surface.
Hence we get the result :

Given amy two differential quadratic forms one of which is the
square of the line element of a unit sphere, the corresponding rectilinear
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congruence, can be constructed by solving a certain partial differential
equation of the second order (called the characteristic equation).

3. We shall now, without loss of generality, simplify the equa-
tion by choosing (i) the parallels of latitude and longitude oh the
unit sphere as parametric curves and (ii) the middle surface of.the
congruence (which s always real) as the director surface.

Let p.(u, v) be a point on the unit spherep vector position d,
and P(u, v} the corresponding point on the director surface (which
is to be determined). The direction of the unit vector d along a
ray of the congruence may be expressed as

d = (cos« sinv, cosw cos v, sinu).
s b4, =(—sinw sinv, —sinw cosv, cosu),
d, = (cos% cosv, —cos% sinv, 0).
Hence
e=4d,2=1, f=d.d,;=0, g=d,2=cos’u
and
h=cosu, g=—2 sinu cosu, g, =0=¢, =&,

As already mentioned, for the construction of the congruence
it will be enough to find, corresponding to any point p on the unit
sphere, the position of P on the director surface, which for the sake
of definiteness is taken to be the middle surface of the congruence;
so that ag +ce=0, ie. a cos?u ¢ = 0, and the characteristio
equation takes the form
b —b = — 2a,, -+ 28, tanu — sec?w by, + b,y — b; tanu — b’ sec?u. (B)

Tt is to be noted that with the chosen system of reference, if the
coefficients of Kummer’s second form be constants, ¢ and ¢ are
separately zero as @ cos?u -+ ¢=0. If b 4-b' = 2m (constant) so that
b’ = m +=, b =m —x, the characteristic equation becomes

%oq 8002 U + Tyy + 2, tanu + (sec’u + 2) & 4 m sec®u = 0.

If Kummer’s second form is identically zero, i.e. m =0, the
characteristic equation takes the form
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sec?u byy + byy + b, tanu + (sec®u 4 2) b =0,

It is evident that such a congruence has the peculi&r property
of having the two sheets of the limit surface coincident and the
focal surface imaginary.

4. < The equation (B) cannot be simplified further without imposing
restrictions. In order to study this we shall agsume that the principal
surfaces correspond to a family of latitudes and longitudes on the
unit sphere, so that b 4 &’ = 0. Now ag + ce = 0 may be written as

) ale = — C/g =
where 2y (in this case) represents the distance between the limits.

It can be easily seen that (b— b")/h = 2/ (L, F, . F,L,), where L, L,
are the two limits and F,, F, are the two foci on any ray.

If (L, F,. F, L) =k, we have
2k = (b —b')h = 2b/h or b=kcosu.
Hence
p=2ptany -+ kysecw — yu, and g = p, —k,cosu.
Now the characteristic equation changes into
] 0
0270 COS U = P (pg — kqcOSU) — 3 (2 tanw +k,sec u—pu,)
or
kgg 800% U +kyy — Ky tan u + 2k = 2secu 63 (py — ptanu). (C)

v

We have

T = pld; —ksecud;, 4 (2u tanw + kysecw — p,)d,

Iy, =kcosud, — pd, + (py — %, cos u)d.
Therefore, the equation of the middle surface of the rectilinear
congruence is given by

r= j [{rd, —Fksecud, + (2utanw + kysecu — p)d}du +
+{kcosud, — udy + (pg — k, cosu) d}do].
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If now {( =a) be supposed to be a function of % alone (or constant)
thé value bf k is determined by (C) which takes the form

koo sec®u + &y —k tanu 4 26 = 0. (6]
(It is to be noted that the characteristic equation remains the same

even if y = constant as for y being a function of u alone.)

The equation (C’) in k does not appear to be easily solvable. It
may be noted that % cannot be a function of v alone. If & be a
function of u alone, (C’) changes into

ky, — %, tan uw + 2k = 0.
Clearly, & =sin % is & solution of this eq{lation. The complete
solution is given by
k = A sin u + Bsinwulog tan (v/4 +%/2) — B,
where 4 and B are arbitrary constants.
Asa=p, c=—ucos?u,b=—b" =k cosu, h=cosu, the foci
are given by the equation
p? = p? — k2.
Therefore, the foci are real or imaginary according as
f"z —K? 20,
i.e.
u? — [A sinu + B sinw logtan (w4 + u/2) — B2 0.
Therefore, the roots of the equation
u? — [A sinw + Bsin wlog tan (7/4 + %/2) — B =0
divide the unit sphere into zones such that on rays of the congruence
correspondong to some zones, the foci are real and on rays of the
congruence corresponding to the remaining zones, the foci are

imaginary and on rays corresponding to the curves dividing the
sphere into zones, the foci are coincident.

If & be a function of % alone and p be supposed to be constant,
the middle surface is given by
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r= j [( pd; —ksecud, + 2u tanud) du +
+ (kcosud; — ud, —k, cosud)dv]
or
% = A cosucosv 4 Bcosucosv logtan (/4 + u/2) — pcosusin v,
y = — A cosusinv — Bcosusinv log tan (7/4 + u/2)— pu cos u cos v,
2z = — Bv — u[sinw — 2 log tan (w/4 4 u/2)]. c
The congruence ) so obtained (u = constant) has the peculiar

property of having the limit distance always constant whether the
foei are real, coincident or imaginary.

If 1 =0, the congruence becomes isotropic. In this case, Kummer’s
second form is non-existent but Sannia’s exists and we have
r; =sec % ( — kdy, + kyd)
r, = cos u (kd, — k,d),
and the equation of the middle surfaces of all isotropic congruences
is given by

r= j [(kyd — kd,) secu du — (k;d — kd,) cosu dv],
where the value of k is determined by (C').

As the limits coincide (1 = 0), the foei if real must also coincide
with the limits (k¥ = 0) and then the congruence becomes normal.
Kummer’s second form is non-existent and the congruence becomes
normal isctropic. We have r, =0, r, = 0. Therefore r = constant,
so that the middle surface is a point. Thus we have the well-known
result “the only normal isotropic congruence is a system of rays
through a point.”

For the equation (C’) to be satisfied for & == 0, it follows that the
foci are imag.nary. Assuming k to be a function of % alone, we get

k = 4 sinu + B sin w log tan (x/4 + 4/2) — B,
and

% = A cos % cos v + B cos % cos v log tan (/4 + u/2)
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Y= — A cosusinv — B cos u sin v log tan (x/4 + u/2)
2 = — Bw.
In this case, the equation of the middle surface is given by
ylx = tan z/.B,

which is a right helicoid generated by lines parallel to the plane
2 = 0 which intersects the z-axis and a family of right circular
helices.

The congruence so obtained will have coincident limits but
imaginary foci.

5. If the product of the distances of the limits from a focus be.a
constant, i.e. if £ be a constant, (C) changes into
fip2 COSU — u, Sinw =k cos®u.
Integrating it with respect to u, we get
o €OS % = 3 k (% + sin © cos u) +-e4,(v),

where A,(v) is a function of v or an absolute constant. Integrating
it with respect to v, we get

weos u = Y k(uv + v sin u cos u) + A(v) 4 B(w),
ie.
p = 3 k(uv sec 4 + v sin u) + sec u [ A(v) + B(w)],
where B(w) is a function of % alone or an absolute constant. Hence

the vector position of P on the middle surface corresponding to the
point p on the unit sphere is given by

r = j (r; du + 1, dv), (D)

where r, and r, are now known functions of % and ».

As the value of p involves two arbitrary functions, we get the

result :

There are doubly infinitude of rectilinear congruences for which
the product of the distances of a focus from the two limits is constant.



18 P. JHA

Another result follows immediately that the middle surfaces of
all such normal congruences (for which the prinoip&l surfaces
correspond. to a family of latitudes and longitudes on the unit sphere)
are represented by the equation (D), where u = sec w[ A(v)+B(u)].

If with % = constant, p is also constant, then (C) gives £ = 0 and
hence the congruence is normal. In this case

r, = pd; + 2ptany d and r, = — pd,.
Therefore

%= — pcosusinw,

Y = — {1 COS % COS Y,

2= — p [sinw — 2 log tan (/4 + «/2)].

Thus we get the Cartesian co-ordinates of P(u, v) on the director
surface corresponding to the point p(%, v) on the unit sphere. In
this case, we can easily construct the congruence. In order to locate
the point P we take the diameter of the unit sphere (whose centre
is O) through p and 'measure a distance of y units along p O from O
and then measure a distance 2plogtan (w/4 4+ u/2) parallel to
the z-axis. If we draw a line through P parallel to Op, we get a ray
of the normal congruence for which the distance between the limits
and the product of the distances of a focus from the limits are
" constants. It may be noted that this middle surface is a surface
of revolution.

I am obliged to Dr. V. R. Chariar for his kind guidance.
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A FEW IDENTITIES ON HIGHER DIFFERENCES
By S. C. CHAKRABARTI

1. The following notations will be used throughout this paper.
() @™ =x@+1)...00 —n +1); @)@ =1. .
(i) (@™), = (a™ —1) (@™ 1 —1)...(a" "+t — 1); (@), = 1.

(1) (“.m)z,n =(a™ —1) (@"~% — 1) (a™* — 1)...n factors; (4™)y o =1.

(iv) "S, = sum of the products of » factors, 1, @, a,... a" !
taken p at a time; "S, =1,"8, =0 if p< 0 or >n.

2. IxtrODUCTION. In this paper is given a generalization of the
identity*

T

(@ +7r— 1)(1') — Z (8 +7— 1)(17) (z — 3)(r—17) (1’) (1)

2=0 p
which the author obtained in 1922, while evaluating a factorable.
continuant. A few other identities includizlg a determinant
resolvable into factors, are also given here.

3. THEOREM.
T

@ = > (@Y, @), 028,78, @

p=0
This may be proved by a basic formula— Higher Differences.
[When @ — 1, (2) reduces to (1).].

4. THEOREMS.

(=) (@ 122)y, (@ —1) Sy = ()71 (&%), (3)

M-

-]
I
o

(=) (@ 12)y,_, (@F % = 1) ¥ gy = (=) (@) (4)

[\%2

3
I
=3

# Chakrabarti, S.C.: On the evaluation of some factorable continuants, Bull.
Calcutta Math, Soc. 13 (1922-3), 71-84.
It has recently been found that the identity (1) is the classical Vander Monde’s
identity. (See, Jordon, Calculus of Finite Differences, p. 48).



18 8. C. CHAKRABARTI

Proor. Left side of (3)

r
v
— ~1-2 2,
o Y () (@, @Sy D (< (@I, TS,
=0 p=0

=a¥ (—Y (—a¥ 141+ 1/a) — (—V, by earlier theorems. ¥
Hence follows the result. Similarly (4) may be‘treated.

5. If
%1 %2 %3
%qp Kog Kgg | = | &gy Gagg  Olgg |,
Og; (&g &gy
then similarly formed

n k—1
[0ty Rgge.. &y | = 1—[ {2 () % _pp k_lsp} (5)
k=1 "~p=0

if the elements below the principal diagonal of any column (kth say),
are expressed in terms of the elements of that column on and above
the principal diagonal by the formula

B
—gk—1 _yp—1r-1 r—k+p—2 k—p+1
% =0 z (—) S —p Sp—1 % py1zf S 1>k
=1

Proor. On the determinant, perform successively n — 1 opera-
tions, viz.

n—1 n—2 1
z (—Prow,_,""18,, z (—)Prow,_;_,"29,,... Z (—)Prow,_,'S,.
p=0 2=0 =0

First operation will make all the elements, except the last, of the
nth row, vanish. Because in the element on the nth row and kth

column (k=1,2,..%k— 1), the coefficient of %o (c=0,1,2...
k—1),1is

T Chekrabarti. 8.C: Some identities and recurrents, Jour. Indian Math. Soc.
(2) 11 (3 & 4) (1947), 89-94.
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= .
[ (‘— )c I_d.'é_ca_\ Z ( _)p n—l_p’s'k—c~1 n—k-l—c—l—pSc "_1Sp] +

+ (_)n—kJrc ﬂ~18n——k+c
atle+1l)y (an—l)n_l

- @ @), @,

@

n—k—1
1 b - -
z< ZO (_)P aﬂ—k+c—p___ ln * ISp] +.(_)n kten I'S’n—k+c
=

by substituting the values of 8’s,
= (= rktemln-ly e+ (=) Erenm1g ., by H. D. formula,

= 0.

The last element of the mnth row will be
n—1
Z (=r Xp—p,n ”_l‘sp’
»=0

which is an element on the principal diagonal. Similarly the second
operation will make all the elements, except the last two, of the
(7 — 1)th row vanish and the last but one element, which is on the
principal diagonal, is

n—2

(=) Ryp,n n—ZSp.
=0
After all the operations are performed, all the ¢lements below the

principal diagonal vanish, and the elements of that diagonal are
the factors on the right side of (3). Hence we get the result.

Jadavpur University
Calcutta






ON THE POSSIBILITY OF STEADY BELTRAMI
FLOW IN A VISCOUS LIQUID

By RAM BALLABH

WE know that Beltrami flows are represented analytically 'by
the equation

Curlq = A g, (1)

where ( is the velocity vector and X a scalar point function which
may be defined as the torsion of neighbouring vector lines.

In the case of steady Beltrami flow of a viscous homogeneous
incompressible fluid the equations of motion take the simple form

VX' =vv*q, (2)
where v is the kinematic coefficient of viscosity and x’ has the usual
meaning.

We have
Curl Curl q = grad div q — y*q = — y2q,
since the vector q is solenoidal.
Therefore, from (1), we have
Curl Aq = — y?q,
from which we get
VA X q=— (V' +X)q

Equation (2) can therefore be written as

VX =v(@Xva—2Ag). (2a)
Also, eliminating x’ from (2) and using (1) we get
vi(Aq) = 0. (2b)

'We shall consider the following cases separately :
(i) Unbounded fluid with constant q at infinity.
(ii) Bounded fluid with fixed houndaries,



22 RAM BALLABH

(iil) Other cases, not included in (i) or (1i).
For cases (i) and (ii) we shall assume that the functiorh concerned
satisfy the conditions of Green’s theorem.

Cas® (i). From Green’s theorem we have

@) + (3 2) + (5 20) o

- ” tu g‘:‘) iy - ”j vyt () dedyder (3)

where % is the z-component of fluid velocity, ¥ a sphere of large
radius R with its centre at the origin of coordinates and on an
element of the inwardly-directed normal to X. The volume inte-
grals extend over the region of space enclosed within 2.

From (2b), y* M) = 0 and therefore the volume integral on the
right side of (3) is zero.

Also, since q is constant at infinity, Curl q will be of a higher order
_than R~ for point§ of . The integrand in the surface integral will
therefore be of a higher order than R~3. Consequently when R — c0

” P g‘:") d% -5 0.

Therefgre, we have Au — constant throughout the fluid.

Similarly, we have Av = constant throughout the fluid, and Aw =
constant throughout the fluid, where v and w are the y and 2z
components of velocity.

From equation (1) we therefore have Curl q = constant through-
out the fluid. But since Curl q vanishes at infinity it must be zero
everywhere.

We thus conclude that steady Beltrami flow is not possible in
this case.

CasE (ii). In the case of a bounded fluid with fixed boundaries,
the double integral in (3) is taken over the givem boundaries.
But at each point of a fixed boundary, w = 0,v = 0,w =0,
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We, therefore, conclude again that throughout the fluid Au,
Av and Aw thust be constants,

Let du =ky, o = ky, \w = kg, where k,, ks, &, are constants.
From equation (1) we then have*
By + i, + Fgh, =0,
—kgdy + Iy, — Eg® =0,
ks, — kA, —EA% =0,

— g, FEh, — kX% =0,
A 0.

Eliminating A, A, A, from the above equations, we get

ky ky ks 0
—ky &y 0 —kgA®
ks 0 —k, k|

ie. (k2 + k2 + k222 =0, giving A= 0.
Steady Beltrami flow is therefore not possible in this case either.

OrHER CasEs. In other cases it is difficult to arrive at a conclu-
sion, but the non-existence of steady Beltrami flows can be
established in regions where the streamlines form a normal
“congruence of the surfaces y' = constant.

From equation (2a) we have
qvx =—vA¢ (4)
If, therefore, the streamlines of the flow coincide with the normals

to the surfaces x' = constant, q. vy x" = 0 and consequently A =0,
denying the existence of Beltrami flow in such a case.

* The first equation is derived by taking the divergence of each side of equation
(1). The other equations are cbtained by putting the values of Curl  in equation
(1) in terms of the derivatives of u, v, w replecing ther by k;/A, k3/A, ky/A respectively.
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It is interesting to mote that in cases where steady Beltrami
flow is possible the streamlines are inclined to the surfaces y' =
constant at the same angle in fluids of different viscosities.

The angle 6 between the normals to the surfaces x’ = constant

and the streamlines is given by

cosf— VX9 B2 P - X ,
lvx'llal  Ivx'l V(4 A+ A2+ X

using (2a) and the relation yA. q = 0 derived from (1).

This clearly shows that 6 is independent of the degree of viscosity
of the fluid.

In conclusion I wish to express my gratitude to the referee for
inviting my attention to cases (i) and (ii) which were not included
in an earlier version of the paper.

Lucknow University



CLASSROOM NOTE
Bisectors of the angles between the lines a?4-2hxy-+by?=0.
By N. L. Mazr1a, Govi. College, Ludhians

Tas following is an alternative method of finding the equation of
the bisecfors of the angles between the lines azt + 2 hay + by? 'y
The method holds whether the axes are rectangular or oblique.
Use is made of the property of a rhombus that its diagonals are at
right angles to each other.

Let the axes be inclined at w. Let OA and OB be the straight
lines represented. by the given equation. Let P («, B) be any pomnt
on one of the bisectors. Through P draw lines parallel to OB and OA
meeting 04 and OB in M and N respectively. Then OMPN is
a rhombus and as such OP is at right angles to MN. The equation
to the lines PM, PN is

alw— o) +2h@—a)y—B) —bly —p* =0
Therefore the equation of MN is
aa® + 2hay + by® — [z — a) + 2k (z—a) (y — B) +bly —A'1=0,
or
2(ax + hp)w + 2 (ha+bB)Y —ao® +2haf +b B

Equation of OP is
Bxr —ay = 0.

Since OP is at right angles to MN, we have
8 (@ + hB) — o (hax + BB) — [Blbox -+ BB) — a(azx +BB)] 005w = 0,

or
o®(h — G cos w) — B2(h — b cosw) = (& —b)ap.

Hence the locus of P («, B), i-e. the equation of the two bisectors, is

z2(h — a cosw) — Y(h — b cosw) = (& — b)=zY.






QUESTION AND SOLUTION

Qx. 1836 (C. Thebault) Let a tangent t to the incircle of & triangle
ABC intersect AB, AC at C' and B' respectively. Let parallels
to BB’ and CC' through C' and B’ respectively meet AC, AB, at B"
and C". Show that B" C" is & tangent to the incircle of the triangle
AB'C' and s parailel to BC. Deduce that the centres of the cir-
cumcircles of the four triangles determined by the four vertices of a
quadmngie circumscribing a circle are the four vertices of another
quadrangle also circumscribing a circle.

SoruTioN BY 8. R. KHaNWALKAR. Since ¢’B” is parallel to BB,
AB" AC .. AB  AC" A_J_SL” A0”

. H =
A0 " A0 40 T 4B

OI' BIIOI’

is parallel to BC.
The in-radius of AAB'C’ is given by
%= (4B + AC' — B'C") tanAJ2
and the ex-radius of AAB” 0" is given by
2r, = (AB" + AC" + B"C") tan A[2

Now
AB" + AC" + B"C" = AB" + AC" + B"B' - 0"C" — B¢’
= A0 + AB — B'C.
Hence » =7, and B"C" touches the in-circle of AAB'C".

The centres of the circles formed by taking three vertices of the
quadrangle BCOB'C’ lie at the points of intersection of the per-
pendicular bisectors of the adjacent sides of BCB'C'. Let E,F be
the centres of circles BCC, BOB', Q, H those of CB'C, BB'C'.
Now EF, FQG, GH and HE are respectively at right angles to
BC, CB', B'C" and BC'. Sinee B"C" is parallel to BC, sides of the
figure EFQH are at right angles to those of C"B"B’C"; and hence
similar, and ©7 B’ B'C’ is proved to be a circumscribing
quadrilateral and hence EFQH is also a circumscribing one.






BOOK REVIEW

Selections from modern abstract algebra. By R. V. Andree, Henry
Holt and Company, New York, 1958. $6.50. pp. xii + 212.

THE author of this book sets himself, and definitely succeeds in,
the task of giving an American undergraduate, as far as sbsttact
algebra is concerned, (1) an elementary but far-reaching introduction
to the basic concepts and a thorough drilling fn the technique of
their use and (ii) an effortless but revealing peep into the wide
field of applications that are being made of the varions parts of the
subject. His methods of presentation include (i) provision, for
every concept, of numerous examples ranging from the very trivial
to the reasonably general; (ii) suggestions at every stage for allied
or advanced reading, most of them being expository articles from
the American Mathematical Monthly and the like ; (iii) provision
for the uninitiated reader of a number of opportunities and possi-
bilities to ‘discover’ for himself, ‘conjecture’ for himself and
“ prove or disprove’ for himself ; and, (iv) a Vigorous style which
is enjoyable.

Being only a judicious set of selections, the modest chapter
headings are : 1. ‘ Number Theory and Proof’, where the reader
is given, besides the usual ‘ mysteries * of perfect numbers, game of
Nim ete. a clear analysis of the nature and construction of a proof ;
2. * Equivalence and Congreuence ’, where an elaborate exposition
is given as preparation for a maiden voyage into abstract thinking ;
3. “Boolean Algebra ’, which also includes a sound introduction to
the design of switching electric circuits ; 4. ‘ Groups’, which takes
one up to an acquaintance with the Jordan-Hélder theorem ;
5. ‘ Matrices ’, which defines a matrix as an element of a properly
defined matric algebra and, after a smooth development, ends
with three examples illustrative of matrix applications, the first
from industrial economics, the second, a simplified example of a
Markov chain, from quantitative chemical analysis and the third,
from maitrix analysis of electrical networks ; 6. ‘ Linear Systems’,
which helps even the least equipped student to understand the
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- solving of systems of linear equations; 7. *Determinants o
8. ¢ Fields, Rings and Ideals ’, which slowly builds up thé structural
foundation of mathematics till the stage where the reader can
appreciate the importance of residue class rings; and 9. ‘ More
Matrix Theory’, where topics such as Hamilton-Cayley theorem,
thecconcept of eigenvector, infinite series of matrices are touched
upon.

.
It is the reviewer’s opinion that this book is well written and
will be very useful to those interested in mathematics,

V. KRISHNAMURTHY



NEWS AND NOTICES

Dr. S. D. Chopra, Dr. Narayan Bahadirr Manandar and Prof. C. T.
Rajagopal have been admitted aslife-members of the Society.

The following persons have been admitted to the membership of
the Society: H. 8. Ahluwalia, Sri Nivas Bhatt, 8. P. Bandyopadyay,
B. K. Choudhry, V. K. Gangal, Miss Sulaxana Kumari, B. K.
Lahiri, T. D. Minakshisundaram, B. Y. Oke,'R. Raghavendran,
Vikramaditya Singh, Miss Pramela Srivastava.

We regret to announce the death of Prof. N. M. Shah, a life member
of the Society. He was also a secretary of the Society for some time.

The Council has accepted with thanks the gift of twenty books
on higher mathematics, to the Library of the Society, by Professor
H. G. 8. Sharma, a life-member of the Society. We sincerely thank
Professor Sharma for this gift.

The twenty-fourth Conference and the Golden Jubilee Celebra-
tions of the Society will be held in Poona under the auspices of the
University of Poona in the last week of December 1958. Members
wishing to read papers are requested to send them in full together
with two copies of abstracts of each paper to Professor S. M. Shah,
Muslim - University, Aligarh. The abstracts should be typewntten
on special forms obtainable from the Secretary and should not
exceed 200 words in length. Displayed formulas and complicated
symbols likely to cause difficulties in printing should be avoided.
These should be sent on or before 1st October 1968.

Dr. U. N. Singh of Muslim University, Aligarh has been appointed
as Professor and Head of the Department of Mathematics, M. S.

University of Baroda.

A summer school of mathematios has been organized by the
professors of Delhi University from the 5th May to run for five '
weeks mostly as a refresher course comprising all aspects of
mathematios and its applications.
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We welcome the new quarterly The Mathematics Seminar edited
by Professor Shantinaraysn of Hansraj College, Delhi.~The aim is
to create interest in mathematics in schools and colleges and to
help in the working of mathematical clubs and socicties. The first
issue is dated September 1957. We wish the new venture every
success.

Professor W. K. Hayman, F.R.S,, Professor,ﬁr Imperial College of
Science, London, delivered lectures on Meromorphic functions, on
Symmetrization and on Schilicht functions, in Muslim University,
Aligarh in March 1958.

The fortyfifth session of the Indian Science Congress was held
in Madras in January 1958. Prof. M. S. Thacker was the General
President and Prof. B. 8. Madhava Rao was President of the Section
on Mathematies.

The third Congress of Theoretical and Applied Mechanics was held
in the Indian Institute of Science, Bangalore, in the last week of
December 1957 under the Presidentship of Dr. S. R. Sen, Director,
Indian Institute of Technology, Kharagpur.

Professor K. Chandrasekharan has been included in the team
of 15 scientists from India headed by Dr. M. S. Thacker to visit
Russia on the invitation of the Soviet Academy of Sciences.
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Errata :
Page Line For Read
164 15 half-ray in 2, half-ray along a fixed
line L in %
164 last line oy, M Oy
166 1 7y COSZ By 72 cos? B,
166 6 r2 sin® B2, 72 sin® B,
166 9 72 sin® B2, 735107 B gy
167 19 r,2sin® o, 72,81 2 ey,
168 12 Toeg 2 _g

168 15 72, e¥im 72, ePiem
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LEFT TO RIGHT

Sitting : V. 8. Keisenaw, V. 8. Huzursazag, M. V. SueBa Rao, M. VENKATARAMAN, S. Mamararra, S. Munzur Hussamw,
S. MINAKSHISUNDARAM, §. MARADEVAN (Secretary), B. C. Das (Vice-Chairman), V. Ganaparay IYER (Premdent)g Ram BrHARI,
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T. V. AVADHANI.
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PROGRAMME
Thursday, December 26, 1957

10-00 A. Mm.—National anthem. Welcome address by Padmg Bhushan
Dr. P. Parija, Vice-Chancellor, and Chairman of the
Reception Committee. Inauguration by Dr. H. K.
Mahtab, Chief Minister, Orissa. Report by Prof.
S. Mahadevan, Secretary. Presidential address by
Prof. V. Ganapathy Iyer

12-30 p. m.—Lunch

2-00 p. M.—Business Meeting of the Council of the Indian» Mathe-
matical Society

2-30 p. M.—Annual General Meeting of the Indian Mathematical
Society

"3-00 p. M.—Invited address by Prof. V. S. Krishnan
Subject : Topological Algebra

3-30 p. M.—Invited Address by Dr. M. V. Subba Rac
Subject :  Closure Theorems

4-30 . M.—At Home by the Reception Committee (by special
invitation)

6-00 p. M.—Popular lecture by Prof. V. 8. Huzurbazar
Subject : Is Mathematics Consistent?

8-30 p. M.—Dinner

Friday, December 27, 1957

9-00 a. Mm.—Reading of Papers

12-00 voon—Invited address by Prof. R. Mohanty
Subject : Absolute Reisz Summability of Fourier Series

1-00 p. Mm.—Lunch
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2-00 p. M.—Symposium on ‘Functional Analysis’

Participants —Prof. V. Ganapathy Iyer
Dr. M. Venkataraman
Dr. U. N. Singh
Shri M. S. Ramanujan

Shri. M. R. Parameswaran
4-30 p. M.—Tea and Photo

6-00 ». m.—Popular lecture by Shri J. N. Kapur
Subject :  Ballistics of guns and rockets

8-30 p. m.—Dinner by the Chief Minister (By special invitation)

Saturday, December 28, 1957

9-00 A. m.—Reading of papers

11-00 A. M.—Symposium on ‘Research and Mathematical Develop-
ment in India’

1-00 p. m.—Lunch

2-00 r. m.—Reading of papers

3-00 p. m.—Excursion to Bhubaneshwar
7-00 P. Mm.—Variety Entertainment

8-30 P. M.—Dinner

Sunday, December 29, 1957

7-00 A. m.—Excursion to Konarak and Puri
12-00 NooN—Lunch at Konarak
3-00 2. Mm.—Tea at Puri

6-00 P. Mm.—Mahaprosad at Puri



REPORT OF THE CONFERENCE
INnaAvgUurRATION

TeE Twenty-third Conference of the Indian Mathematigal Society
was held at Cuttack on December 26-28, 1957, on the invitation of
the Utkal University. Over one hundred delegates were present.

The Conference was held in the spacious hall of the Ravenshaw
College, which was tastefully decorated for the occasion. Padma
Bushan Dr. P. Parija, Vice-Chancellor of the University and Chair-
man of the Reception Committee, while welcoming the delegates,
expressed the hope that our deliberations would be of great help
in securing objective thinking, so that we might avoid pitfalls
regarding the present five-year plan. The Conference was formally
inaugurated by Dr. Hare Krishna Mahtab, Chief Minister of Orissa.

SECRETARY’S ANNUAL REPORT

Professor S. Mahadevan, Secretary of the Society, then presented
the report of the Society for the year 1957-58. He conveyed the
thanks of the Society to the Utkal University for their kind invita-
tion to hold the Conference at Cuttack and for the excellent arrange-
ments the University had made for the same.

He referred to the loss sustained by the Society by the death of
Sri. C. Bhaskaraiya, Retired Accountant-General, a life member
of the Society, and conveyed the Society’s condolences to the
bereaved family.

He briefly reviewed, the work of the Society for the last fifty years
and said “looking back, starting with a few members, with no
facilities for research and no financial backing, relying on the
sympathy and active support of the members, we have built this
Society on a firm footing as an All-India body and have developed
its periodicals—the Journal and the Mathematics Student’. Pro-
ceeding he said, ““ Of the twenty foundation members who started
the Society in 1907, I am glad to state that two are still with us.
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One is Dr. R. P. Paranjpye, who did much in his days to strengthen
the Society and build its library, and who is now Vice-Chancellor
of the Poona University. The other is Professor D. D. Kapadia,
who rendered valuable service to the Society at its inception, as its
Secretary for twelve years, 1910-1922”. He stated that the Golden
Jubilee would be celeberated next year at Poona and that the Vice-
Chancellor had kindly extended the invitation'for that purpose.

Proceeding to the work of the Society, the Secretary nfentioned
that the Journal was first issued in 1909 and that it completed the
first series in 1933, ending with the Silver Jubilee volume. In 1933,
the Mathematics Student was also started, to help young research
workers and college studenfts and contained expository articles,
class-room notes, problems and solutions, book reviews and announ-
cements. The Journal commenced the New Series in 1934 with
research papers only. He said that the success of the periodicals
was entirely due to the unselfish and devoted work of the editors.
He mentioned that the present Editor, Professor K. Chandrasekharan
had spared no pains in pulling up the standard both in quality and
get up. In particular, he thanked the Commercial Printing Press,
Bombay, for their excellent printing and their unfailing help.

Regarding the Society’s Library the Secretary said that since the
start, it was located in Poona with Dr. R. P. Paranjpye as the first
librarian and that it was transferred to the Ramanujan Institute
of Mathematics, Madras in 1951. He added that the Library con-
tained books on higher mathematics and a more or less complete
run of all the periodicals and thanked Professor C. T. Rajagopal,
Director of the Ramanujan Institute and Librarian for the
able management.

The Secretary regretted that the Narasinga Rao Medal could not
be awarded that year as most of the issues of the periodicals con-
tained the proceedings of the International Colloquium on Zeta
Functions and the report of the South Asian Conference on Mathe-
matical Education. He gave an assurance that two medals would
be awarded the following year.
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Proceeding, the Secretary observed, ‘‘ active research is being
dome in the Tata Institute, Bombay, which is now recognised by the
Government of India as the national centre for advanced study
and fundamental research in Mathematics. There is the Ramanujan
Institute of Mathematics at Madras, financed by the Government
of India and managed by the University of Madras, and the Institute
is doing excellent work. We hope that the Government of India will
give it increased aid to carry out the schemes of> the Director for
improving and widening the activities of the Institute. It is not
enough if the Government gives financial aid. ; it should open more
institutes and at least two more in different places. If technological
studies which are so vital to us are to take root in our country, then
research in the fundamental subject of mathematics should be the
chief item in the programme of the Government ”

The Secretary congratulated the Tata Institute of Fundamental
Research, Bombay and the Sir Dorabji Tata Trust for publishing
the facsimile edition in two volumes of the fampus notebooks of
the late Srinivasa Ramanujan.

Concluding the Secretary said, ‘ we maintain our budget mostly
from dues paid by our members and subscribers. We find it difficult
“to manage ; printing bills are mounting up, the cost of books and
periodioals is also increasing. We request the Government of India
t0 help us to meet the deficit. I wish to thank the various Universities
which have been giving us annual grants and also the Tata Institute,
Bombay, the National Institute of Sciences of India and the Govern-
ment of India for their grants. The best help can come by many of
you joining the Society in large numbers so that all of us may feel
satisfied that we have contributed our bit towards the progress of
mathematical research in India”

ADDRESS

Professor V. Ganapathy Lyer of Annamalai University, President
of the Conference, delivered. the address, which is printed separately.
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VorE oF THANKS

Professor B. C. Das, Director of Public Instruction, Cuttack, and
Vice-Chairman of the Reception Committee proposed a vote of
thanks, bringing the proceedings of the inaugural session to a close.

MEETING OF THE SOCIETY

The Council of'the Society met in the afternoon of Degember 26.
At the meeting of the General Body which followed, a resolution of
condolence on the death of Sri. C. Bhaskaraiya and Professor
N. M. Shah was passed. The members evinced a lot of interest and
a number of questions were asked. The replies of the Secretary
covered the following points : (1) A list of books and periodicals
will be printed in the Mathematics Student, as these are added to
the library. (2) It is proposed to publish the author index of all
papers which appeared in the Journal, Old and New Series and also
a complete catalogue of books and periodicals in the Library and
(3) Every effort will be made to expedite the 1957 issues of the
Journal and the Student.

PROOREDINGS OF THE CONFERENCE

The mathematical programme consisted of presentation of papers,
invited addresses and two symposia. Two sessions were devoted
to the reading of papers and abstracts of these papers appear
elsewhere. Among the invited addresses were one by Professor
V. 8. Krishnan on ‘ Topological Algebra ’, one by Dr. M. V. Subba
Rao on ‘ Closure theorems’ and, a third by Professor R. Mohanty
on ¢ Absolute Riesz Summability of Fourier Series’. A symposium
on ‘ Functional Analysis’ was organised on December 27, in which
Professor V. Ganapathy Iyer, Dr. M. Venkataraman, Professor
U. N. Singh, Sri. M. R. Parameswaran and Sri. M. S. Ramanujan
participated. On December 28, there was a symposium on Research
and Mathematical Development in India’, in which professors
representing various universities participated. They gave in detail
the facilities for research in their universities and suggestions for
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improving the present state of affairs. On December 26, Professor
V. 8. Huzurbazar, Head of the Department of Mathematics, Univer-
sity of Poona, gave & very interesting and humorous talk on “Is
mathematios consistent . Though this was a difficult topic he
explained in an extremely simple language the notion of consistency
in mathematics drawing apt illustrations from the facts of every-
day life. The next day Prof. J. N. Kapur, Head of the Department
of Mathematics, Hindu College, Delhi, delivered a thought-provoking
lecture on & matter of topical interest—Ballistics of guns and rockets.
He explained the distinction between the interior and exterior
ballistics, the various types of rockets and the principles underlying
their construction. Though this was a technical subject the audience
very much appreciated the lecture.

S001AL PROGRAMME

The delegates were entertained by the Reception Committee at
an * At Home ® on the 26th December. On the 274h a grand dinner
was given by the Chief Minister, besides the other receptions. There
was an excursion to Bhubaneswar, the capital and the temple on
the 28th. There was a variety entertainment consiting of classical
dances and music on the same evening. The next day there was
a full-day excursion to Konarak and Puri. The authorities qf the
local college at Puri entertained the delegates on a lavish scale.

THANKS OF THE SECRETARY

On the final day the Secretary thanked the authorities of the

University, the participants in the symposia, those who gave
invited addresses and popular lectures, the local secretaries and the
volunteers for the excellent arrangements and, unstinted service to

the delegates.






PRESIDENTIAL ADDRESS
By V. GANAPATHY IYER

I pEEM it a great honour that I have been given the opportunity
to preside over and address this Conference just when' the Indian
Mathematical Society is completing fifty years of its existence.
Started, under the designation of Mathematical Club in 1907 by a
few enthusiastic mathematicians, the Society is now a fully repre-
sentative all-India body with a membership strength nearing 500
and with several distinguished foreign scholars on its roll. The Society
has been holding conferences once in two years till 1951 and annually
thereafter giving opportunities for mathematicians from different
parts of the country to meet together. The Society is publishing
two quarterlies. One is The Journal of the Indian Mathematical
Society, devoted to the publication of research articles while the
 second, The Mathematics Student publishes articles of interest to
College teachers and beginners in research. The Editor, Professor
Chandrasekharan, informs me that the flow of good papers by
Indian scholars is on the increase. All these stand on the credit
side of the achievements of the Society.

But a contemplation of the overall picture of mathematical
development in India leaves little room for complacency: After a
rough survey of the situation, it appears to me that the proposition
“In every important branch of mathematics in which research is
carried on nowadays, there is at least one first-rate authority in
Tndia” is far from true and, as things stand today, not likely to
become true even in another fifteen years. Concerted and well-
planned efforts of all lovers of mathematics in India will be needed,
if we are to approach even the above moderate target. In mathe-
matically advanced countries, there are scores of first-rate mathe-
maticians, working in each important branch of mathematics and
this is the ideal to be aimed at. To an audience of mathematicians,
it is hardly necessary to point out that the true index of a country’s
position in the world of Science and Technology is the state of deve-
lopment of mathematics in that country. -
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1 do not wish to devote this address to a detailed analysis of the
causes and remedies for this state of affairs. But I would like to touch
upon one or two points. It is hard for me to believe that there is
dearth, of mathematical talent in this country with centuries of in-
herited aptitute for abstract speculation. Broadly speaking there
are two ty(p‘es of persons with mathematical talent. For one type, it
is inevitable that he should devote himself to mathematical research
—he is born for it and he will contend against all odds to achieve
his end. But such persons are few and far between. The majority
with an aptitude for mathematics require favourable environment
and opportunities for their talent to flower. It is my view that
during the last twenty-five years during which we are slowly
recognising the need for mathematical research, many such persons
have been sidetracked mainly due to economic forces and want
of opportunities. It is out of this second type, that overall mathe-
matical development can be expected in the country. So it behoves
Universities and other bodies interested in the matter to devise
suitable machinery t¢ discover and exploit such talent for the benefit
of the country. \

Closely related to the discovery of mathematical talent are the
recent trends in Collegiate education. The introduction of the Pre-
Universipy course followed by a three year degree course purporting
to give a liberal and all round education has been hailed as remedy
for the deteriorating standard of university education. But a study
of the regulations and curricula for these leads me to just the oppo-
site conclusion. For instance, in the old Intermediate Science group
there are usually three subjects in which a student can specialize
later and there are two years in which a teacher and the student
himself can discover his aptitude. But now, the student undergoing
the Pre-University course can choose only two fields of specializa-
tion later and there is only one year in which he has to decide the
matter. Moreover in the name of all-round and liberal education,
a good deal of matter is shoved into a pupil’s brain during the Pre-
University and three year degree course and the whole system seems
to be based on the assumption that acquisition and assimilation
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of knowledge and acquisition of information are synonymous.
Whatever pe its merits and demerits, I feel sure that these reforms
in University education will definitely bring down the standard of
attainment in mathematics of the pupils coming out with a Master’s
degree under this new system and one has to remember that even
now the standard is low enough when compared with the équipment
necessary for any kind of research work. Probably a three year degree
course after the present intermediate with a fwo years’ Master’s
degree c.ourse, thereafter would have been a better conceived reform.
I have placed before you what I have to say in the matter since,
in my opinion, the reforms will retard the growth of mathematics
in the Country.

I now turn to the mathematical part of the address for which
I have chosen the topic 4 survey of Analysis, classical and modern.

During the last 30 years, mathematicians have been devoting
more and more of their time to the investigation of inter-relation
between abstract ideas and structures. These,speculations though
apparently unconnected with the physical world have been exploited
and the result is the phenominal advance in other sciences and
technology. This paradoxical situation reminds one of how our seers
of old analysed the phenominal universe ultimately into thought
and form, Noma and Rupa. The two broad divisions into which
these abstract mathematical investigations fall are known as abstract
algebra and topology. The former concerns itself with operational
structures and the latter with the notions of limit and continuity
so fundamental in classical analysis.

The foundation of classical analysis is the real number system.
In this system, three abstract notions blend themselves harmo-
niously. Firstly the real numbers are closed with respect to two
operations known as addition and multiplication. Addition is asso-
ciative and commutative and has zero for its identity element
with a unique inverse with respect to zero. Any system with such a
binary operation is known as an abelian group. If zero (the identity
element for addition) is omitted, the remaining numbers constitute
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an abelian group with respect to multiplication with one as the
identity element and moreover multiplication distributes addition.
Any abstract system endowed with two such operations having the
properties mentioned above is known as a field. So algebraically, the
real numbers form a field. Secondly, the real numbers are ordered.
That is, there is a binary relation > with the properties : a > a,if
a>b and b >0 then a=>5 and if ¢ >b and b >c¢ then a > ¢. A system
possessing a binary,relation between some of its element pairs and
having the above properties is known as a partially ordered system
and if @ > b or b > @ holds for every pair of elements, the system
is said to be simply ordered with respect to this relation. So the real
numbers form a simply ordered system. Moreover this order is com-
patible with the field operations, that is, ifa > b thena +¢ >b+¢
and ax > bz provided x > 0. A field of this type is called an ordered
field. A simply ordered structure is said to be complete with respect
to that order if every bounded set has a greatest lower bound and a
lowest upper bound. Now the real number system is a completely
ordered, field. Using:the order to define open intervals, taking as
open any set which is the union of open intervals, a topology leading
to the fundamental notions of limit and continuity can be defined on
the real number system. A family of subsets of a given set closed
with respect to arbitrary unions and finite intersections is said to
define a fopology on the set and the sets of the family are said to
constitute the open sets of the topology. The topology mentioned
above for the real number system has several other properties. The
field operations, addition and multiplication are continuous in
the topology. There is an enumerable dense subset (the rational
numbers) and the system is connected in the topology, that is,
cannot be obtained as the union of two disjoint open sets. Finally it
is locally compact, that is, every point has a neighbourhood whose
closure has the Heine-Borel property that every open covering
contains a finite covering. Thus the real number system is a connec-
ted, locally compact, completely connected topological field. The
reason why the real number system occupies such a fundamental
position in mathematical investigations is that it possesses several
properties as indicated above which all blend together harmoniously.
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I have brieﬁy indicated above, how the real number system forms
the model for several abstract systems like a .field and topological
space. Other important concepts in classical analysis have led to
corresponding abstract systems. The limit of a sequence of real
numbers, the limit and continuity at a point of a real valued
function of a real variable, derivatives and integrals of such func-
tions are some of the fundamental notions in analysis. The real
number system has enabled the precise foranulation of these
concepts forming models for abstract generalizations.

The notion of a function from a set of real numbers taking real
values is fundamental in Analysis. This leads to the general notion
of functions or mappings defined on abstract sets taking values in
another abstract set. And it is no exaggeration to say that classes
of functions, transformations or mappings form the subject of
study in all branches of modern mathematical research.

Next let us take the notion of a sequence. A sequence of real
numbers can be regarded as a function on posifive integers to real
numbers. A sequence (z,) of real numbers is said to converge to
the number 1 if every open interval round ! contains all'but a finite
number of terms of the sequence. Now the closure of a set & of
real numbers (that is, the union of B and its limit points) can be
specified as the set of numbers & such that there is a sequence of
points of E converging to . In a topological space where the
topology is defined by a distance function, the closure of a set can
be specified as above bub this is not true in general topological
space. This leads to the notion of directed limits. A directed
system X is a partially ordered set (order denoted by >) with the
property that given @ and b in X there is a ¢ > to both a and b.
A directed net is a function f from X to a topological space Y. A
point y, of ¥ is said to be the limit of the net f following X if for
every open set U containing Yo there is an a € X such that f(x)
belongs to U for all z in X with z > a. This generalized notion of
the limit is adequate to specify the closure of a set as described
above. The notion of filter used by the French school of
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mathematicians is equivalent to directed sets, set inclusion being
the order relation.

‘We consider now the notion of the derivative. Interpreted as a
rate measurer, it is the basis of applications of mathematics to
mechanics, Interpreted as the slope of the tangent to a curve it is
the basis of differential geometry. The derivative of a complex
valued function of a complex variable has led to the rich theory
of analytic functions. This in turn has led to functions of several
complex variables, analytic functions with both the domain of
definition and the range of values in general normed vector spaces
and normed algebras. These are rich fields of mathematical specu-
lations in which research work is being carried on by several noted
mathematicians.

For continuous functions, the notion of a definite integral regarded
as the increment of its primitive in an interval and the limit of finite
sums coincide. The latter under the name of the “method of exhaus-
tion”, was used by Greek geometers to evaluate areas and volumes
of simple curved figures. It is found that the definite integral as
the limit of sum has significance even when the function has diseon-
tinuities. This led to the formulation of the theory of Riemann
Integral. Though this notion is enough for all practical applications,
it was found wanting in theoretical investigations. For instance,
it is not necessary that the pointwise limit of a sequence of Riemann
Integrable functions should be Riemann Integrable. The formulation
of the theory of Lebesgue Integral which to a large extent remedies
this defect should be regarded as an important landmark in the
development of the notion of an integral which in turn has revolu-
tionalized mathematical investigations in several other fields, for
instance, the precise formulation of the mathematical theory of
probability was made possible and several representation theorems
in the theory of function spaces depend upon the general notion
of measure and integral. After digressing a little to draw attention
to a few other points in classical analysis I shall revert again to a
brief survey of general integration and related ideas.
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As we have remarked, the real number systgni is something of a
perfection in several respects. But it is not algebraically closed, if
every polynomial equation with coefficients in the field has a root
in the field. A field not algebraically closed can always be imbedded
in an algebraically closed field. The complex number system which
can be built up from the real number system followirg familiar
methods is algebraicdlly closed and contains a field ismorphic to the
real number field. But in thus extending the number system,
one has to sacrifice the notion of order as it is understood for real
numbers. It is significant to note in this connection that the rational
numbers form an ordered subfield of the real numbers but it is
not completely ordered. The complex number field has its own
peculiar properties. It is something like a culmination in the
process. of extending the number system step by step starting with
Peano’s axioms for positive integers and preserving at each stage
of the extension, the properties of the previous extension as far as
it is possible in the nature of things. For instance, it is not
possible to imbed the complex number systemen a larger system
preserving commutativity of multiplication along with the remain-
ing properties. Again, if a complex valued function of a complex
variable defined in a domain has a derivate defined on the model of
real valued functions of a real variable, such a function possesses
derivatives of all orders—a result not true for real functions. Such
complex valued functions are called analytic and the above property
endows the theory of analytic functions with wonderful beauty
and richness. As already stated, the notion of analytic functions
based on the model of complex valued functions have been
extended in several directions, the most recent being the theory of
Pseudo-analytic functions formulated with a view to solving certain
types of partial differential equations similar to Laplace’s equation
which lead to analytic functions.

Another achievement of classical analysis is the precise formula-
tion of the intuitive geometric notions of a curve and its length
and a surface and its area. With space filling curves on one side
and different but apparently natural definitions of areas leading
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to different values for the areas of even simple surfaces, this problem
bristles with difficulties. Thanks to the work of a large number of
mathematicians interested in this problem, a good measure of
success has been achieved in making precise the notions of length
and area and solving apparently knotty problems related to them.
The two ‘monographs, Length and Area by T. Rado and Surface
Area by L. Cesari give a good account of ‘the results achieved
go far in this direetion.

As already mentioned, abstract algebra dealing with operational
structures and topology dealing with limit and continuity form
two broad divisions of mathematical investigations in recent times.
But it is not to be imagined that these have been kept in watertight
compartments. As a matter of fact, most fruitful work has been
done in what are called topological algebraic structures. I shall briefly
indicate how such structures are defined and bring the talk to a close.

Just as the same collection of bricks can be used to build different
types of houses, it is possible to define several topologies on the
same set of elements. Let X be any set and T, and T, two topo-
logies on X. We say that 7', is weaker than T, if the family of open
sets defining 7, is contained in that defining 7,. The notion of
weaker (or its opposite stronger) defines a partial order among the
set of topologies on X and the latter forms a complete lattice with
respect to this order, that is, given any family of topologies on X,
there is a topology just weaker than and another just stronger
than all the topologies of the family. Given any collection M of
subsets of X, there is a weakest topology containing M among
its open sets and this is called the topology generated by M. If X
and Y are topological spaces, a function f on X into Y is said to be
continuous if the counter image of every open set in Y is openin X.
If X is any set, Y a topological space, f a map on X into ¥, there is
a weakest topplogy on X for which f is continuous, namely, the
topology generated in X by the counter images of the open sets
in Y. Similarly there is one such topology if several maps are given.
If X and Y are two sets, X x Y the cartesian products consisting
of all pairs (z, ¥), z and y varying over X and Y respectively, the
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maps (z, ¥) =« and (z, y) — y are respectively called the pro-
jections of the cartesian product into X and Y respectively. If X
and Y are topological spaces, their topological product is their
cartesian product endowed with the weakest topology for which
the two projections are both continuous. Similarly, the topological
product of any family of topological spaces can be defined.

Now let us examine how the mixed structures are defined. We
have alréady defined an abelian group. If the postulate of commu-
tativity of the binary operation is dropped we get the notion of a
general abstract group. Let @ be a group with the binary operation
written multiplicatively. Suppose @ is endowed with a topology
such that the map (x, y)—xy~! (y~* denoting the inverse of y)
of the topological product @ X @ into @ is continuous. Then & is
called a topological group. We say that the group operation is
compatible with the topology. A topological field is one in which
both group operations are compatible with the topology.

A vector space or linear space over a field ¥ is a set of elements
X forming an abelian group with respect to an operation denoted
by addition and is closed with respect to multiplication by the
elements of 7, that isfora € F and» € X, ax is defined as a unique
element of X and this multiplication satisfies the usual commutative
and associative laws and distributes addition. Now let F be a
topological field. Suppose the vector space X over F is endowed
with a topology for which it is a topological group and, in addition,
the map (&, z) — ax of F x X into X is continuous. Then X is a
topological vector space. Finallyif X isa topological vector space in
which the third operation of multiplication among its elements is
defined and this multiplication is also continuous, we call X a
topological algebra or a topological ring.

The most widely studied topological vector spaces and rings
.are the function spaces. On any set X we can define real or complex
valued functions. With the usual definitions of sum, product and
multiplication by real or complex numbers, the class of all such
funotions forms a ring. Various sub-classes of this class forming
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vector spaces or algebras over the real or complex number field with
suitable compatible topologies converting them intg topological
vector spaces or algebras have been the subject of intense study by a
large number of mathematicians in recent years. Several classical
results in analysis now find their place as properties of such function
spaces in their general setting. To cite only one instance, the theorem
that the limit of a uniformly convergent sequence of continuous
functions is continuous now appears as the completeness of a suitable
metric space.

Finally, I shall indicate how the notion of an integral has been
generalized to be of use in general situations. A family I' of subsets
of a given set can conveniently be called a Borel field if it contains
the empty set and is closed with respect to complementation and
countable unions. A non-negative real function m(Z) defined for
sets B €' with the property that it is zero when F is the empty
set and m(E) = Zm(E,) when F is the union of the sequence
(&£,) of disjoint seig)s of I, is called a measure on I'. A real valued
function f defined on X is called measurable with respect to I' if
the subset of points 2 € X where f(z) > a belongs to I' for every
real number a. Now for any given measure on I', it is possible to
define an integral for every non-negative measurable function in
a natural way following a procedure similar to that followed
in defining Riemann integrals of functions in an interval, the
value of the integral being a non-negative real number or + co.
Every measurable function f can be written as f = f+ — f,
where f* = max(f, 0) and f~ = max(— f, 0) are non-negative
measurable functions. If one at least of the integrals of f* and f~ be
finite, we can define the integral of f as the difference of the integrals
of these two functions. This definition includes the ordinary Lebesgue
integrals when the measure is the ordinary Lebesgﬁe measure and
the Lebesgue Stieltjes integrals when the measure is defined by a
non-negative increasing function on the set of real numbers. This is
one approach to the general notion of an integral. Within the last
decade, another method of approach has been formulated by M. H.
Stone and the Bourbaki school. To explain this briefly, consider a
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veotor space V over the real number field whose elements are real
_ valued functjons defined on a set X. A partial order can be intro-
duced on ¥ by defining f > g when f(z) > g(z) for every z € X.
Suppose V contains along with f and g the functions max (f, g) and
min (f, g). Then V is called a vector lattice of functions defined on X.
A linear functional on V is a real valued-function F defined on ¥
such that F(af+bg) =a F(f) +bF(g), where ¢ and b are real numbers
and f and g belong to V. F is called non-negative if F(f) > 0 if
f > the identically zero function. Now any non-negative linear
functional on ¥ is called an integral defined for functions of ¥ and
for feV, F(f) is called the value of the integral of f. Usually the
set X and the vector lattice V are chosen with special properties
and by general limiting processes, the definition of an integral is
extended to wider class of functions. In all cases of importance,
the two methods of approach lead to equivalent definitions of
integrals.

In the previous paragraphs, I have attempted, though in a rather
sketchy manner, to present to you some of the fundamental notions
in classical analysis and how they have formed the models for the
later developments in topology and topological algebraic structures
and in theories of measure and integration. In India, scholars work-
ing in abstract algebra and topology and their applications tQ other
fields are very small indeed. Even in the subjects in which Indian
scholars are working, the number is very small and not at all any-
where near the ideal as obtaining in other mathematically advanced
countries. It behoves lovers of mathematics interested in its deve-
lopment in this country to take all steps to encourage research in as
many of these modern topics as possible. Those in charge of guiding
research can do this as individuals, taking into account the aptitudes
of the pupils. The Indian Mathematical Society as an all-India
body should take steps to find ways and means of discovering
and encouraging mathematical talent and prevent their being
side-tracked. I hope that constructive suggestions will be forth-
coming at the symposium on *“ Research and Mathematical develop-

ment in India .






TOPOLOGICAL ALGEBRA*
By V. 8. KRISHNAN

Ix this address, we shall be considering examples of the way that
the two fundamental branches, Algebra and Topology, have been
intermingling and enriching each other. While Algebra considers
structures-defined by means of finitary operations on a basic set,
Topology considers the notions of convergence in spaces and of
continuity of functions from one space to another. While there are
structures which have both types of considerations, it is the purpose
of this address to show how methods of algebra help in certain
questions of topology and vice-versa. '

Algebraic methods in topology. Among the early objects of study
under topology were the curves and surfaces in Huclidean spaces.
Algebra entered in Topology through the method of associating the
‘ Homology groups ’ for these surfaces by means,of triangulations.
It was a major result to prove that these groups were topological
invariants. The numerical invariants associated with the groups had
already been encountered in the Betiti numbers. Andfor two dimen-
sional surfaces in Euclidean spaces these groups provide a complete
system of invariants, determining the surface up to homeomor-
phism (when the additional information is given whether the surface
is orientable or not). More elaborate, and different homology and
cohomology theories have been discussed and in the recent book by
Cartan and Eilenberg a ‘ Homological Algebra’ has been developed
to give an algebraic background for these varied theories. Not only
single groups, but families of groups or rings indexed by the integers
and with homomorphisms between them corresponding to the
boundary operator are treated.

At the other end of the scale, very general spaces, like the 7'-space
of Kuratowski with a closure operator for subsets, can be treated by

* The invited address delivered at the Conference of the Indien Mathematical
Society, in 1957 at Cuttak.
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methods of lattice algebra. For a T-space § is fully determined by
the structure of the (complete, atomic) Boolean algebra B(S) of all
subsets of § with the extra unary operation of closure defined on it.
Denoting the closure of X by X, this operation satisfies the four
axioms (of Kuratowski) K, : X is contained in X, for any X in
B(8), K2: XuY is contained in X u ¥, for any X, Y of B(S);

K, : X is contained in X, for any X of B(S); and K, : the null set
N, which is the least element of B(§), has its closure N equal to
N. Calling a Boolean algebra closed for a closure operator satisfying
these four conditions a closure algebra, Mckinsey and Tarski show
in their paper that such an algebra canbe treated, up to isomorphism,
as a subalgebra of the closure algebra determined by a 7'-space in
the manner indicated above. They also characterize a universal
algebra for finite closure algebras. In his book on ¢ Analytic topology’
Nobeling also begins the study of partly ordered sets or lattices with
a closure operator as above, but not necessarily satisfying the addi-
tivity condition &,. Similarly he introduces the uniform structure
by considering lattices or Boolean algebras with an indexed family
of mappings U; corresponding to taking the U, neighbourhoods
of subsets of a uniform space with the U; as surroundings of the
diagonal.

Topological methods in algebra. For a topological group a base of
neighbourhoods for the neutral element, or as it is also called, a
nuclear base or base of nuclei, determines the topology completely.
If N, ¢ in I, is such a base two uniform structures are determined
for the group @ : the left uniform structure is specified by the base
of surroundings U;, 4 in I, where, for any «, y, in C, (%, y) is in U, or
y is in U(z) if and only if y is in 2.V, (the left translate of N; by z) ;
the right uniform structure is similarly defined in terms of right
translates. Both these uniformities are compatible with the topology
of the topological group.

The situation becomes simpler, and in a sense more algebraic,
if the nuclear base is a system of (normal) subgroups. The associated
surroundings in the left or right uniform structure viewed as binary
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relations on G now become congruence relations on @, and their
intersection ig the indentity relation if the space is separated.
Different aspects of this situation have been treated in papers by
W. Hémisch and by H. Schéneborn.

In the paper of Hamisch, the general structure of algebras with
congruence uniformities is considered. The process of completion
with respect to such & uniformity is related to the structure of a
certain product algebra whose terms are quotient structures of the
original by the given congruences. Other types of products and
lattice products are also defined and studied.

Schéneborn is interested in topological modules with topological
operator rings of a special sort. Observing that the p-adic integers
can be obtained from the module of integers by completion with
respect to the congruence uniformity determined by the system of
congruences modulo the ideals generated by the powers of p, the
ring of all n-adic numbers is defined as the completion of the ring
of integers for the congruence uniformity deterrmined by the con-
gruences modulo n, for all n; this last ring is the direct (T'ychonoff)
sum of the various p-adic number rings. Closed subrings of this ring
are called n-adic rings if they have a unit ; they are direct sums of
selections of p-adic rings (up to bicontinuous isomorphisms, of
course). The topological module, M, considered is to have a topological
ring R as operator domain, with the additional condition, besides
the usual algebraic ones, that for any elementa of M and any subset
8 of R, (%) is Re, and Sz is Sz where (r) is the submodule
generated from z, and the closures are to be properly taken in M
or B as the case may be. If further, the additive module of the
operator ring B has such a (left) operator ring, then M is said to
have B as a natural ring of operators. The principal results of
M. Schéneborn are regarding modules with n-adic rings as natural
operator domains. The general case is reduced then to that of
certain ¢ primary’ modules, and these are studied in detail.
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CLOSURE THEOREMS *
By M. V. SUBBA RAO

1. One of the important methods of approach to closure theorems
in normed vector spaces K, i.e. theorems on the detén’nina,tion
of dense linear subsets of E, is by an application of the Hahn Banach
theorem, which, for our purposes, can be stated thus: If ¥ is a
normed vector space (briefly . v. space) of which § is a linear sub-
space, and if # is an element of E, disjoint with 5 (closure of §) there
exists a (non-null) linear continuous functional f orthogonal to § and
f(®) = 1. Actually we know [1] that there exists such an f with the
additional property || f || = 1/d, where d is the distance of x from

S =gl [z —y|.
yeS

1.1. We know that this result holds for a wider class of spaces, viz.
locally convex topological vector spaces; such spaces, it is well
known, are completely specified by a family of 8emi-norms, a semi-
norm being the usual norm except that (# || =0 need not neces-
sarily imply that » is the null element §. From the Hahn Banach
theorem, we get at once the following result, which is basic for the
construction of closure theorems. Throughout the paper, unless
otherwise stated, & stands for a normed vector space, 8 an¥ linear
continuous functional of E, and Z* the dual space, i.e. the linear
space of all such f’s.

1.2. FuNDAMENTAL LEMMA. Let oy, o, ..., be a sequence of elements
of a given space E. Then the linear manifold S spanned by the sequence
(e;) is dense in B, if and only if, every B orthogonal to each «;, reduces
to the null functional. In such o case, every element x of S can be
expressed as the limit of finite linear combinations of «;’s.

2. Using this approach, Mandelbrojt [6] obtained a number of
closure theorems for the spaces L,, and Ganapathy Iyer for the

* The invited address delivered at the Conference of the Indian Mathematical
Society, in 1957 at Cuttack,
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space of integral functions. In this paper I obtain some interesting
closure theorems for the spaces I, (p > 1), for the spage of power
series satisfying certain properties, and for inner limiting spaces
associated with these spaces.

3. Thespace [, (p>1). This space, as is well known, consists
of all sequences « = (@, @y,..., @;...) such.that % |g,|? < .
This is a Banach space under the norm |[al|f = (2 |a, [?)'?.
Any linear continuous functional B of I, is defined uniquely by

0
a sequence 8 = (by, by,..., b;,...) such that X |b,]? < oo, l —+ 1 =1,
i=1 p» q
so that B(a) = X b;a,. We will prove the following
=1

TusorEM 1. Let « = (@, Gy ..., &, ...) be an element of I,
such that no a; vanishes for any i. Let Z, be a sequence of complex
numbers, an infinity of them being distinct, and such that = [1 — |2,]]
is dwergent. Let a, = (@2, 0,22 ..., &;7,...), n=1,2,.... Then
the linear manifold épanned by «,’s will be dense in Uy-

Proor. Let 8 = (by, by, ..., b, ...) be a linear continuous func-
tional of Z, which is orthogonal to «,, for all n, so that,

ﬁ(%)=zb,-a¢zf,,=0, n=12,... (3.1)

i=1
Consider the function f(z) defined by

f2) = X b; a; 7,
This has & radius of convergence > 1 since X |, @; | < co. Also, from
(3.1) we see that z,, n =1, 2,... are all zeros of f(z) all lying in
2] <1. It follows now that f(z) =0 using Blasckhe’s theorem
that if a power series is bounded in the unit circle and has zeros

(2,), » = 1, 2,... in that circle, then T (1 — |2, |) must be convergent,
or else the series is identically zero.

©

Hence we get here b;a, =0, i =1, 2,.... But no a, vanishes by
hypothesis. Hence b; = 0 for all s and B is the null functional, esta-
blishing the theorem.
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Another closure theorem for the same space is

THEEOREM 2. Let o = (@15... @,...) be an element of Ly > 1 such
that a; # 0 for any i. Let a, = (a7 a%,...,a%,...),n = 1,2, .... Then the
linear manifold spanned by («,)’s is the whole space L.

The proof depends upon

Lemma 2. If f(z) = Z b; e a™ is an integral function and vanishes
identically, then each b, is zero.

A proof of this can be found in [4], [5].

Proor or THE THEOREM. Let B = (b, by, ..., b;...) be a linear
continuous functional of [,, orthogonal to each «,, so that

2]

B(a,) = Z bia* =0, n=1,2,... (3.2)

1=%
Now the function f(z) defined by f(2) = X b; ;€% is easily seen
i=1

to be an integral function, since T [b,a;| < co and @,—0 as i—oo.
Also from (3.2) we see that f(z) and all its derivatives of all orders
vanish at 2 = 0, and hence f(z) = 0. Lemma 2 now gives b4, =0
for each ¢, or b; =0, since a; # 0. Hence 8 is the null functional
and the theorem follows.

4. We will next take the space I'(R) of power series a(z),

«(2) =X a,z,, such that |Z|a, B" < o, R being a fixed positive

number. This is easily seen to be a Banach space [3] with norm
N(x; B) =X |a,|R"

The dual space I'*(R) consists of functionals 8 = (b, b,,...) such

that | ¢;/B*| < oo and B(a) = Z b; a;.

'We can now prove two closure theorems for this space which are
analogous to Theorems 1 and 2. It may be noted that convergence
in I'(R) is uniform convergence over the circle |z| = R.

TuEOREM 3. Let a(z) = X a,7" be an element of I'(R) with no a,
being zero, and let v be its radius of convergence, r > R. Let
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2y, Zgyeees %y e--, DE G Sequence of complex numbers such that

|2, | <R, and let
(i) = |a, |7 <oo; ({)Z|—1—(r/R)|2,] = o (4.1)
Then the closure of the linear manifold spanned by IL,(z), where
«,(2) = afez,) is the whole space I'(R). '
The proof of thls is similar to that of Theorem 1 and is omitted.

It may be noted that the hypothesis (4.1)(ii) includes as a special
case the hypothesis that the z,’s have a limit in |z| =r/R.
Also, if this is used to replace (4.2)(ii), the theorem holds even
without (4.1) ().

TrLLUSTRATION : Let us take a(z) =1 +42/12 +22/22 + ...and R=1.
Now «(z) is bounded in | 2| < 1. Takez, =1 — 1/nso that (4.1) is
satisfied. Thus the theorem gives the result that every power series
Sa,z" such that Za, is convergent is the uniform limit over the unit
circle of finite linear combinations of a(z — 2z,), i.e.

14+ Z 21— 1npjp?, n=12,....
=1 .
Another closure theorem in a different direction is

THEGREM 4. Let «z) =Za, 4, (6;%0,1=0,1,2,...) have the
radius of convergence r > R. Let A denote an infinite set of complex
numbers X such that |X|<r — R and 8, the linear manifold spanned

by the set of functions
a(z +A), Ae€A.

Let o® denote the p-th order derivative of «(z) and S, the linear
manifold spanned by o®(z),p = 0,1,2,.... Then 8; = S,.

Proor. We have

@) (5) = Z (n+1)(n+2) .. (n+D)Gyu,3

If f=(c,0p-) € I‘*(R), and fla?(z)] =0, p=0,1,2,... Wwe get
A,=0, p=0,1,2.., (4.2)
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where

A, = z (n+ 1) (n 4+ 2)... (0 + D) 6, 6,0

=]

Next, if f [a(z 4 A)] = 0, we have, using Taylor’s theorem,

FTN) +2 @) + .. +;_,,! @A) +...1=0

or
©

Z ¢y aP(N)p! = 0. (4.3)
p=0

Using the value of «®(z), (4.3) gives

Z z%z (n+1) (0 + 2)... (@ +D) Gy, A* =0,

p=0 n=0

ie. 3 A,W/p! =0 (on rearranging the double series which can
=0

easily be justified). This, by supposition, being true for all A € A,
an infinite set, it follows that for every p, 4, = @& just as before in
(4.2). Hence the theorem follows.

5. We will now take up what may be called inner limiting spaces
(what Bourbaki calls projective limit spaces) connected with L,
and I'(R).

Let B, > Ey;>...0 E;> .. be an infinite sequence of linear
manifolds and N; norm imposed on E;, 4 =1, 2, ... such that

Ny(w) < Nyl@) < ...
for all z € E = II E;, Let D be a linear manifold belonging to
i

each B, Let [B;, NV;] denote the topological space got by imposing
on E; the norm N; and similarly (&, T) where T' is the lattice
product topology in the sense-of [7] of the N;topologies. If »
denotes ‘topologically stronger than’ we have evidently

[E, N;1> [E, N,]1> ... >[8,T].

We know that [E, T']is matrizable by the metrie
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1 N, (x
The space [E, T'] may be called the inner limiting space of the
spaces [H;, N;]. We mnote the following results which are well
known, or, easily proved.

e

If each [E;, N,] is complete space, 80 also is [H, T1. (5.2)
If D =[E, N.] for each i, D being linear subset of H, then

D=[E, T]. (5.3)
This result holds even if norms are replaced by metrics.

In (5.3), D, wherever it oceurs, is the closure of D in the topology
of the space on the right side.

The Hahn Banach theorem in § 1 holds in [H, T'], for [E, T]isa
locally convex space. (5.4)

But we can prove the following more precise result.

TeEOREM 5. If 2, € B and 8 ¢ E, a linear subset of E and
d(z, 8) =8> 0, then there exists an integer iy > 0 and a linear
continuous functional B of [E, T such that

B(x) =0 for all z in 8§, (5.6)
|Bl)| < 2—;—8 N, (@), for all % in 8. (5.7)

The proof depends upon
Lemma 3. Ifd(x,, 8)=28 > 0, then foranyy € 8,

N, y) > 8 (— 2—8_— ) for oll i > i, where iy is defermined by

1§
<2, 5.8
50 < 5 (5.8)

For
) iy )

y
Z2‘1+N(wo n= 2t

=1  i=migt+1

d(zg, y)
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Hence if ¢, is chosen as in (5.8) we have Z < -g, so that
° i=ip+1

b 0§
2. >3
i=1

or since N (z) increases with ¢,

Nly—m) <18
. T+ N, y—w) 427 2
so that .
)
Nio(y‘“xo)>2——_—s=31

and the lemma follows.

To prove Theorem 5, we have, by Lemma 3,

8
N.(y — — ., yel.
W) > 5 ¥
Hence by a well-known property of normed spaces, there is a
B € (B, N, )* having the properties (5.5)—(5.7). Finally we have

[ B, TT* = z [E, N,]*. (5.9)

This result is by no means trivial for, while e [B, N'-o]*, for
any ¢ implies, obviously, B € (, T']* so that

> (B, N)* ¢ (B, T)*.
3
Also (5.9) implies that the reverse relation is also true, which is
a less obvious result and requires the use of the property that the
topologies (B, N,) steadily become weaker as 7 increases. The result
(5.9) can be easily extended to the case when the topologies defined
by the norms N,’s are replaced by any comparable family of topo-
logies, i. e. & family of every two members of which one is weaker

than the other.

Another remark regarding (5.9) can be made here. ‘While for every
given functional on (E;, N;) there corresponds a unique functional

L
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on (E, T) (the induced functional), the same functional on (H, T)
may be obtained from more than one functional on ¢&;, N;), since
there exists non-zero functionals on (Z;, N,;) which vanish over E.
Thus we can state (5.9) in the following equivalent form. Let F
denote the set of functionals f belonging to (E;, N,)* for any 4
and vanishing over E. Then (E, T)* is algebraically isomorphic to
the factor space X (H;, N,)*/F.

We will in conclusion give two illustrations of these inrfer limiting
spaces.

6. Let us first consider the inner limiting spaces associated with
the spaces 1,, p > L.

Let S, denote the linear manifold of sequences a = (a;, G, ...)
for which X |a;[? < co.

Let N,(«) denote the norm of « given by

(o) = (Z Iailp)llp

Consider the topological space obtained by imposing on S, the norm
N,, ie.space [S,, N,], in the notation of (5). This is the same as
the space usually denoted by 7,. We have obviously §; ¢ S;if 1 < j.
Let S 0 = H 8; so that §,,, consists of all sequences a = (&)

such that E | a;[?T* < oo for every ¢ > 0. Also using the notation
of (5), we have, if 1 <4,
N;> N,
(Sp+05 Vo) < (Spy0s V).
Let T be the lattice product topology of the normed topologies
defined by NV; on 8, , , i > p. Then we get the inner limiting space

associated with I, spaces, viz. (S,,o, T). Using the results of (5) we
see that (8, ¢, T) is metrizable with the metric

o ==, = 3 g 0,
DPreg _

where ¢ is any sequence of positive numbers tending to zero.
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It is a complete space with this metric. The linear continuous
functionals of this space consist of all sequences (b;) for which

z [6;197¢ < o0,

for some € > 0, where 1/p + 1ljg = 1.

Since the functionals are determined, closure theorems analogous
to those for I, can be obtained for this space also. For example,
Theorem’ 1 holds here also provided that the element « there is
assumed to belong to S, instead of to S,

7. Lastly we can consider the inner limiting space I'(E — 0)
associated with the spaces I'(r),0 <r < R, introduced in §4;
it is evident that the sets I'(r), viz. the set of all power series
«(z) = = &, 2" for which Z|a, |r" < co decreases as 7 increases, while
the norm N(x;r) = X|a, | 7" increases with 7. We have thus a
situation analogous to that described in § 5. The inner limiting set
I['(R — 0) of the set I'(r) consists of all power series «(z) =2 a,2"
for which X | a,|7* < o for every r< R. Onthis set I'(R — 0),
there are the various topologies defined by the norms N («;7),
0 < r < R, and their lattice product topology 7' is metrizable

with, the metric
Ne;r—¢)
Z B1+Na;7r—e)

where ¢; is any sequence of positive numbers tending to zero. It is
of interest to note that this space can be proved to be non-normable
(proof is to appear shortly elsewhere), and in fact that on the set
T' (R —0) there can exist no normable topology weaker than the
family of normed topologies defined by N (L;n),0<r< R

Every functional 8 of (R — 0) is of the form
B (2) = z by, 6,

where « =X g, 2" and I-l;i"l < M < o, for some r< R and finite M.

It may also be noted that non-convergence in (R — 0) is uniform
convergence over every circle contained in {z| = R
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The closure Theorems 4 holds for this space also, while Theorem 3
holds if the hypothesis (4.1) is replaced by “ the z,’s have a limit
point in |z]| =r/B".

If however (4.1) is to be retained as it is, some further (rather com-
plicated) assumptions seem to be necessary. I conclude with men-
tioning the following problem for solution: If no a; is zero, is it
true that the linear manifold spanned by the sequence of elements
%,, By, ... is dense in lp» p > 1, where

2, = (@, 8g,... ) ELD; Ty = (0,84, 85,...); @5 = (0, 0, Gy, Gy, ... )?
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SYMPOSIUM ON FUNCTIONAL ANALYSIS
Chairman : Professor V. GANAPATHY IYER

THE term “‘ functional analysis ’ has come to denote that djscipline
in mathematics in which the problems in classical analysis are sought
to be generalized to situations presented by abstract algebra and
topology vand to the review of the problems in’ classical analysis
from the general standpoint.

Dr. M. Venkataraman will lead the symposium by giving a survey
of functions, topological vector spaces and function spaces in general.
He will be followed by Dr. U. N. Singh who will give an account
of some of the important special function spaces and closure
theorems. Sri M. R. Parameswaran will speak on the applications of
the general ideas of functional analysis to the problems in summabi-
lity methods, giving a review of the recent work of K. Zeller in this
field and his own efforts in this direction. Sri M.-S. Ramanujan will
give an account of moment problems in general function spaces
giving an account of the work of Lorentz and others in this field.
I shall give a few general remarks indicating the orientation to
their talk.

Till a decade ago, the main problems investigated by scholars
working in the theory of divergent series were concerned with special
methods of summability, the limits to which sequences transformed
by them converged and additional conditions on the sequences
which along with their summability by a given method implied
convergence (known collectively as Tauberian theorems). Rarely
attempts were made to consider the class of sequences summable by
a given method as a whole and the class of convergent sequences
into which they were transformed. Similarly the summability
methods were usually considered in their isolation and only isolated
results on the inter-relations between different methods were known.
Only recently, systematic attempts have been made to study the
family of sequences summed by & process in relation to the range of
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the transformed sequences in the space of convergent sequences. This
aspect has been systematically investigated recently by K. Zeller,
and Sri M. R. Parameswaran will give an account of these investi-
gations. The general idea is to convert the class of sequences
summed by a process (known as the field of summability) into a
locally corvex topological vector space by using a suitable family of
semi-norms so that the space obtained becomes a complete space in
the topology thus obtained. Another aspect which will be presented
by Sri Parameswaran will be the consideration of the class of all
summability methods as a Banach algebra. Out of this characteri-
zation several consequences follow. For instance, those methods
which are regular in this algebra'(that is, have an inverse) cannot
convert any non-convergent sequence into a convergent sequence.
Such elements form an open set in the algebra, so that effective
summability methods (that is, whose field of summability is wider
than the space of convergent sequences) form a closed set. Again
the family of all those processes summing a specified family of
sequences form a left ideal in the algebra. This point of view enables
one to study permutable methods of summability forming sub-
algebrag—for instance, the Hausdorff methods constitute one such
family. I have said just enough as an introduction to the talk by
the last two participants in the symposium.



ABSTRACT STRUCTURES IN THE THEORY
OF FUNCTIONS

By M. VENKATARAMAN

1. Function spaces. The theory of fuctions can be said to have
been properly founded only when the distinction was clearly made
between‘a function and a formula or expression sﬁecifying a function.
A function f(x) is a correspondence or mapping which associates
with every number  (real or complex) another number , denoted
by f(z). It is obvious that there are numerous functions, other than
those given by simple expressions like y =ay + &2 + ... +a, 2"
or f(x) = (ay + ax +...+ a6, 2™)/(by + b;x +...+ b, 2"). The central
problem of the theory of functions now arises, namely to be able
to construct newer formula or expressions which would represent
various wider classes of functions, specified otherwise.

The simplest and the most widely known representations are by
means of infinite series, e.g. f(x) = i‘. @, 2*. For this expression to
have any meaning we must have somt: topological structure by which
we can say that E} a,x" converges (or not) to the function f(z) as x—co.

1

Various classes of functions and topologies therein have been studied,
typical of which is the space L,(S) of functions f(x) which are
measureable in a set § and whose pth power is Lebesgue-integrable.
We say that f, — f in L, if the distance between them d(f,, f) =
[[If2(=) — f?(x)| da]'? tends to 0 as m —co. It is a classical result
that a sequence of functions f, in L, converges in L, to a function
f(x) if and only if f, is a Cauchy sequence, i.e. d(f,, f,) — 0 with
1/m + 1/n. The common abstract structure of these classes of funec-
tions is the Banach space. It is defined to be a class B of elements
which is (1) a commutative group with respect to addition, i.e. addi-
tion and subtraction (satisfying the usual rules) are possible, (2)
allows multiplication by numbers (real or complex as the case may
be) satisfying the usual associative and distributive laws, and (3) in
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which every element & has a magnitude ||z || such that ||z +y | <
Lol + w12 1Azl = 1AL Iz ] llall> 0 if @ #0. Further (4) the
distance function d(f, g) = ||f —g| is such that every Cauchy
sequence of elements f, is convergent, i.e. whenever d(f, f) — 0
as m, n — o, there exists an f such that d(f,, f) — 0.

The spaces L,(p>1) are all Banach spaces. Particularly interesting
among the space L, is the space Ly, wherein given any two elements
f, g, we can define a number (f, g) called the scalar product cOrTes-
ponding to the dot product of vectors in Euclidean 3 space. The
interest in L, space stems out of the fact that it is a very natural
generalization of Buclidean spaces (and that transformations in
such spaces are of use in a mathematical formulation of quantum
mechanics). We can talk about orthogonal vectors, and the
Pythogoras theorem is true. Only instead of 3 or ‘n’ being the maxi-
mum number of mutually perpendicular unit vectors we may have
an infinity of mutual orthogonal directions or vectors. A classical
result is that the Hermite functions H,(z) constitute a complete set
of unit, orthogonal vectors in L, (— oo, o) such that every element
flx) can be expanded iun the form X a, H,(z), where a, H,(x) is the
projection of f(x) in the direction H,(x), ie. @, = (f, H,). Here
Sa, H,(x) means the limit in the L, sense of the partial sums of
the infinite series. Similarly every function f(x) in L (— 77, 11') can be

inz
expressed in the form 2 a, \—/%2—;) , where @, f f@) \/ )
the series converges in the L, sense. If these results indicate that
every function of the class Ly(— o0, ) can be expressed as the sum
of multiples of the functions H,(x), and that the functions of the
class L, (— m, w) can be expressed as the sum of multiples of the
functions €™, there is a generalization that every function f(x)
of the class L, (—o0, 00) can be expressed as the sum of multiples of
the eon’oinuous inﬁnity of functions €** (o< t< oo0)inthe form f(x)=

(o]

dx and

_fw \/( limit
of .T $(t) \/(?m-) dt. Here ¢(t) will be equal to _jw flx) ;(;:) dz, this
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integral again being an L, limit. It is to be noted that we have
a continuowms infinity of Fourier coefficients ¢(t), which is called
the Fourier-transform of f(z). This transformation of f(z) to #(1)
is a ‘rotation’ in Hilbert spacc, in as much as ||f|| = || .

2. Analysis in Banach spaces. In view of these results, naturally
the study of Banach spaces received a large impetus. And one of the
problems which has been tackled is to study poss.ible representations
of amapping f(x) from one Banach space X to another Banach space
Y. The natural attempt has been to get generalizations of the best-
developed* part of function theory—that of uniform analytic fune-
tions of complex variable. Here we know that the following classes
of functions are equivalent : (1) those which can be expanded as
power-series X a,z"; (2) those which have a differential coefficient
at all points; (3) those whose integral taken around any closed
contour is zero. In attempting a generalization of such a theory
to functions defined in a general Banach space, a certain amount
of ingenuity is needed in defining the ana,logues of the notions of

differentiation, polynomial, integration, etc.

A function f(x) from B, to B, is defined to be a polynomial
of degrec ‘m’ if it satisfies the condition f(z + hz) = flz) +
hP(x, 25) + ... +B" P,(x, %,) are suitable functions depending on
x and x, only, and with values in B,, % being an arbitrary scalar.
If further f(hz) = &". f(z) we say that f(x) is a power, or a homo-
geneous polynomial. An alternative definition which can be proved
t6 be equivalent to this is as follows: Defining the difference
8, f(z) of this polynomial f(z) to be f(z + ) — f(z) end 8, f(z)
=8, (8;, .- @p—1f(2)) it is easily verified that 8, . f(z) = L(x, ... %,)
is independent of z, }';S symmetric in z; ... %, and is linear in each of
the arguments z,,. Also L(% ...x) = f(x). This suggests the alternative
definition of a polynomial f(x) of degree ‘n’ as the value of an
n-linear symmetric function L(%,...x,) when s =z, =... =2, =2.

* A more detailed exposition of allied developments are being given by
Dr. Singh, Dr. Subba Rao and Sri Ramanujan,
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It may be mentioned that we cannot assert that a polynomial is
always a continuous function.

Noxt, we pass on to the definition of the notion of the differential
cocfficient of a function f(x) from B, to B,. We say that f(z) is

q- diﬂ'erén%iable if fla@ +2h) — f(z) tends to a definite limit &8f(x, A)
z

as the scalar z tends to zero, for all x and h in B,. If this 8f(x, h)

is also continuous In A not necessarily in x, we say that fz) is F-

1
differentiable. In this case, it follows that lim i (flz +h) — f(b)—
8f(x,h)) = 0 when ||| —0 and that 8f(z, b) is linear in A. It is

to be remarked how 8f(z, k) corresponds to our normal conception
of a differential rather than the differential co-efficient.

It is satisfying to find that a power is always G-differentiable and
will be F-differentiable if it is continuous. We can prove that if
B,, B, are complex Banach spaces, f(z)is @G-differentiable if and
only if f(z + zh) for every z and % is an analytic function of the
complex scalar z. The limit of a uniformly convergent sequence of
G-differentiable functions will be @-differentiable, and its power-
series is the limit of the power-series of the sequence.

Calling a function analytic if it is locally bounded and G-differen-
tiable (and hence continuous and so F-differentiable) we have the
following analogues of classical results. Ananalytic function vanishing
in a sphere, however small it may be, is identically zero. The limit
of a sequence of convergent and uniformly bounded analytic func-
tions is again analytic. The sum of an F-power-serics is analytic and
conversely. Every analytic function can be expressed as the sum of
an F-power-series. I have not come across any discussion relating
the Cauchy integral and the analyticity, though the ordinary theory
has valid analogues when B, is the usual complex number space.
Analysis in Banach algebras has a rich theory quite analogous to
that of functions of a complex variable (see E. Hille [17]).

3. Integration. Next, we shall pass on to the concept of the
integral. Here, we might add that the theory of L, and L, spaces
holds only when we use the notion of the Lebesgue-integral and
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is mot so satisfactory with the notion of the Riemann-integral. This
naturally foeuses attention on a closer study of the Lebesgue integral
and the Lebesgue-Stieltjes integral. We shall content ourselves here
by mentioning that each such integration process (I) on the real
axis associates with every continuous function f{ x) , wanishing
outside some bounded set, a number [f(z) (I) and this ‘association
is a linear mapping of the class of such funcmons and that it carries
a sequenee f, converging uniformly on compact sets into a convergent
sequence I, of numbers. A converse of this is also valid, and has led
to the study, by Schwarz [7] of the linear functionals over other
allied function spaces, in the theory of distributions.

4. Locally convex spaces. Banach spaces are special instances
of locally convex vector spaces. These are vector spaces together
with a topology with respect to which the vector operations are
continuous and which have a basis of convex neighbourhoods at
the origin. Tychanoff [9] proved that a continuous image of any
bicompact subset of such a space into itself always has a fixed point.
The proof is based on the famous analogous theorem of Brouwer
for finite dimensional Euclidean spaces. As simple applications we
have the following: (1) Every polynomial f(z) has a root. We
have only to consider the mapping z— f(z) + s and to show that
it takes a suitable circle into itself. (2) Let y, be a family of unknown
functions of the variable # in an interval about 2. Let f, (%,...¥,...)
be a funetion which is continuous in all the arguments. Then the
set of equations dy,/dx = f,;, Y.(%) =y’ has a solution. We
may note this is a generalization to an infinite number of variables
of the existence theorem for ordinary differential equations.

If we could prove the uniqueness of the solution, this givesa
method of specifying the set of functions y,. The simplest example
is the one where we define ¢® as the function which satisfies dy/dz =y ;
y(0) = 1. The uniqueness situation is handled more easily in the
case of linear operators in function spaces, for, then it is equivalent
to saying that the operator has an inverse.*

* Sri M. R. Parameswaran will be reporting on applications of locally convex
spaces to summation process.
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5. Analytic functions and Riemann surfaces. A great impetus to
the study of topological properties to surfaces came with Riemann’s
memoir showing that a many-valued analytic function w = f(z),
say, the one given by a polynomial equation p(w,z) =0 of degree
greater than one in w, can be represented as a single valued conti-
nuous function defined on a suitable Riemann-surface, which is
obtained by taking n sheets of the closed complex plane, cutting
them along suitable lines and attaching different sheets.suitably
along the cut edges. The question arises whether we could find the
characteristic properties of this surface. We notice that (4) to each
point on this Riemann-surface there corresponds a projection P on
the complex plane, identified with, say, the bottom sheet and that
this projection is 1~1 and bi-continuous in the neighbourhood of
each simple point on the surface and is like the mapping z = p"
in a neighbourhood of a non-simple point where n sheets branch
out. It is natural to call a topological space with the property (4),
a covering space. Stoilow [8] has shown that a topological space
is a Riemann-surfa8e if and only if it is a two dimensional orientable
covering space of the complex plane. Some of the early achievements
of combinatorial topology were the classification of compact Riemann
surface by their genus; and their canonical representations as a
Riemann sphere with a number of circular holes punched out
and filled with handles instead.

6. Topological methods in function theory. The nexb significant
problem tackled in the topological nature of the theory of functions
of complex variable is the following:

Let us define two functions W = f(z), W = g(2) from the complex
z-plane into the complex w-plane as topologically equivalent if there
exist homeomorphisms «, 8 of the z-plane and of the w-plane onto
themselves such that g(z) =B(f(«(z)). It is to be noted that z —- «(2)
and w—B(w) can be considered as mere re-namings of thezand w-plane
respectively. Then g(z) is just the renamed function f(z). For an
extensive study of the theory of functions of a complex variable
along allied points view, we may refer the reader to Morsten Morse’s
brochure [5], and to Whyburn’s work [ 10]. We shall only state here
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Stoilow’s theorem that a continuous mapping of a two dimensional
space into the complex numbers is equivalent to an analytic function
on a Riemann-surface if and only if the mapping is open, i. e. carries
open sets into open sets. 1t is to be noted that many properties of
analytic functions, e. g. the maximum modulus theorem can be
proved by means of these characterizations. See [ 8] and [11].

One may again consider two continuous functions f(z), g(2) of the
complex *variable z as (homotopic) equivalent when there exist a
1-parameter family of functions fy(z), 0 < ¢ < 1 continuous in { and z
together such that fy(z) = f(2); f1(z) = g(2), (i. e. when they can be
continuously deformed into each other). The investigations of
Hopf [2] have shown that there exist only a countable number of
non-equivalent mappings of S, (the surface of the unit sphere in
3-space) into itself—one of each integral degree 7. Remembering
that the closed complex plane is homeomorphic to S, and that a
function meromorphic over the entire closed complex plane is a
continuous function of S, into itself, the a‘bove result gives
& complete classification, upto homotopic equivalence of the
meromorphic functions of the closed complex plane, by means of
their degree.

This raises the gquestion of classification of complex functions
meromorphic in the region |z|< 1. The answer has beem given
by Morse and Heins [ 6]. We start with the definition of the angular
index d(k) of a curve k from @ to b in the z-plane. We plot on the
unit circle, the following vectors: the directions of the vectors
from any « to @ when z varies from b to a on k; then we plot the
tangential directions of the vectors from x to b when x varies from
b to @. The total angular variation in this path on the unit circle is
defined as the angular index d(k) of the curve k. Suitable modi-
fications can be made when curve is not differentiable, or when b = a.
Next, let f(z) be a meromorphic function with zeros and poles at
GyBy ... 4, ... G, the first 7+ 1 being the zeros and the rest poles.
Let b;...b,, be the zeros of the derivative — the ‘branch point
antecedents’. Let k; be any curve which joins & to @; and does not
pass through any of (4, ... b,) except a, and a,. If the curve is
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deformed so as not to pass through any of these points, then d(f(k;))
will maintain the same value. For other deformations the value may
be affected. We shall now define V(k;) to be the angular-variations

of (s —bo) - (& — bn) B —%) 55, varies from @, to ;. It can be
(z—ay)...(z —a,)

shown that df(k) — V(k) = J; is the same for all curves k;
joining a, to a;. The assertion is that two meromorphic functions
in |z] < 1 can be deformed into each other by the fungtions of
the same type and with the same zeros, poles and branch points
antecedents if and only if the J’s are the same for both the
functions.

No similar characterization of equivalence classes of continuous
real-valued functions of a real variable is known. Since however,
continuous periodic functions of the real variable may be considered
as functions of §; (the boundry of the unit-circle in the complex

plane) into itself, Hopf’s results show that these can be “classified
by their degree.

7. Vector lattices. Theorems which give a complete specification
of the object of our study are always found to be of interest. Thus
if we take the class of all continuous functions defined on a closed
interval of any T, bi-compact space, these constitute with the
usual upper bound norm, a Banach space. What is the peculiarity
of this Banach space amdng other Banach spaces? Can every such
' space be abstractly identified with the Banach space of all continuous
functions on a certain bicompact space X? The answer is in the
negative, and the peculiarity is given as follows: (1) on the unit
sphere, there exists a point P such that given any other point Q on
the unit sphere, the segment joining P to @ or the segment joining
P to (— Q) must be completely on the sphere. (2) If E, is the semi-
cone with vertex P and base the unit sphere, then the intersection
of any two translates of E, is again a translate of E,. This space
can also be characterized as a Banach space in which there is partial
order f > g (f(x) > g(x)) for every . The partial order is seen to be &
lattice where the lattice operations ate compatible with the vector
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and topological structures. The characterization of this Banach
lattice among all others is that (1) if %, y > 0, then |jz +y| =
max ([lz], [[y]}) and (2)if © A y =O0then [lx +y| = ||z —y|. An
interesting result stemming out of an analysis along similar
lines is the following generalization by M. H. Stone of tho famous
theorem of Weierstrass on the approximation of éOI;ti_nuous
functions by polynomials: Let I' be a class of continuous real
functions, defined on a compact space B such that whenever f, g are
in I', so also are af+bg (f, a,b real constants) and max (f, g). Also for
every pair of point z, y in B, let there be a function f in I' such
that f(x) # f(y). Then every real continuous function h(z) in B can
be expressed as the uniform limit of a sequence of functions in I'.

8. Rings of functions. Kakutani [ 3] has shown that the class of
functions analytic on an open set determines by their algebraic
structure the nature of the domain D. He proves that the class of
such functions constitutes with the usuallaws of addition and multi-
plication a ring. It can be proved that two domains D;, D, are
conformally equivalent if and only if, the two corresponding rings
are abstractly identical. If D is the sum of two suchopen sets Dy, D,
then the associated ring of D will be the direct sum of those of D,
D, (D, is supposed to be such that there exists an analytic function
in D, with an essential singularity at any given point on the bgundry
of D;). The status of these rings among abstract rings seems to be
still an open question.

9. Conclusion. With this we shall conclude this brief resumé of
the basic results in the region of contact of the classical theory of
functions with the abstract structures of modern mathematics.
For an idea of the various other developments, the reader might
refer to the literature quoted in the various references and

particularly in Kaplan [4].
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TOPOLOGICAL VECTOR SPACE OF ENTIRE
FUNCTIONS

By U. N. SINGH

1. M. Fréchet was perhaps the first mathematician, who considered
[3] the class of entire functions as a metric space by defining the
distance ¢(f, g) between any two entire functions ¥(z) and g(2) as

< 1
U0 = 3 - g, ehere O, o s 170 = o)

He also showed that this metrie topology was equivalent to uniform
convergence of sequences of entire functions on compact sets. In a
series of four papers ([4], [5], [6], [7]) V. G. Iyer has studied
certain interesting structural properties of the class of entire func-
tions by defining a metric for it which is simple and direct. The
topology introduced by this metric is equivalent, according to
a theorem proved by Iyer himself ([4], Th. 3) fo uniform conver-
gence on compact sets. This report deals with some of the important
results relating to the space of entire functions obtained by V. G.

Iyer and M. G. Arsove [1].

Let « = a(2) = X a,2"be an entire function. Following V. G.
n=0

Iyer [4], we denote by |«|' the max [[ayl, [1];..-s1an [¥]. Tt is
easy to see that |«| is a finite positive real number and the

following relations are satisfied:
(i) |a]>0and|«]=0if and only if «(z) =0,
(i) |a+B|<]|al+]|B] for any two entire functions of(z)
and B(z),
(iii) [fa| < A() || for any complex number £, where A(f) =
max (1, |¢])-

+ The context will make it clear as to whether the notation [af is used in this
sense or in the sense of absolute value of & complex number.
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The relations (i) and (i) clearly show that a metric can be defined
for the class of all entire functions by setting d(a, B) =la—fB|, aand
B being any two entire functions. The space of all entire functions
endowed with this metric topology has been denoted by I’ by V. G.
Iyer who has shown:

With this metric topology, I' becomes a linear topolégical space
which is complete and separable. The separability of I’ follows,
‘indeed, from the consideration that the set of all polynomials with
complex rational coefficients is dense inI'. As the ordinary product
of two entire functions is again an entire function, I' can also be
regarded as a linear topological ring. However, this topology of I'
cannot be derived from a norm, as I' does not contain a bounded
open subset.

The convergence in the topology of I' of a sequence a, of elements
of T' to an element acl’ is equivalent to uniform convergence in
any finite circle of the corresponding sequence of functions o, (2)
to «(z). ‘

Q

There is one-to-one correspondence between the class of all
linear continuous functionals defined onI' and the class of all
complex sequences {c,} such that |c, [ is bounded. More precisely,
corresponding to every linear continuous functional f on I' there
exists a unique sequence {¢,} with the property that |c, [}/ is boun-
ded and is such that for a = a(z) = X 62" f(a) = Z Cu0, and

n=0 n=0

conversely, every such sequence {¢,} determines a linear continuous

functional on I'. Hence the class of all linear continuous functionals
on T can be identified with the class of all sequences {¢,} for which
¢, |U" is bounded or what comes to the same thing, it can be
identified with the class of all power series X ¢,2" with positive
radii of convergence. It will be observed that this identification of
linear continuous functionals on I' with the class of all power series
convergent in some neighbourhood of the origin enables one to regard
it as a metric space, where the distance between the two functionals
J= E 2" g = Eodn #* is defined to be
n=

n=0
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alf, g) =l u. b.[log—dgl, ey —dyl, [ea—dy|"3, ..., e, —d," ... ].

The set of all 1.c.f. on T (i.e. the conjugate, or adjoint space of I')
is denoted by I'*. Evidently I' is an isometric subset of I'*.

I'* is also a complete metric space, but is not a linear metric space
nor is it separable. In fact, every subset of I'* which is also’a linear
metric space is contained in I'and henceI' is the greatest linear
metric subsgpace of I'*.

An important result proved by Iyer [4] is: In the space I’
the notions of strong convergence and weak convergence are equi-
valent, but this is not true for the space I'*. 'This result is remarkable
since the only other known example of a topological vector space
for which the mnotions of weak and strong convergence are
equivalent is the normed space of absolutely convergent series.

2. Normed topologies. It has been mentioned earlier that the
metric topology of I' cannot he derived from a norm. However,
normed topologies, which can be related to thestopology of I' can
be defined on the set of all entire functions. The characterization
of I' in terms of these normed topologies has led Iycr to prove
the Hahn-Banach extension theorem for the space I', which could
also be inferred from the fact that I' is a locally convex space.
To state certain other results proved by him, we need the following
definitions and notations.

For each B > 0and for every entire function a = «(z) = X @, 2", let
0
[-2]
s Bl = D |6, | B (2.1)
0

Ler A_ denote the closure of a set 4 with respect to the topology 7.
It is easy to see that for every fixed B > 0, (2.1) defines a norm
on the class of entire functions. Let I'(R) denote the normed vector
space of all entire functions normed by (2.1) and let I'*(R) denote
its conjugate space. Since for B, > Ry, |a; B, | > |a; B, ], it follows
that the topology I'(R,) is stronger (in the sense of Bourbaki) than
the topology I'(R,) when R; > R,. Also the topology I' is stronger
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than every topology I'(R); B> 0 because lim |a,|=0 always

P>

implies that lim |a,; B | =0 for every B> 0. The following results

P

proved by Iyer [5] characterize I' and I'* in terms of I'(R) and
I'*(R) respectively.

For any subset S of the set of entire functions

(g)r =RQO(S_ )I‘(R)’ (2-2)
I'* = yI'* (R). (2.3)
R>0

These results lead to the following results.

Let oy €T be at a distance d > 0 from a linear subspace S of I'.
Then for each R > A(1/d), [for ¢ > 0, A(3) denotes max (1,£)] there
is a functional feI* such that (i) f(eg) =1, (ii) fla) =0, €8
and (iii) |f(x)|<|«;RB|/d for all « €T, i.e. fe I'*(B) for B>
A(1/d). (2.4)

If f(«) be a ﬁ%ear continuous functional defined on a linear
subspace S of T, then there exists a functional F € I'* such that
F(a) = f(«) for « € 8. That is to say, F is the extension of f to the
whole space I'. ‘ (2.5)

These two theorems can clearly be recognized as analogues of
known results for normed vector spaces (see [9]).

‘We shall now consider bases in I'.

A sequence {«,} of elements of I is said to be a base in I', if every
element «'e€ I’ can be represented as

o« = z ty o, (2.6)
n=0

where {t,} is a sequence of complex numbers which is determined
uniquely by « and convergence in (2.6) is taken in the topology of I',
e.g. {z"} is a base; for other examples see [5]. It is known that for
a Banach space ([2] p. 111), each of the coefficients #, = £,(a) in
(2.6) determines a continuous linear functional. This result is also
true for I'. In fact Jyer has proved the following theorem [5].
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Let {«,} be & base in I’ and let t, = 1,(o) be defined by (2.6). If we
set f,(a) =t for each « €T, then for each n, f, is & linear continuous
Sfunctional on I' and {f,} is an orthonormal sequence to {a,} [i.e.
Jaloy) = 0 for n £ m and f(x,) =1].

3. Closure theorems. For any subset B cT' let L(E) denote the
subspace of I' generated (or spanned) by the elements of F. That
is to say L(ZX) is the closure (in the topology of I') of all finite linear
combinm;ions of elements of E. It is easily seen that L(F) is a
closed linear subspace of I'. Also as an immediate consequence of the
definition of L(E) and the result stated in (2.4) we obtain the
following :

An element « € I' will belong to L(E) for any subset B cT’, if
and only if every feI'* which is orthogonal to E[i.e. f(p) =10
for every p € E] is also orthogonal to « [i.e. f(x) = 0] (3.1).

Using Theorem (3.1), which is again the extension of a classical
result known for normed vector spaces (see [2], p. 58), Iyer has
proved [6] the following two interesting theorems leading to the
construction of particular sequence {a,} for which L(e,, n > 1) =T.

0
Let « = afz) = X a,2" be an entire function such that @, 7 0
. 0

for every n and suppose that {z,}7 is 2 sequence of distinct complex
numbers. Let «, = a(z,2). If either

(i) the sequence z, has a finite limit point, or
n

|2, 17

= o0, then

(ii) «is of order p and finite type and lim sup

n—> w0
L(a,,n >1) =T. (3.2)
For example, the sequences {¢*"}, {¢*Y™} span the whole space I'.

For any two entire functions «(z) = Z a, 2" and B(z) = X b, 2",
; 0 0

let « OB denote the entire function Xa,b,2" and let (a), =

tQa@®... O« (n times). (8.3)
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If « be an entire function with distinet and non-zero cofficients,
then L{(2),, n>1} =T

For example «(z) can be taken either as ¢ — 3% & or as cosh /2.

The original form of the result (3.3) contained an extra condition
on the coefficients of «. The theorem was proved in this form by
Iyer in [8]. )

4. Continuous linear transformations. A continuous linéar trans-
formation of the normed vector space I'(R,) into the normed
vector space I'(R,) will be denoted by 7'(R, — RE;) and the family
of all such transformations by F(R;— R,). Since the topology
of T' can be deemed, in certain sense, as the  limit’ of the normed
topologies I'(.R), the notation 7' (00— co) will be used to denote a
linear continuous transformation of I' into I', the family of all such
transformations being denoted by F(o0o— o). The following result
{61 exhibits the intimate connection between the family F(co — o)
and F(B; — By):

F (c0o—w) =N [UF(R,—R;)] (4.1)

R,>0 R;>0

That is, every T'(co —o0) is a T(R,—.R,) for each R, >0 and a
suitably chosen B; > 0.

For &very value of n, 2", is an entire function; thus (") is a
sequence of elements of I'. We denote this sequence by {§,}. It is
obvious that {5,} is a base inI". Also {§,} is the simplest and most

important base. KEvery «€I' can be represented as a«=X%,9
0

% -n?
such that
lim |£, («) [V* = 0 for every a€l. (4.2)
n—>c0

This led Iyer to designate those bases as ‘proper bases’ for
which (4.2) holds for each «. He suspected that perhaps every base
was a proper base, but (as was pointed out by Arosve [1]) the
base {z"/n!} is not a proper base since for the function €, ¢, =1.
The following theorem gives the relations between bases and auto-
morphisms of I' [6].
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An automorphism 7T of I' (i.e. a bi-uniform bi-continuous linear
transformation of I' onto I') transforms every base into a base. In
particular 7'(8,) will be a base. (4.3)

On the other hand, if T be a transformation of F(co —+ o0) such
that T'(8,) is a base then 7 is an automorphism if either | °

(i) T is a transformation of I" onto T, or (ii) 7' transforms closed
sets of I' into closed sets of I or (iii) the base 7' (8,) is a proper base.

A linear transformation 7' of I into I' will be called isometric if
|T(x)| = |« | Clearly, an isometric linear transformation is neces-
sarily continuous. Isometric transformations of I' into itself can
be only of two types as is revealed by the following theorem [7].

Every isometric linear transformation 7' of I into I' is of one or
other of the following two types:

Type I T(5,) =k, 8, n>0 and T(a) = X k,a6,8,;
. 0

Type IL. T(8y) =k, T(8;) = ky 8, T(8,) vk, 8 ,n>2
and
T(o) =k B &; + Ky 6y 8y + 2 by 6 By,
2

where %,, n > 0 are complex numbers with |k, | = 1 and « = %‘:an 8,3

conversely, a transformation of either of the two types is an isometric
linear transformation of I' into I'. (44)

5. Automorphisms and proper bases. A characteristic property
of power series is that the circle of convergence is also the
circle of uniform convergence and absolute convergence. Basing
on this property of power series his approach to define a proper
base in I, Arsove [1] has found interesting and satisfactory results
regarding automorphisms and proper bases. This notion of proper
base, which is a little different from Iyer’s, will now be explained.
We continue to denote 2* by §,.

A sequence {,} of elements of I’ will be said to be linearly
independent if for every sequence {c,} of complex numbers uniform
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o
convergence to zero on compact sets of X ¢,« implies that ¢, =0,
0

for n=0,1, 2,....

A sequence {o,} is said to span a subspace Ty of T'if T’y consists of
all lmear ‘combinations 2 Cp %y, Where {c,} is any sequence of com-

plex numbers fOI‘(‘Wh_IOh the series converges uniformly on compact
sets.

A sequence {o,} is said to be a basts in Ty if it islinearly independent
and spans I'y.

{2} is said to bo absolutely linearly independent if X e,a,=
0
0 implies that ¢, =0 (n =0, 1, 2,...) for every sequence {c,} for

which Z |¢, o, | converges uniformly on compact sets.

{e,} spans [y absolutely if T'y consists of all linear combinations
Z 0, Such that Z |¢, o, | converges uniformly on compact sets. {«,}

Wl]l be called an absolute basis in Iy if {«,} is absolutely linearly
independent and spans absolutely the subspace I';.

A sequence {«,} of entire functions will be said to be a proper
basis for a subspace I'y of I" provided that (i) {«,} is an absolute basis
in Ty, (ii) for every sequence {¢,} of complex numbers the series

% e, ®,| converges uniformly on compact sets if and only if ¢ 5 JHP—0.

For example, {3,} is & proper basis but «, = » 12" is not a proper
basis.

The results of Arsove [1] can now be stated.

Let {«,} be an absolute basis for a subspace Ty of I', then {a,} i8 &
proper basis if and only if (i) h'm sup [M,(R) ] < co for each B> 0,

M. (R) = max | %, (z) | and (ii) hm{hm inf [Mn(R)]'"} = . (6.1)

lzl=R n—>0
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If T be a linear homeomorphic mapping of I" into I', then {T'5,} is
a proper basis in some closed subspace I'y of I (5.2)

Conversely, if {«,} is a proper basis in a closed subspace Toof T,
then there exists a linear homeomorphic mapping T of T' into I'g
such that T8, =a, (0 =0, 1,2,...).
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SOME APPLICATIONS OF FUNCTIONAL
ANALYSIS IN SUMMABILITY

By M. R. PARAMESWARAN

Ler A = (a,), (n,k=0,1,2,..) be a matrix whose elements
are re?al or complex numbers. Then a (real or complex) sequence
T = {x,} is said to be summable by the method A.to the limit I if
the sums

0

yn=zankxk

k=0
exist for each n = 0, 1,... and g, tends to the limit 7 as n tends to
infinity. The sequence ) = {y,} is called the 4-transform of Z.

The martix 4 will transform every convergent sequence into a
convergent sequence if and only if 4 satisfies the conditions:

|4l =5up D> |6g] <co; e (1)
" k=0
p”EZa,,k-—rpasn—‘—}oo; (2)
k=0
and
lim @, = @, exists for each k. (3)

n~>0
A is called a conservative (convergence-preserving or K-), matrix if
p=1 and a, =0 for allk, then A-lim #, = lim z, whenever the
latter exists and A4 is called a permanent (regular or T-) matrix.
[14, 27, 28, 91.

The set & of points (sequences) Y whose A-transforms lie in
a given set & is donated by & — FA. The set &, A where &,
denotes the set of convergent sequences, is called the summability
field of A.

The set of matrices satisfying the condition (1) above form a
Banach algebra ¥ under the usual operations of addition and
multiplication and where the norm is defined by (1) itself
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and ‘the unit element I is the matrix of the identity transforma-
tion, ||[I|| =1. The set of conservative matrices form a subalgebra
%A, of A. A matrix will transform every bounded sequence into a
bounded sequence if and only if it belongs to %A [20, 21, 22].

The  rogular elements in these algebras, that is, matrices
A whose |inverses also belong to the algebra, form an open
get. If A is a conservative matrix with || 4 || < 1, then (I + 4)~*
exists and is itself comservative. This is helpful in proving a
number of theorems of the Mercerian type, for example the
following theorem due to Agnew [1, 3, 20].

If 4 is conservative and

|a‘rml_z I“nk|>0>0’

k#n
then A sums no bounded divergent sequences.

The conservative matrices have the interesting property that if
A is conservative and has an inverse, i.e. a two-sided reciprocal
A~', which is of finite norm, then A~ is itself conservative
[21, 23, 36]. \

Matrix methods as topological spaces have not been studied
much. In one of the early attempts at a study of classes of general
summation methods V. Ganapathy Iyer [8] proved:

Let g be a bounded sequence summable by each member of a set
A of permanent methods. Then ¢ will be summable also by every
method H belonging to the linear closed convex hull of A. (The
closure is in terms of the norm defined by (1)). This is in essence the
principle underlying Wiener’s tauberian theorems [29].

The earliest attempts at a systematic application of functional
analysis to summability were restricted to a consideration of normal,
permanent matrices; reversible regular matrix methods came to
be considered soon after. In these cases the summability fields of
the methods are Banach spaces. However it was discovered as early
as 1932 by Mazur and Orlicz that for a generalization to wider
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classes of methods, the Banach spaces were not sufficient since the
fields of the summability methods constitute more general spaces,
of the type they called B,-spaces. The main results obtained by them
then were announced [16] but the proofs were not published till
1955 [18] due to various reasons. Their work has been largely
rediscovered by Zeller [38, 39, 40, 41, 43] who in recent years has
given a methodical alpproach to the study of summability by
functional analytic methods. His work brings into perspective the
works of earlier authors like Mazur and Orlicz, Agnew, Hill,
Wilansky and others [2, 4, 5, 6, 7, 11, 12, 15, 16, 30, 31, 32].

Let [€; p;] be a complete linear co-ordinate space & in
which a sequence of seminorms p; are defined for which p;(g) =0
for all j implies ¥ =0. Let further " — ¢ in [&;p;] imply
co-ordinatewise convergence, i.e. 2, — , for every k. Then [&; p;]
is called an FK space. An FK-space is not in general a Banach
space, but is an example of the more general B,-spaces studied by
Mazur and Orlicz [17] and others. An FK-spage, as may be seen
from the definition, is a locally convex F-space; it is a linear co-
ordinate space which is complete under a sequence of homogeneous
seminorms, which are together equivalent to a nonhomogeneous

2 1 px)
norm, e.g. = % - —21€ - gnd where norm-convergence
m, e.g P(g) ize 27 1 +P,(E) g

implies co-ordinatewise convergence.

Some examples of FK-spaces are, with the seminorms :
for &, the set of all number sequences: |Z,|, 2 P
for &5, the set of bounded sequences: Lu.b. [#,]
for &,, the set of convergent sequences: lu.b. |z,|
for Sy, the set of null sequences : l.u.b. |z,

If A is any matrix, then its summability field &,4 is an
FK-space, with the seminorms

Lu.b. yenegens (1)

0gl<o

k=0




96 M. R. PARAMESWARAN

ENREN - (2)
Lu.b. Gy X (3
Lo | > o )

Indeed; if & is an FXK-space, then so is & = F A4 [38].

Let [#] be an FK-space and let {y,} =y =4¢ @) ={f, @)} be
s mapping of & into an FK-space &, the f,’s being linear
continuous functionals over &. Then, the map ¢ will itself be
linear and continuous. In particular, when # = &, and ¢ is given

by a matrix 4, with y, = X a,;, 2, then 4-lim y will be linear
k=0

and continous.

If now & c &, then taking ¢ as the identity transformation,
weo get that

' — ¢ in [£] implies ¥* — ¢ in [F],

that is the identity mapping is continuous and hence either & = &
or, if & c &, i.e. is a proper subset of F , then & is of the first
category in &. But an FK-space is not of the first category in
itself and hence the union of a finite or countable number of
FK-spaces none of which is equal to the union itself, is not an
FK-space. On the other hand the intersection of a finite or
countable number of FEK-space [£%); Pjp] is an FK-space [&; p;]-

The summability fields of matrix methods being F K-spaces
the following ° inequivalence  theorems follow [38]:

L If A9 are a finite or countable number of matriz methods
none of which is the strongest, then there is no matriz A with

&, 4 = U S, 4D,

II. - If each matriz A is weaker than a matriz A, then their
sum s also weaker than A, that 15, U S, 49 is a proper subset

of €,4.
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TII. In particular, the C,, method is not equivalent to @ matrix
method. (A segquence is said to be €, summable to I if

lim lim sup ¢ (#) = lim lim inf ¢’ (z) =1
7—>0 n—>o0 7—>0 N>

where ¢ (x) is the nth Cesaro mean, of order r, of the sequence ).

For, we have &,C, = U ¥ where ¢ =&,C, n &3 %", 50 that
if &, 0, is an FK-space, so is ¥, being the intersection of
two FK-spaces; but % c ¥“+tD and hence U %® cannot be an
' FK-space and we come to a contradiction.

Similar statements hold good for the B, and H, methods
corresponding to the Euler and Holder transformations respectively.

Existence of bounded and unbounded sequences in the summability
fields of matrix methods. Let 4 be the matrix of a conservative
method and f a linear continuous functional in the FK-space
[6,4]. Then it can be shown [38] from the form of linear
continuous functionals in the various FK-spaces, that

@) if x(4)=p— S @, #0 and f vanishes over &, then it
£=0

vanishes over S n ©, 4;

(ii) if x(A4)=0 and f vanishes over Sy, then it vanishes
over &, n &, 4.
Thus, if x(4) %0, then &, is dense in the FK-space [&5n &, 4].
If now there exists a bounded divergent A-summable sequence
T, then r is a contact point of &, in [S; n &, 4]. But &, is
a closed subspace of the FK-space [©5] and so ¢ is not a contact
point of &, in [&z]—which it would be if &, A4Sy Ixd)=0
then it can be proved similarly that 4 must necessarily sum some
unbounded sequence. Hence the theorem: I f a& conservative matriz A
sums a divergent sequence, then it sums an unbounded sequence [cf. 161;
a conservative A with x(A4)=0 always sumsan unbounded sequence [381.

A related question is: “When can it be asserted that a conser-

vative matriz A will sum some bounded divergent sequence V. There
exist conservative matrices whose summability fields contain some
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unbounded sequences but not any bounded divergent sequences.
Two cases when the question has an affirmative 2nswer are (1)
when y(A4) = 0 and (2) when the method A is *‘ perfect”’, i.e. when
the closure of &, in [&,4] is the whole of &, 4.

13

More generally, the  perfect part ” A, = the closure of &, in
S, 4] either contains a bounded divergent, sequence or contains
only convergent sequences, and the perfect part % p of the field of a
permanent method 4 contains all 4-summable bounded sequences
[19]. It can also be proved that the perfect part of the field of a
conservative method must contain an unbounded sequence if it

contains a (bounded) divergent sequence [25].
Let us denote by U the sequence-summability field €,4 of 4, and
by 9} the corresponding series-summability field of the method A.

~ k ~
The relation s <— s, where 3, = X s; is a (1, 1)-correspondence
i=0
between % and Y and the perfect part % p of A corresponds to the

perfect part QIP of 9. Obviously 4 is perfect means %, = ¥, or
equivalently, €A p = ﬁ

A striking application of these ideas is in the proof of the famous
High Indices Theorem and in Gap-Tauberian theorems [19]. The
High Indices theorem, due to Hardy and Littlewood, states :

If the sequence {N.}, (0 < Ay < )\1 < ...) satisfies the condition
Aey1— A > BN for some 6 > 0 and all k, and if lim t () exists, where

() kZ e~ u,  exists for each p <0, then the series Zu, 1is

convergent.

This result is proved [19] by showing that the method D,
given by the transformation t(p,) is perfect under the hypothesis

on {A,}. Hence DA, the series summability field of D), either
contains a divergent series with bounded partial sums or
contains only convergent series, and it is enough to prove the
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theorem under the additional hypothesis that the partial sums of
% u, are bownded. This however implies that

%, =0 (Ak _Ala—l)
A
when the convergence of X, follows from an easies classical
theorem.

Gap-Tauberian theorems. A Gap-Tauberian theorem is an asser-
tion of the form : “Let Z 4, =040+ ... + %, +0+..: +0+u,
+ 0 ... be a series summable by a method M, say, and if

%, =0 forn#n, (k=0,1,2,.)

where the gaps (g, My.,) satisfy the condition Gy, depending on M,
then T u, s convergent.’’

Tt is known that the gap-Tauberian theorem is true in the follow-
ing cases: (1) M = (", the Cesdro method (C, 1) with @, given
by 1441 — 7y > Omy, for some 6> 0,

(2) M is Abel’s method, with ¢, same as G‘f; and

(3) M is the Euler-Knopp method E,, with @5 given by

T 1 — Mg > 0.+/(ny) for some 6> 0.

Suppose now that 4 is a matrix which sums the series X %,, with
w, — 0, n #my, i.e. has gaps G. Let the matrix Ag be formed by
adding together, row by row, the elements of the first k, — kg
columns of A, then the next k, — &, columns of 4, and so on. Then
A will sum a divergent series with gaps @ if and only if the method
A, sums a divergent series. If now it can be shown that 44 is
perfect, then the method Ag will sum a divergent series if and
only if it sums one with bounded partial sums; and 4 will sum
- divergent series with gaps @ if and only if it sums a series with
gaps @ and with bounded partial sums. Therefore, to prove that the
gap @ is Tauberian for A-summability, it is enough to prove, when
A is perfect, the same result for series with bounded partial sums.
Methods A for which the 4,4 corresponding to every gap @ is perfect,
are called gap-perfect. The permanent method A will be gap-perfect
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if and only if every u e 9 can be approximated in [ ] by points
which have co-ordinates zero at least whenever that is the case
with » [19]. (# is said to be approximated by points of & if

there exists a sequence {#®}, u® e & such that u® — v in []).

Now the methods O (« > 0), Abel’s method, B, (0 < o < 1) are
gap-perfect [19]. For these methods therefore it is enough to
prove the gap—'l‘aﬁberian theorems under the additional hypothesis
that X u, has bounded partial sums. The gap-Tauberian theorem
for the method C" is proved quite easily by elementary methods.
By the previous observation this gives the gap-Tauberian theorem
for Abel-summability, for every Abel-summable bounded sequence
is C'-summable, indeed C“-summable for all « > 0; also the
methods E, (0 < « < 1) are all equivalent for bounded sequences
and hence it is enough to prove the gap-Tauberian theorem for the
Euler-Knopp methods for any one value of « and under the
additional hypothesis of the boundedness of = w,. This last case
for « =% is a well-known result.

An interesting point about the gap-Tauberian conditions ‘given
above is that they are also necessary for convergence, in a sense.
For example, if ¢ is a gap which does not satisfy the condition G,
then there exists a divergent series Su, which has gaps @ and is
summable (. This observation can be used in connection with an
interesting result recently pointed out by Ramanujan [26] that
every Borel-summable bounded sequence is also summable by a
certain large class of methods, and in particular by the methods
0%« >0). While particular examples are known [9, 10, 13]
which show that the converse is not true, we can show that corres-
ponding to every gap § which is Tauberian for the Euler-Knopp
method but not for the Cesaro method, there exist (1) a series with
gaps @ and bounded partial sums which is C*-summable for every
® > 0 but is not Borel-summable, and also (2) a series with gaps G
and unbounded partial sums which is also C*-summable for every
«>0 but is not Borel-summable [25].
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Other applications. Functional analysis methods have been
applied to reversible methods by several authors, in particular by
Hill and Wilansky. They have also been used in the definition and
application of notions like section-convergence (Abschnitts-konver-
genz [39], weak section-convergence, section-boundedness (Absch-
nittsbeschranktheit [35]) etc., which are of use in consistency
theorems, summability factors and converse and Mercerian theorems
[35, 40]. It has also been shown [35] that the general methods of
functional analysis are not limited to ordinary summability only,
but can be applied also to strong summability, absolute summabi-
lity ete., Wlodarski [37] has extended the study by functional
analysis to continuous methods of summation. However, the
general problem of characterising the F K-spaces which are summa-
bility fields of matrix methods still remains open. Zeller has shown
[42] in particular, that the summability field of the Abel method
is neither contained in that of any row-finite permanent matrix
method, nor is it identical with the summability field of any
matrix method.
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GENERALIZED MOMENT PROBLEMS IN
FUNCTION SPACES

By M. S. RAMANUJAN

WE shall start with the Banach space L?, p > 1, the elements of
which are measurable functions f(z), defined, sgy, on (0, 1) such
that | f(z)|? is integrable. Now for an integrable function the existence
of [|f{?da is a restriction on the magnitude of |f(2)|; a similar
restriction is obtained by assuming the existence of [fdg, where
g(x) is a positive function taking large values on (0, 1). Now the
norm of the funetion f(x) depends only on the magnitude of | f(x) [.
Thus we could have various spaces and norms of various types for
function spaces. In this account, we are concerned with more
general spaces of integrable functions, under suitable norms consti-
tuting Banach spaces, and with the problem of moments for these
spaces. It is but appropriate that we now give a ghort statement of
the moment problem. To start with, we assume that the notions of
functionals, linear functionals and continuous functionals are known.
The term moment by itself is a much familiar one and is often met
with in dynamics and statistics. Given a distribution function F(x)
the n-th moment of the distribution about the origin is defined by

= jxﬂ dF.

Now, the moment problem stated in an easily understandable way
consists in finding whether a sequence {y,} can represent a se-
quence of moments, or what is the same as, in finding the necessary
and sufficient conditionsto ensure that the given sequence {u,} implies
the existence of a distribution function F(x) whose moments are the
terms of the given sequence. Stated in a more precise and exact
fashion, it runs as below. Let f, be a sequence of elements of a
Banach space X and p,,v=0,1,... a sequence of real numbers. Then
does there exist a linear functional F, belonging to a certain class of

functionals, such that F(f,} = p,}
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The F above can be a continuous functional or F(f) may be an
integral, say, [ Fdg, where g(»)is of bounded variation. Also there
may be a condition on || F' || of thelinear functional F(f). If the prob-
lem has a solution then y, is called a moment sequence. Thus the
moment problem consists in finding necessary and sufficient con-
ditions to ensure the existence of a functional F so that F(f,) = p,.
But we shall be concerned with only one particular type of moment
problem. In what follows we assume that X is a space of functions
and f, =2, v=0,1,....

Now, any linear continuous functional F(f) defined on the space
of functions, continuous on (0, 1) has the form
1

F(f) = jf(x) dy(@)
0

where g(z) is a function of bounded variation on (0, 1). So the
moment problem for the space of continuous functions above
reduces to that of finding the necessary and sufficient conditions

to ensure the existence of a function g(x) of bounded variation in
(0, 1) such that .

1
My = jx" dg(z), »=0,1,....
0

The moment problem above has a solution if and only if

n
su An—k
nPZ(,G)I M| < 0,

and in this case the solution can also be proved to be unique ; in
particular the problem has a solution in an increasing g(x) if and only
if A¥p, >0,(n,k =0,1,...). The particular moment problem for the
space C of continuous functions has a special interest and significance
in the summability theory to which I shall revert later. But now,
we shall define two particular function spaces, one of which includes
the class L? as a special class. We precede this discussion with

the following definitions and preliminary ideas. In what follows
measurability is for Lebesgue measure.
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Two measurable functions f(z) and g(z), defined say on (0, 1)
are said to be equi-measurable or re-arrangements of each other if
the sets | f(x)°> a) ] and [g(x)>a] have equal measure for all real a.
If f(x) and g(x) are equi-measurable then so are the functions
| f|and |g|, f* and g* defined below. If one of the equi-measurable
functions is integrable over (0, 1) then so is the other., For any
measurable function fi(z) on (0, 1) there is a decreasing function
f*@) which is equi-measurable with f(x) and, is obtained by
inverting the function # = M(y), where M(y) is the measure of
the set of points # for which f(z) > y. In at most denumerable
points where M ~1(z) is not defined, we may put f¥*(®)=jf*@x —).
In case f(¥) is not positive, f¥*(x) is the decreasing function
equimeasurable with | f(x)].

We shall now define the two spaces of integrable functions.!
Let ¢(x) > 0, be a decreasing integrable function in (0, 1); let p > 1.
Suppose also that we have normalized ¢(x) by assuming that
f: $dz=1. For each measurable function f(z) on (0, 1), we introduce

the norm

¢ i/»
171 =1 o = { [ 1207 play o}
]
Now the space A(¢, p) consists of all those functions ]f(a;) for
which the above norm is finite. Now if in particular ¢(z) = 1 we get
our usual L? space. Another particular space of the above type is
the space where $() = az®), which we shall denote by A(a, p).
If p = 1, we denote this by A(x). Now, a norm equivalent to the

one above is

11 = sup | jlqs,(x) e )

0

where the supremum is taken for all rearrangements ¢,.(x) of $(x).
It may be easily verified that A(¢, p) is a Banach space under the

above norm.

+ See note added in proof,
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The space M (¢, p) consists of all those functions f(x), measurable
on (0, 1), for which

@

1/p

1 b = 2B, | 00me) 2 [ 1770
is finite, the function H(x) being defined as earlier and @(x)
denotes the integral of ¢(f) over (0,%). This space M (¢, p) is also a
Banach space under the norm defined and we define as before,
the particular spaces, M(«, p), M(«x). It is now appropriate to
point out that the space A(x) is separable while the space M(«)
is not separable.

We shall now compare the spaces A(é, p) and M(¢, p) with L?
in the following sense. Let X and Y be Banach spaces, whose
elements are functions f(z) measurable in (0, 1), and with norms
Ifll, and | f]l,, We assume that convergence in measure is im-
plied by convergence innorm. Then X c Y if ||f|, < C ||fl,. We
shall hereafter say that x cy if there exists' a constant C of
the above type.c In this sense we have the following results :
(i) Ale, p) cA(B,q) if ap™ ' <Bg™' or ap~?=B¢~ ! and p <q,
and (ii) ILP* ‘tec A(a, p) cLP*"'. But when M(«, p) replaces
Afe, p), the inequalities are reversed.

Consiéier now the series a4 + 3 (@, cos'nz + b, sin nx), and let
n

o,(@) denote the first arithmetic mean of the sequence of partial
sums of the above series. Then if ||, || < 7 in the metric of the space
of A(«) or of that of M(a), then the series above will be the Fourier
series of a function f(x) € A(«) or M(«) and o, — f in the metric of
the space.

We shall now pass on to a more general space of integrable
functions which will include A(¢, p) and M(¢$, p) as special classes.
We start with a class of C of positive integrable functions ¢(z) on
(0,1). Let ¢ have the following properties :

(i) LeC;

(ii) C is normal in the sense that if ¢(z) € ¢ and ¢(z)is a
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measurable function such that 0 < ¢,(2) < C(z), a.e. then ¢,(z) € C;
1
(i) j ¢(x) dz, ¢ € C, are bounded.
0

Thus C contains necessarily all bounded functions. Let now X(C)
consist of all functions f(x) for which

1
171l = sup f o(@) /@) | da
ceC 3

is finite. This space X(C) consists of all measurable functions with
If ]l < oo. Also all bounded functions necessarily belong to X(C).
Moreover the space X(C) is normal and it can also be proved, using
Fatou’s lemma, that the space is a Banach space under the norm
defined. Such spaces X(O) are called Kéothe-Toeplitz spaces. In
particular if ¢(z) = ¢,(x)'/?. g(x), where ¢,(x) are all the rearrange-
ments of a positive decreasing integrable function ¢(z) and

[lgltde <1, Zl’ + 2 =1, then X(C) reduces to ghe space A(¢, p).

Similarly we can arrive at M($, p). Also, the spaces considered above
have all the property of being rearrangement invariant, i.e. for
a function f(x) of the space, ||f| = |lf,|l for all rearrangements
f.() of f(x). For a space X(C) this property is true if and only if

1

17} = sup j oHa) FH) da.

0
We shall now derive the form of a linear continuous functional,
in the spaces we have defined.

Let X be a Banach space of integrable functions in (0, 1). Let the
following properties hold in X
(i) X contains the function I;
(if) X is normal;
(iii) If f € X and y, is the characterestic function of the measurable
set e, then || fx, || — 0 with m(e) —- 0.
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With this definition we have the following general result. Let
X satisfy (i) — (iii) above and let ¥ consist of all those functions

1
g(x) measurable in (0, 1) and for which [ fg d=, exist for all fe X.
0

1 .
Then F(f) = [ fg dx, g € y is the general form of a linear continuous
3 ;

functionai on X and
1

lol= sup frds <+ <o
lflis1 5

From the above result every function g(z) in Y gives rise to a
linear continuous functional over X and thus the space ¥ can be
identified with the space X* of linear continuous functionals of X.
Also it is easily verified that ¥ is a Banach space. The space X* is
called the conjugate space of X and now we shall forget all the
difference between X* and Y and say that the functions g(x)
constitute X*.

If now the spa¢e X has the additional property that
(iv) if f,(&) = f(x)a.e., f,(@) e X and ||f, || < M then f(z) € X,

then the existence of [fy dx for all ¢ € Y will imply that f € X.
Also now the space Y satisfies (i) and (iii) when X satisfies (i)}—(iv).
That Y satisfies (i) is evident. Thus we shall get Y* = X; i.e. each
linear continuous functional F(g) on Y has the form [ fg dx, where
fx)e Y.

'We shall now pass on to the particular spaces A(p, p) and M (¢, p)-
We need a few definitions.

For two functions f(z) and g(x) which are positive on (0, 1), we
write f < gif [ fde < [ gdw. Let now ¢(x) be a fixed integrable
function on (0, 1) and let ®(x) denote its integral over (0,z). Now,
a function G(z)is said to be concave with respect to ¢(z) on (0, 1), if
for arbitrary @ and b in (0, 1)

@) — Gla) _ G(b) — Gla)

By — 0@ ~ B —o@)’ * ="
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Now each function @(z) bounded on (0, 1) has a least ¢-concave
majorant G°(x); i.e. a smallest ¢-concave G(z) satisfying G(z) > G (x).

Hereafter we consider only functions of the type G(z) =f g(t)dt,
0

where g(t) is integrable. A function g(z) is said to be decreasing
with respect to ¢(z) if and only if G(x) = $(x) D(x), where D(z) is
decreasing. For any function G(x) = [ g(x) ds, the function G°(X)
is also of the form [ ¢°dx and for any function g(») the function
g%(x) is called the level function of g(x) w.r.t. $(z). ¢°(x) is now the
smallest (in the sense of <} g,(x) of the form g, = ¢.D which satisfies
g, > 9. With these definitions, we have

The general form of a linear continuous functional F(f) on
1

A}, p), p > 1 is given by { fg du = F(f), where g(x) is an arbitrary
0

function of A*(¢, p), where A¥($, p) = M($), p =1 and consists of
all functions g(x) which have a level function g° = (g*)® = ¢ D° with

_|‘ ¢ D dzx < oo, if p > 1; and the norm in the spaoe AX(d, p), (p > 1)
0

is given by

+1on
q

1ol = { j spnas)”, 2

0

The space A*($, p) has the interesting property that the conjugate
space of A¥(¢, p) is the space A($, p) if p > 1. But with the space
M ($, p) the situation is slightly different and is somewhat similar o
the one that prevails for the space L for which we have L* =}, but
M* > L, where M is the space of bounded functions. Now, let ¢(x)
be an integrable, positive function, decreasing in (0,1). Let as usual,
$(z) denote the integral of ¢(z) over (0,%). Let also (z) = [¢(x)]"?.
Then for a positive function g(z) we say g -;( i if

j.gi’dx<jzﬁpdx=d)(a), 0<a<l.
0 0



112 M. 8. RAMANUJAN

Let now I'($, p) consist of all measurable functions f(z) on (0, 1)
for which

1
||fu=supjf*gdx <
(V)

the supremum being taken for all g(x) with the property g* < .
»

The space I'($, p)<ds a space of the type X(C) defined earlier and
consequently a Banach space under the above norm. It is this space
I'(¢, p) which has the property that I'*(¢, p) = M(¢, p).

We define the dual space X of the space X of all functions f(x)
integrable in (0, 1) as the space of all functions g(x) for which

1

lgll = sup j 1191 dz < + oo,
|]f|l<10

since each g(z) defines a linear continuous functional on X, X c X*.

If§ = X, then X is said to be perfect. With this definition, we have
that f =T* =M, JINI’ =1I' and thus ' and M are perfect.

We shall next take up the solution of the moment problem for
the spaces defined hitherto. We shall perhaps start best with the
most general space X(C). We need a few preliminaries.

Given a sequence {u,} we shall denote by {u,}, the sequence
n -, v v+1

A® ; also let f () = 1) g LI

{(7) o P =0+ Dy T << ZE

For a function f(x) belonging to the space X(C) the indefinite
integrals )

F(o) = | flo)ds, fea, Il <1
e
are said to have the property of uniform absolute continuity if for

each e > Othere is a 8 > 0 such that m(e) < & implies | F(e)| < ¢ for
all the functions above.
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Let the space X(C) we start with, have the property of rearrange-
ment invariant norm. Also, let the integrals defined just now have
the property of being uniformly absolutely continuous. Then the
moment problem has a bounded solution f(x) in X(C) if, and only
if, the norms of the functions {f,(»)} satisfy the conditions
fall < M.

In the case of the particular spaces, we have a better picture
of this result. For example, for the space I?, the last condition is
equivalent to the existence of a M such that

Z ll“bnv < )?/ + 1)—p+1 n = 0: 1:"'

and for the space of bounded functions, to
[t | < M(n 4+ 1)7L

For the space A(g, p) the sequence p, is a moment sequence if
and only if

n
z nv#‘nv n + 1)—‘1”

where
+1)/(n+1)

0= D $a)ds
virn+1
and p°,, are the rearrangements of |p,, | in the decreasing order.
In particular for the space A(x) this reduces to

z (v 41> s < M (n 4 1)1

v=0

Also for the space M(¢, p) the condition could be similarly reduced.

I shall now recall the necessary and sufficient condition for the
moment problem to have a solution in the space of functions conti-
nuous in (0, 1). The sequence g, is a moment sequence for this
space C if and only if

n
sup Z (7::) [A™" p, | < 0.
" =0
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The significance of this result in the general summability theory
can now be easily brought out. We are all familiar with particular
methods as the method of the arithmetic means called the (H, 1)
method or the (C, 1) method, whose further generalizations are the
Halder and Cesaro methods and also with the Euler method of sum-
mability of sequences by transforming the sequences into convergent
sequences. These methods are particular cases of a general class of
summability methods involving a sequence-to-sequence transfor-
mation. Among such general class of methods we have what are
called the Hausdorff methods of summability, which by themselves
are quite general and include the classical method mentioned above.
These methods were originally found out by Hurwitz and Silverman
and were re-discovered by Hausdorff who systematically developed
this class of methods. The Hausdorff methods are defined by the

matrix (H, p,) =H = (hy) =(;:) A" F y, (n>k)and b, =0, (n >,k)'

For the matrix H = (H, u,) to define a conservative or regular
sequence-to-sequence transformation it must satisfy necessarily

n
sup X | by | < o0, ie.sup = (Z) [A™ py | < o0.
n k k=0

Now the solution of the moment problem for the space of
continuf)us functions of (0, 1) shows clearly that the condition
above is satisfied if and only if the sequence p, is a moment
sequence for the space C, i.e. if and only if there exists a function
x(w) of bounded variation in (0, 1) such that

1
Pn = j B dx(u).
V]

‘When this condition is satisfied we have also
lim A, exists for each k and lim X A, exists,
n n k
and thus the transformation by the Hausdorff matrix will be con-

servative (for sequence-to-sequence transformations) if and only if
{4, i8 8 moment sequence. If in addition x( + 0) = x(0)= 0, x(1) = L.
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then

lim A, =0and lim B A, =1,
n n k

and we prove that the transformation by (H, p,) is regular if and
only if the above two additional conditions are satisfied, when we
say that p, is a regular moment constant. Now associgted with
a moment sequence we have another interesting property. We start
with the matrix (H*, p,) the transpose of the matrix (H, p,) and
called the quasi-Hausdorff matrix. Now it can be shown that the
condition

k .

is satisfied if and only if p, is 2 moment constant (for C) and this
enables us to prove that the series-to-series transformation defined
by a quasi-Hausdorff matrix (H*, u,) is conservative if and only
if u, is a moment constant and it is regular transformation
stronger than convergence, if and only if the sequence p,, is a regular
moment sequence. Thus if we start with a mofnent sequence or
a regular moment sequence we have two matrices (H, p,) and
(H*, u,) such that the former defines a conservative or regular
sequence-to-sequence transformation and the latter a conservative
or regular series-to-series transformation ; it is also known that the
roles of the two matrices can be interchanged. Also the Various
properties of the two methods such as translativity, Borel property,
strong regularity, absolute regularity of these methods can all be
characterized in terms of the function x(#) which generates the
moment constants. Indeed these show that thereis a close relation-
ship between the Hausdorff methods defining the sequence-to-
sequence transformation and the quasi-Hausdorff matrices defining
the transformations of series into series. This naturally raises the
question as to what we can say regarding the capacity of the two
methods to sum a sequence {s,} which is the partial sum sequence
of Xa,?To this question we do not have a complete answer as yet;
however when the sequences concerned are bounded and are Borel

summable then the two methods (H, p,) and (H*, u,) defined by
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regular moment sequences {u,} both include Borel’s method
if and only if the function x(u) is such that x(1) = x(1 — 0). But
when the sequences are not subjected to the above two restrictions,
Le. for unrestricted sequences, the result that (H, u,) summability
of {s,} implies the (H*, p,) summability of X a,, is false.

[ Nors ADDED 1Ny PROOF: Ounly at the time of proof correction
I found, to my dismay, that I have nowhere mentioned that
this talk is mostly a coverage of Lorentz’s work 4], [5]; the spaces

A, p) and M(4, p) were defined by him and their properties
mentioned here are his results. ]

w
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SYMPOSIUM ON RESEARCH AND

MATHEMATICAL DEVELOPMENT IN INDIA

Chairman : Professor V. GANAPATHY IYER

IN connection with this symposium the Programme Committee had
sent a request to the Universities and Research Institutes to prepare
and submit to the Society a memorandum on the following points:

1.

Research facilities (by way of library, research scholarships
or fellowships) available in the Institution concerned.

Topics in pure and applied mathematics, in which advanced
study or research is carried on.

Whether the majority of the teaching staff are engaged in
research and whether research qualifications are insisted upon
for teachers in institutions under the University where
post-graduate teaching is done.

Opportunities for employment as teachers or research workers
for those who have research aptitude.

Any general suggestion as to how to improve research work
in the country as a whole and the concrete steps which the
Indian Mathematical Society may take in this cofinection.

In response to the above request, the Society received the
memoranda from the following Universities and Institutions:
Aligarh, Allahabad, Annamalai, Delhi, Madras and Sri Venkateswara
Universities, Ramanujan Institute of Mathematics, and the Indian
Institute of Technology, Kharagpur. In addition, Dr. 8. Minakshi-
sundaram explained the position asregards the Andhra University.
The memoranda were presented at the Conference by the delegates
of the various institutions concerned.

Only in some of the Universities research qualifications are
insisted upon for recruitment to teaching jobs at the post-graduate
level. Also it was the expressed view that the opportunities for the
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research worker to get employed at his own place happen to be
very few. This largely handicaps the development of a §chool in any
particular branch. Moreover, when persons with research qualifica-
tions are recruited for the jobs, proper weightage is not given for
the time they have spent in full-time research. To improve research

work in this country as a whole and the concrete steps the Indian

Mathematical Society may take up in this direction, several sugges-
tions were put up and they centred mainly round the following :

(1)

(iif)

(iv)

There must be an organised effort to bring together many
scholars who have common or allied mathematical interests
and also to build up schools of different branches of mathe-
matics at different centres in India.

Those in charge of guiding research can insist on research
workers equipping themselves with as wide a background of
mathematical knowledge as possible. Also they must discover
talent and stimulate a passion for mathematical research.

There shou{d be a fairly free exchange of scholars, at all
levels—professorial or that of research scholars—between
various centres of mathematical activity. In particular, the
student should be encouraged to spend as much time as he
wants at any particular place, even though he may be
fipancially assisted by a particular University or Institute.
Also, the Universities should encourage research work at the
level of the staff members by giving adequate and easy
leave facilities for spending some time in full-time research.

For University teachers of M.A. or M.Se. classes, a Doctorate
degree or its equivalent must be insisted upon and at the time
of appointment, the period spent in full-time regular research
work must be taken into account in fixing the initial salary.
In this direction the Indian Mathematical Society can suggest
to the various Universities that research work should be
insisted upon as an essential qualification for appointment
and also that the Universities should give increased facilities
for mathematical research. But it must be borne in mind



SYMPOSIUM ON MATHEMATICAL DEVELOPMENT 119

that this should not lead to an ¢ in-breeding ” or taking in
only those who have done work at that particular centre.
This will ultimately greatly retard the progress of
mathematical research.

(v) The Indian Mathematical Society should take up these facts
and persuade the Central Government in particular :

(8) to give increased financial assistance fo the Ramanujan
Institute of Mathematics and develop it into a truly
all-India Institute, by expanding its activities and also
to continue to give its substantial aid to the Tata
Institute of Fundamental Research ;

(b) to open at least two more research institutes for mathe-
matical research ;

(¢) to utilize the mathematical talent available in the
country in industrial, social and commercial problems
and to solve problems of national interest, such as

flood control.

In winding up the discussions, the Chairman said that all the
proposals put forward will be considered and placed also before the
Council of the Society for necessary consideration and action.
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D. R. KABPERAR, Deolali :  Criterion for a self-number.

A computation is suggested for checking whether a number is
a self-number [Math. Student, 1952, 22-23] or not, and some
self-numbers within 5000 are tabulated. ’

S. Mawzur HUSSAIN, Pakistan : Hvaluation of an eleventh ordered
determinant in the theory of partitions.

R. SrIDEARAN, Bombay :  On some algebras of infinite cohomological
dimension.

G. Hochschild [ Duke Math. Jour. 194771 has proved the following
theorem : If A is a nilpotent algebra of finite rank over a field X,
the cohomological dimension of A is greater than or equal to 3. It
is proved here that the dimension is actually mﬁmte As a conse-
quence, it is deduced that the cohomological 'dimension of the
Grassmann ring on n-letters over a commutative semi-simple
ring is infinite. This provides incidentally counter examples to
certain questions in homological algebra. A simple proof of the
result that the cohomological dimension of the ring of formal power
series in one variable over a field is infinite, is also given. For this a
theorem of Rilenberg-Rosenberg-Zelinsky [to appear] is needed.
These authors prove the theorem using spectral sequences; an
alternative elementary proof without using spectral sequences is

given here.

M. V. SuBBA Rao, Tirupati : Some properties of quadratic residues.

Tn this note, the author obtains generalizations of the results of
J. B. Kelly[Proc. American Math. Soc. 5 (1954), 38-46] and Hansraj
Gupta [Math. Student, 23 (1955) 106-107]. Let p be an odd prime
and R;,L;, ©+=0,1,..., n— 1, denote respectively the set of

integers of the form (p .q), (p,gq) =1, for which p isa quadratic
residue or non-residue modulo p*~%. Let ¢ be an arbitrary integer and
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S any set of integers and ¢ @ § denote the set of integers obtained
by adding ¢ to each of the elements of S. Let r;, [, be

. . i1 p—1
arbitrary members of R;, L, respectively. Letj — p"~*~* [_4_ ] ,
K=p "1 [u], where [z ] stands for the greatest integer not
4

exceeding}m ; m = p" %~ 1or 0 according as p = 1 or — 1 (mod 4);
my = p"~*"1 — m. Then the author proves :

TaEOREM 1. Each of the sets I; @ R; ;r; @ L, gives j members
of each of the sets L;, R; together with m members which are multiples
of p'tl.  These m numbers are made up of (p™*) numbers of the
form (p%.9), (p,q¢) =1, a =14+ 1,4 4+2,...,n. :

TaEOREM 2. (@) The set n; ® R; gives K numbers of R, and
K 4 p" =1 numbers of L, together with m, numbers which are
multiples of p**1. (b). The set |, @ L; gives K numbers of L, and
K; + p" ! numbers of R; and m, numbers which are multiples of
P**Y. In either case these m, numbers are made up of $(p™ %)
numbers of the for;n ®* 9, (p,g) =L a=1+1, ..,

The author shows that these results themselves follow easily from
Vaidyanathaswamy’s class algebra of quadratic residues [J. Indian
Math. Soc. (2) II, 239-248].

K. VARADARAJAN, Bombay :  On the rank of a reductive Lie algebra.

It is proved that the rank of a reductive algebra ¥ over a field
of characteristic zero is equal to the number of linearly independent

homogeneous primitive elements of the cohomology algebra
H¥%)of @.

ANALYSIS

S. H. Dwivepi, Aligarah : A4 note on an entire SJunction of integral
order.

Let f(z) be an entire function of integral order p. Let n(r) and
N (r) have their usual meaning. Let ¢(x) be any positive, continuous,
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o0

funection such that j dz

% $(a)

< co0. The purpose of this note is to

prove the following :
TarorEM 1. If f(z) ¢s an entire funciion of integral order and
of the same genus as that of its canonical product, then

lim sup N(r) ¢(r)/ fog M(r) = o for any positive $(r) such that

—>00

J dz converges.
% $(x)

We remark that the above theorem is still true if f(z) instead
of being a canonical product, is of the form (z) =e*® P(z) pro-
vided that p = P(p > 0).

THEOREM 2. If f(2) is an entire function of zero order then

lim sup N(r) ¢(r)/log M(r) = co.
7—>00
Theorems 1 and 2 are analogous to a result of S. M. Shah
[Jour. L. M. 8. 15 (1940)] where he proves them for n(r) instead
of N(r).

S. H. Dwivept and S. K. Sineu, Aligarh: On proximgte order
and a-points of an entire function.

Let f(z) be an entire function of order p(0 < p < o) and p(r)
be its proximate order L and let n(r, a) and N(r, a) have their usual
meanings. The authors prove the following theorems.

TaEorEM 1. If N(r, 6)/r"® — 0 asr —> oo then

0 < lim sup N(r, z){r"® < lim sup N(r, 2)[r"" < 1 for allz # a.

r=>0 F—p

TrarorEM 2. If f(z) be an entire function of finite non-zero order
for which n(r, a)log M(r, f) — 0 as r — oo, then
lim inf N(r, a)/log M(r, f) =0.

F—>©
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TaroreM 3. If lim inf N(r, a)/r*®) exists then Lim n(r, a)/r"® =
r—>c0

7=>0
plim N(r, a)[r*®, .
F—>0
Hart SHANKAR, Moradabad : On the characteristic function of a

meromorphic function.

Let w(z) be a meromorphic function of order p and lower order A.
The author has already established some inequalities elsewhere
[Tohoku Math. J. to appear] between 7,¢ and y, v which are the
limits of indetermination as r — oo of the ratios 7'(r)/t* and S(r)/r?
respectively, where 7'(r) and S(r) have their usual meanings.
[R. Nevanlinna, Eindeutige Analytische Funkctionen, Chap. VI, § 3].
Here the following results are proved.

TaEOREM 1. If w(z) is of perfectly reqular growth and of order p
then v = p.

TarorEM 2. If w(z) be of order p(0 < p < ) then
lim inf 8(r)/T'(r) <A< p < lim sup S(r)[T(r).
r~>0 r—>©
CorroLLARY. 4 sufficient condition that w(z) be of regular growth
and of order p is that S(r)|T(r) — p as r — co.

TumorEMS 3. If w(z) be of regular growth and of order p then
li_x)n (T(@)¥8(r) = o0 if k> 1 and lim sup T(r)y|S(r) < wifk <1."
r—prx 7~—>0

M. Ismaq, Lucknow: On the eigen-solutions of a sequence of bounded
Hermitian operators.

Let {4,}, (p=0,1,2,...), be a strongly convergent sequence
of Hermitian operators 4, bounded by a positive constant M. Let

Ty, (||Zg || = 1), be an element of the Hilbert space; the elements
#7,(¢=0,1,2,...), are called consequents of %o by A, if these satisfy
the relations: Az, = I2a?, Apf =Bag, ..., Apf ... =Pl

where || A%, | =% and ||a? || =1, (9=0, 1, 2,...). These give
Afzy =118 ... lx?. The expression on the left hand side is called
the iterate of x, of rank q and 27 the consequent of rank q. Define
w?(%,) and w(x,) from a sequence of the consequents of %, as
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7 I
w?(zy) = Z_;.l'—l?...w(xo) =77 If®=0o0ri =0, we do not
define w?(x,) and w(ry). We prove

TeEOREM ). Letl? £ 0,1, # 0, lim w?(y,) = 0 und lim w?(x,)

P>+ p>4®

L L

= w(®,), where w(xy) # 0. The consequents x%, converge strongly to
an eigensolution of the ‘operctor Aj, where n > 2 is 6 poritive inleger.

THEOREM 2. If an element x, is orthogonal 10 an eigen-solution
of the operator A2, subject to the conditions of Theorem 1, then so are
all its consequents.

B. N. Prasap and T. Pawi, Allahabad : On the theorems of
consistency in the theory of absolute Riesz summability (Preliminary
announcement). '

The direct analogue for absolute summability of Hardy’s well-
known second theorem of consistency for Riesz summability (PLJS,
1916) was demonstrated for integral orders of summability by
Chandrasekharan (JIMS, 1942). Naturally, in ¢his theorem the
relation between the two types was logarithmico-exponential. In
1954 (QJM, Oxford) Pati extended the scope of applicability of the
second theorem of consistency for absolute Riesz summability for
positive integral orders. The following extension of Pati’s theorem
for the more abstruse case in which the order of summability is
positive and non-integral, has recently been established by Prasad
and Pati (TAMS, 1957).

TasoreM. If $(t) is & non-negative and monotonic increasing
function of ¢ for t > 0, steadily tending to infinity as t tends to
infinity, such that $O(t) is monotonic nondecreasing for ¢ > 0, é(t)

s & (k + 2)th indefinite integral for t > 0, where & is the integral
part of K, and i §'(t)[$(f) € BV, ) (r=1,2,..k + 1), whereh is
a finite positive number, then an infinite series which is summable
| B\, K |, is also summable [ B, $(,), K |.

In the present paper this theorem of Prasad and Pati is proved
under the less restrictive hypothesis & ¢®(t)/¢(t) € B(h, o) (r =1,
2,..., k+ 1), where b is a finite positive number.
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M. S. RAMANUJAN, Madras :  The  Translativity’ problem for quasi-
Hausdorff methods of summability.

The * translativity’ problem for quasi-Hausdorff methods defining
conservative series-to-series transformations is discussed in the paper
and the following theorem is proved.

TeeOREM : Let (H*, u,) ond (H*, g, .f1,) be both dy-matrics.
Then for the class B of series with bounded partial sums (H*, p,) 18
translative to the left; if in addition the limit constant associated with

{itni1/ ) s mot §, then (H*, u,) is translative, again for the class 2.

The proof of the theorem indicates that the relaxation of
boundedness condition on the sequence of partial sums is possible
in certain cases where the matrix (H*, u,) satisfies suitable addi-
tional restrictions. The results of Vermes [American J. Math. 71,
541-562, (1949), Theorems 3 ITI and 3IV] on the translativity of
the method A4(p) of Taylor series continuation are deduced. These

results are true without any restriction on the sequence of partial
sums.

C. S. Sesmaprr, Bombay : Generalized multiplicative mermorphic
functions on a Riemann surface.

It is proved that every divisor (in the sense of A. Seil : Comment.
Maith. Helve. 1947) on an open Riemann surface is the divisor of a
“generalized” multiplicative meromorphic function. From this it
follows that every analytic vector-bundle on the unit dise or the plane
is analytically trivial. This, in combination with a result of
G. D. Birkhoff [Collected Works, I, pp. 240-251] on matrices of
analytic functions, allows us to prove that every vector-bundle on the
Riemann sphere is a direct sum of one-dimensional vector-bundles.

H. M. Seweuera and P. L. Gaveuri, Calcutta : On @ class of

steadily inoreasing continuous functions which are mot absolutely
continuous.

In the present paper, the authors intend to build a class of Cantor
functions, each continuous and steadily increasing in 0 <z <1,
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none of which is an integral. This class has the power of the conti-
nuum and the classical example of Cantor function appears as a
degenerate case.

S. K. Sivew, Aligarh: On the minimum modulus of an entire function.

Let f(z) be an entire function of order p(0 < p < ). Let m(r) =
m(r, f)=min [f(z)| on [2] =7. The purpose of this note is to
explore a class of entire functions for which m(r) — 0 as # — co.
In this note the following theorems are proved.

TaEOREM 1: If f(2) be an entire function having ‘0’ as an e.v. E.
then m(r) — 0 as r — 0.

The result automatically carries over to e.v. P. and o.v. B.
because e.v. P. or e.v. B —e.v. E.

THEOREM 2: If f(2) be an entire function having ‘0’ as an e.v. N.
then m(r) = O(1).

For the definition of e.v.E etc. see S. M. Skah: Compositio
Mathematica V1. 9 (1951) pp. 227-238.

U. N. SingH, Aligarh : Fourier-Carleman transform and limits of a
class of analytic functions.

Let O(k) denote the class of functions f which are integrable
in the sense of Lebesgue in every finite interval and which

F 3
satisfy the condition [ |f(t)|dt=0 (|z[*), as |x|— oo, where
0

k> 0. (g1, gz) denote the couple of analytic functions g,(z) and
go(z), regular for I(z) > 0 and I(z)< 0 respectively, which represent
the Carleman-Fourier transform of the couple (f;, f;), or of the
function fe C(k), in the sense of Carleman [see his book
L’Integrale de Fourier]. The author has proved the following

TrEOREM. Letfe€ Ck) = (0 <k < o0). A necessary and sufficient
condition that f(x) be the limit function of an analytic function f(z),
regular for I(z) >0 which belongs to the class (y, k—1) if k is
non-tntegral, or to the class (y,k — 1+ €)if k is integral, where
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«

0<e<l, 1<y <2, isthat im {g,(x + iy) —gol — 1)} = O,
uniformly in every closed finite interval of the megative real axis.

This theorem generalizes a theorem of the author [C.E. (Paris)
936 (1953)] which in its turn is a generalization of a theorem of
Hille and Tamarkin [Ann. Math. (2), 24, 1933].

S. R. SinHA, Allahabad : The summability factors of infinite series.

Let f(t) be a periodic function with period 27 and integrable
(L) over (— m, w). It may be assumed without loss of gencrality,
that the constant term in the Fourier series of f{(f) is zero
and f(t) ~ X (a, cos nt + b, sin nt) =Z¢,(t), c,=10. Also let ¢(t)=
3 {fl@+1) + fl —t) — 2f(x)}. Cheng (Duke Math. Jour. 15, 1948,
17-27) obtained the following result : If {A,} is any one of the
sequences {1/(log n)**<}, {1/log n (loglog n)**},... '

z {1/log n loglog ... log, , n (log, n)'*<}, (e > 0).
and ‘([ [$(u) | dw = o (t), as £ — 0, then the series ZA, ¢, (), at ¢ ==,

is summable ]C’,Locl for every a> 1. Pati (Duke Math. Jour., 21,
1953, 271-284) extended this theorem to the case in which {A,} is a
convex sequence, such that the series T n~ 1A, is convergent.
The object of the present paper is to extend Pati’s theorem
and to prove :

TaEOREM. If {A}is & convex sequence such that the series = n~1),
18 convergent, then the series T A, ¢, (t), at t =z, is summable
|C; | for every o> 1, provided that

11
t
I $1(w) |du = o (t), as t—0, where ¢,(t) =11 j H(u) du.
0 0
SvLaxana Kumari, Allahabad: On the logarithmic summability

of the successively derived series of @ Fourier series and its
conjugate series.

Suppose that f(x) is integrable (L) over (— mr, w) and periodic

outside this range with period 2. Let the rth successively derived
series of the Fourier series of f(x) and of the conjugate series of the
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Fourier series of f(z) be (i) = (a, cos =nx +b, sin nx) and (i)
n=1

© dr

n§1 T (b, cos nz —a, sin nx), respectively. Suppose that P(t) is

a polynomial of (r — 1)th degree in ¢, such that
9(t) = (1/20) [{flx +0) — P@)} + (=17 {f @ —1) — P (—t}}]

and

ht) = (1/20) [{f@x + 1) — P )} — @F {f o —t) — P (—t)}]
are integrable (L) over (—r, ) and periodic outside this range
with period 2. Then the following theorems regarding the log-
arithmic summability of (i) and (ii) at a point  have been
obtained:

TarorEM 1. If the Fourier series of g(t), at t = 0, be summable
(B, log w, r 4 8), 6 > 0, to sum s, and if its (R, log w, 8) mean be of
order o{(log w)}, then the series (i) is summable (B, log w, r + 8), to
sum rls, at the point x.

TaroREM 2. ' If the conjugate series corresponding to h(t), att = 0,
be summable (R, log w,r + 8), 8> 0, to sum s, and if its (R, log w, §)
mean be of order o{(log w)}, then the series (ii) is summable (R, log w,
r + 8), to sum rls, ot the p.int .

S. SWETHARANYAM, Annamalainagar: On the function oy(n).

Let, for k> 1, og(n) denote the sum of the kth powers of the
positive divisors of #. Then, in this paper, it is shown that the
ratio oy(n — 1)/o,(n) lies between «B/2*8 and §/«f3, and, that the ratio
oy(n + 1)/oy(n) lies between «B/8 and 3%§/2%«B, where a = 1/{(2),
B =1/£(2).L(2k) and 8 = {(k), {(s) being the Riemann Zeta function.
When % = 1, the function becomes o,(n) which is the same as o(n),
the sum of the positive divisors of . In this case, Schinzel
and Sierpinski [Bull. Acad. Polon. Seci. (I1II), 2 (1954), 463-466,
Theorems 3 and 4] have proved that the maximum limit of the
corresponding ratios is 4 co and the minimum limit is 0. Analogous
results for the Euler function have been established by the same’
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authors [ibid. Theorems 1 and 2] and for the divisor function d(n)
by Schinzel [Publ. Math. Debrecen, 3 (1954), 261-2621.

V. Laksamiganta, Hyderabad : On the asympiotic problems
between the solutions of the differemtial systems.

This is a continuation of the previous paper ‘ On the bounded-
ness of solutions of non-linear differential systems’ submitted last
year. Here some more asymptotic problems of solutions and their
derivates have been considered. Sufficient conditions, for the
existence of an order relation between the solution of a given system
and that of its approximate system have been obtained.

V. Laksamir aNTH, Hyderabad : On the asymplotic correspondence
between the solutions of the differential systems.

In this paper we have considered the problem of asymptotic
correspondence between the solutions of the system ' — azx + by +
f@,9,8); y' =ox +dy + f'(», y,t) and that of its trivial system
2’ = ax 4 by; y' =cx + dy where, a, b, ¢, d are real constants, with
a determinant ad — bc £ 0 and f, f’ are real functions defined in
the region 0<i<oo,r<<o« where z —1r c0s 0, y =r sinf. The
primes denote the differentiation with respect to .

APPLIED MATHEMATICS

C. D. Gampyaxn, Lucknow : On steady awially symmetric super-
posable flows.

This paper is the extension of the paper of Ballabh on “Steady
superposable flows with cylindrical symmetry” [Ganiia, 6, (1955)].
Ballabh took the case of non-viscous fluids only. The author of this
paper studies superposability defined in the sense of Ballabh [ Proc.
Benaras Math. 2, (1940)] in the case of steady axially symmetric
flows of viscous and non-viscous homogeneous incompressible fluids.
He obtains the general expression Yy=4vw+oF () [?dd+
G() for the current function of the rotational flow superposable
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on a given irrotational flow of which the current function is if. The
other symbols used have their usual meanings. When the liquid is
non-viscous it is proved that the current function of the irrotational
flow on which a steady rotational flow is superposable, is necessarily
independent of z. The stream lines of the irrotational flow are
curves of zero curvature. Two alternative proofs are given.

P. C. Jaix, Delhi: Density fluctuations in turbulence n an
tnviscid compresstble fluid.

The new theory of turbulence as presented by S. Chandrasekhar
[Proc. Royal Soc. A, 238, 1955], has been appliéd to the problem of
density fluctuations in stationary homogeneous turbulence in an
inviscid compressible fluid. On the basis of the assumptions that
the fourth order correlation is related to the second-order corre-
lations in the same manner as in a joint Gaussian distribution, and
that the variations in density and pressure are adiabatic, a differen-
tial equation in the density correlation is obtained and solved. It is
found that each scale of the density fluctuationevaries periodically
with time independently of the others and is propogated through the
medium with velocity 4/(c2 +1/3 %). An invariant of the type
of Loitsiansky invariant is also deduced from the equation of

continuity.

J. N. Kaprur, Delhi: The evaluation of co-volume function
in Hunt-Hinds and Qoldie’s methods of internal ballistics by the use

" of Russian tables.

The evaluation of co-volume function by methods used in Britain
and France requires extensive calculations. No tables are available
and generally approximation formulae have been suggested. It has
been. shown earlier by the author that these formulae are not in
general satisfactory. In the present paper it is shown how this
co-volume function can be expressed in terms of ballistic functions
tabulated in Russian literature and thus a great deal of labour can
be avoided in tabulating the co-volume function by the methods
which are in use in India.
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J. N. Kapur, Delhi: Superposability in magneto-kydrodynamicé.

In the present paper, the concept of superposability defined
earlier by Ram Ballabh for ordinary fluid flows has been extended
to the case of hydromagnetic flows. The conditions of superposa-
bility and the equation for determining the adjusted pressure have
been obtatned. Self-superposable flows have been studied and in
particular it has been shown that for magneto-hydrostatic situa-
tions, these are the same as the °force-free’ fields, studied by
Chandrasekhar (Proc. Nat. Acad. Sci., U.S.A., 1956). For axially
symmetric force-free fields, Chandrasekhar has established three
conditions for the defining scalars. It has been shown here that the
third is not an independent condition, but follows at once from
the first. The equation characterizing the general force-free axially
symmetric fields has also been obtained.

In another paper (Astroph J. 1956) Chandrasekhar has obtained
four differential equations for the four defining scalars for the

vectors ; and 1—% dor an inviscid liquid. We have obtained here
the corresponding equations for viscous liquids and find that most
of the general results esablished by Chandrasekhar for non-viscous
case (including those giving the relations between poloidal and
toroidal components) do not hold for viscous fluids.

It has also been shown that the equation giving the decay of
magnetic field for magneto-hydrostatics situations remains un-

changed for the more general case of self-superposable hydro-
magnetic situations.

J. N. Karur, Delhi: Some results Sfor motion of non-Newtonian
hguids with variable coefficient of cross viscosity.

In a recent paper, Bhatnagar and Lakshmana Rao (Proc. Indian
Acad. Sc.1957) have given some general results about non-Newtonian
liquids satisfying the relationship p; = — p 8y + 2 udy + 2 p, diy dy;
between the stress tensor Py and the rate-of-deformation tensor
dy, with coefficient of viscosity w and coefficient of cross-viscocity
K, as constant. In the present paper are examined how far these
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results remain true for the most general non-Newtonian liquids
in whieh u apd g, are functions of invariants

dy  dyy  dy
Iy =djudy, and Iy = | dyy  dyy  dy
| dg1  dgp  ds

It is found that theit results for two-dimensional flows, viz. that
the conditions for superposability and conservasion of circulation,
the equation of vorticity, and the possibility of the use of inverse
and semi-inverse methods remain unaffected by the presence of p
are true even if y, is variable and u is constant ; but if z and 4, BTO
both variable, none of these results is true.

M. K. Jain (Zeit. Math. and Mech. 1955) has shown that Taylor’s
and Dean’s results for the motion of an infinite rigid cylinder in
a rotating liquid remain true even if we take u, (assumed constaht)
into account. In this paper is shown that these results remain
true for the most general non-Newtonian fluids, i.e. even if we take
the variation of both g and g, into account.

PreEm ParkasH, Lucknow : Image of a source with regard o a
circle.

It is well known that the image of a source with regard to a
circle consists of an equal source at the inverse point together with
an equal sink at the centre. Since there is a singularity at the
location of the source, Green’s uniqueness theorem may not hold ;
consequently there may be more than one pattern of flow due to the
source with the given circle as the innmer boundary. This paper
gives an image system different from that given in text books on the
subject and discusses it in some detail. The circular boundary is
first transformed into a linear one with the help of a conformal
transformation so that the source transforms into an equal source.
The image system is known for the linear boundary. When retrans-
formed into the original coordinates this gives a kind of general
image system due to the source with regard to the circle. It consists
of an equal source at the inverse point and a number of sinks



134 ABSTRACTS

distributed over the cirele such that the sum of their strengths
is twice the strength of the given source. The solution is valid for
r> a, where a is the radius of the circle.

P. C. Varpva and K. B. Smam, Ahmedabad : A4 radiating mass
particle in an espanding wnwerse.:

The Einstein-Straus view [Rev. Mod. Phyd. 17, 120, 1945 ] that
individual stars can be regarded as placed at the centres of spherical
empty holes in the sorrounding cosmological field is not applicable
to the case when the stars are radiating. This is seen by a simple
application of O’Brien-Synge jump conditions at the boundary of the
hole which will now be filled with flowing radiation. However, it is
found that the McVittie view [ Monthly Not. Roy. Astron. Soc. 93,
19337 of regarding these holes not as empty but filled by spheri-
cally symmetric distribution of matter of non-zero density gradually
tending to the homogeneous cosmic fluid-distribution at large
distances, continues to hold good even when the effect of radiation
emerging from the star is taken into account. Details of the effect
of the radiation emerging from a McVittie star are calculated.

GEOMETRY

M. K. SinaaL and Ram BeEART, Delhi : Sub-spaces of a generalized
Riemann space.

The present paper deals with sub-spaces of a generalized Rieman-
nian space. Generalized Riemann spaces were defined and first
studied by Eisenhart (Proc. Nat. Acad. Sc. 37 (1951), 311-5). In
this paper Gauss and Codazzi equations for a sub-space of &
generalized Riemann space have been obtained. Curvature of a
curve in a sub-space, and the angular spread vector and normal
curvature of a vector-field along a curve in the sub-space have
been studied. The equations of lines of curvature and generalizations
of Rodrigue’s formula and Euler’s formula have been obtained. The
relative curvature of a sub-space for the orientation determined by
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a pair of orthogonal directions in the sub-space has been studied
and Failkow’s theorem (Bull. American Math. Soc. 24, (1938), 253-7)
has been extended to generalized Riemann spaces. Congruences
canonical to & normal congruence have also been studied. Geodesics,
asymptotic lines, totally geodesic sub-spaces and hyperplanes have
also been defined and studied. -

STATISTICS AND PROBABILITY

V. S. HuzurBAzAR, Poona: Inverse probability and confidence
intervals.

It is shown that for distributions admitting a sufficient statistic
when the range depends on the parameter, the method of inverse
probability as developed by Jeffreys leads to the same results arrived
at by the method of confidence intervals by Neyman.

. SANKARANARAYANAN, Annamalainagar : 4 note on the equidis-
tribution of the sums of independent random variables.

Let X,, X, ... be a sequence of independent real random
variables with a common distribution function ) F(z). Let
Sy =X; + oo + Xy, 3 Sp=X, 41+ o+ D S SITHE ‘We have

shown that the sequence S, is equidistributed with respect to a

certain class H of functions A(x) — which contains all .almost

periodic functions — in the sense that for any h(z) in H,
n

lim 1 Z h(S;) = M (h), with probability one, where the

n—>wo g A

‘ 1
constant M(h) is given by M(hk)

. T
= 1111_?; 5T j—z' h(z) d(z) (when
thelimit exists), as defined in the theory of almost-periodic functions.
This result will be true only if the sequence {p;} is an increasing
sequence of integers which tend to infinity. ‘We have also shown that

the resilt may not be valid when the p;’s are bounded. For instance
n

.1 ) )
we have shown that 1 - z exp (it X;) = ¢(t), with pro-

n—>o
j=1

bability one, where ¢(t) is the characteristic function of the X’s. This
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shows that the first equality fails to hold when p; =1, (j = 1,...).
The application of this result to a stochastic process with stationary
increments is immediate. The above problem was suggested by the
results obtained by Herbert Robbins in the Proceedings of the
American Mathematical Soctety [4 (1953), 786-799] where he proves
the result, quoted when S, = X; + X, 4 ... + X,

TOPOLOGY

R. Raxea Rao, Calcutta :  On a theorem of Yosida and Hewit.

The object of the paper is to present an alternative proof, based
on Zorn’s lemma, of the following theorem, due to Yosida and
Hewitt (T'rans. American Math. Soc. 72 (1952), 46-66): Let
X be an abstract space, R a ring of subsets of X and » a finitely
additive measure on [R. Then there exists a countably additive
measure m and a purely finitely additive measure p, such that
v=m + p. The main object is to prove the existence of m and p,
the uniqueness offthe same following as in the earlier work of Yosida
and Hewitt. Also it suffices to consider only non-negative set
functions as the general case follows from it.

V. 8. VaraparATAN, Caloutta :  On a class of topological spaces.

Givenn any completely regular Hausdorff space it was proved by
Hewitt [Trans. American Math. Soc. 64, (1948)] that there exists a
unique §)-space z;, containing # as a dense subset such that every
continuous function on « can be uniquely and continuously extended
to ;. It was also shown by Shirota (Osaka Math. J. 1952) that @-
spaces are identical with closed subsets of products of real lines.
It is shown here that the above results can be viewed from the stand-
point of weak topologies on spaces of measures. Explicitly a @-space
is defined to be a completely regular Hausdorff space on which every
two-valued measure is degenerate, and the Shirota characterization
obtained. It is then shown that for any completely regular Hausdorff
space z, the space z,, of all two-valued probability measures on #,
when weakly topologised, is the unique @-extension of z.
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NEWS AND NOTICES

Szrt S. V. Keshava Hegde has been admitted to the life-
membership of the Society.

The following persons have been admitted to membership in the
Society : M. K. Agrawala, B. K. Lahiri, V. 8. Lakshn{inarayan,
V. Narayanaswami, Sahib Ram and A. P. Stone.

Professor K. Chandrasekharan and Professor Ram Behari are
the delegates to the International Congress of Mathematicians
in Edinburgh.

Dr. M. Venkataraman and Dr. Alladi Ramakrishnan have been
appointed respectively Professors of Mathematics and Physics
of Madras University.

Messrs. M. S. Ramanujan, Md. Mohsin and Qazi Ibadur
Rahman have been appointed as lecturers in Mathematics, Muslim

University, Aligarh.

Dr. S. M. Shah has been appointed as visiting Professor for one
semester (September 1958 — January 1959} in the University of
Wisconsin, Madison, U.S.A.

Mr. C. R. Marathe has been awarded the degree of Ph. Dby the
University of Aligarh, for his thesis on ‘ Distribution of eigenvalues
of matrices ’.

Dr. 8. K. Singh (Aligarh) has been awarded a research assistantship
by the University of Kansas.

The World Directory of Mathematicians has been issued.

The summer school of Mathematics organised by the Mathematies
Seminar, Delhi University was held in Hansraj College, Delhi, from
the 5th May to 1st June 1958. Lectures were given on various aspects
of Mechanics of continuous media such as, Boundary layer theory,
Compressible fluids, Turbulance, Magnetohydrodynamics, Electri-
city and Elastic waves. Expository lectures were given on



140 NEWS AND NOTICES

Mathematical logiec, Theory of sets, Abstract algebra, Topology,
Homotopy and Banach spaces. Applications of mathematics to
social sciences, industry and defence were also emphasised.
Discussions were held on various topics including Astronomy,
Statistics and Theoretical physics.

[

The lecturers were drawn from Defence Science Organization and
Departments of Mathematics of Panjab, Aligarh, Delhiand Rajasthan
Universities. Financial help was rendered by the Universities
Grants Commission and Messrs 8. Chand and Co. ‘

At the conclusion of the session resolutions regarding the setting
of a Mathematics Research Centre, a Fluid dynamics laboratory at
Delhi and the installation of Electronic Computorsat various research
centres in the country were passed.

The Summer School of Mathematics and Statistics organized by
the Departments of Mathematics of the Universities of Aligarh and
Lucknow was held in Nainital from May 22nd to June 20th.
Lectures were delivered on ‘Set Theory and Convergence’ by
Dr. D. N. Misra (Lucknow), on ‘ Lebesgue Integral and Hilbert
space’ by Dr. A. Sharma (Lucknow), on ‘ Complex Analysis and
Fundamental Concepts’ by Dr. V. Singh (Kanpur), on ¢ Meromorphic
Function’ by Dr. 8. M. Shah (Aligarh), on ¢ Linear Algebra’ by
Dr. M. Ishaq (Lucknow), on °Semi-Groups and Groups’ by
Dr. J. A. Siddigi (Aligarh), on ‘Basic Concepts and probability
Theory and Introduction to Stochastic Processes’ by Dr. B. P.

Adhikari (Lucknow), and on ‘Measures on Topological Spaces’
by Dr. D. D. Joshi (Calcutta).

Freo accommodation and a grant for cyclostyling lecture notes
were kindly provided by the Government of Uttar Pradesh.
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A FEW USEFUL MODIFICATIONS OF NEW'R@ALS.
APPROXIMATION METHOD OF SOLVING
REAL EQUATIONS

By L. C. HSU

1. Introduction. In this paper we shall give some convergence
theorems concerning a certain type of modifieation of Newton’s
method for the approximate solution of a real equation. Moreover
we shall illustrate that our modified method can be still extended to
solving simultaneous equations. Finally, other types of modifications
will also be sketched.

Let f(z) be a single-valued real function, continuous together with
its first two derivatives f'(z) and f(x) within a certain interval.
We shall consider the approximate solution of the equation

fl@) =0. (1)
Let @, and #; be two different initial approximate solutions of (1),
and let the successive approximations &, ;, etc. bo constructed
by the following iteration method:
Ty — By _
Lptpr =% — (m)f(xn): (n=12..) (2)
This is one of our proposed modifications of Newton’s process, in
which we are now chiefly interested. As regards some well-known
modifications and extensions, see [11—[9].

Evidently the process (2) is more advantageous than the ordinary
method of chord (the so-called regula falsi), sinece it is unnecessary to
adjust the points ,_, and #, in such a way that f(z,_ 1) f(z.) <O
Moreover, we see that it is also more convenient and available than
the classical Newton method

* L x. . .
“’n+1=“’n—."f?,((—a;))’ (n=0,1,2, v} T =7%g) (3)
(3

in case the values f’(v,) are not easily calculated (e.g. both f(zx) and
f(x) may be quite complicated algebraic or transcendental functions).
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Basing upon the asymptotic relation of the following
I
f(xn) _f(xn—l)
we may predict naturally that the convergence speed of (2) is com-
parable with that of (3). That this statement is true will be justified
in the next section.

) Nf'(; ) for (», —2,_;)}—0, (4)

2. Some convergence theorems. In what follows we always
assume 2z; to be determined by the ordinary Newton method, viz.

S(=o)
x, =25 — .
T P
By means of certain geometrical considerations we may now prove
the following (cf. the lemma of [13])

TarorEM 1. Let I be o closed interval within which the equation (1)
has at least one solution. Let x, be a point interior to I and let

f@o) (@) >0, (zel). (5)

Then the sequence &, } given by (2) converges monotonically to a solu-
tion &* of (1) with a*el. Moreover, the convergence speed 1s com-
parable with that of {u,} of the Newton process (3), viz.

len—l —117*[ < ,w;_x'l’ (’)’& = 2: 3: )- (6)

ProOF. Ttisnorealrestriction to suppose that f(z,) > 0, f"(x) > 0,
(w 1), since otherwise we can consider — f(=) instead of f(»). Clearly
the condition f(x) > 0 just means that the curve y = f(z) is strictly
convex throughout I. This fact actually implies that f'(x,) 7 0. For

proving this, suppose on the contrary that f'(z,) = 0. Then f(x) must

attain an absolute minimum at # =1,, and consequently f(zx)>

S@)> 0 (xel), contradioting the hypothesis that f(z) has at least
one zero within I,

(?‘ons.ider now the case f'(,) < 0. Let #° denote a zero of f@) (in I),
which is nearest to ,. Then by the convexity of y = f(x) we see that
the Newton sequence {z} (@ = )

- seque is monotonically increasing to
the upper limit &*. Actually the relation lim ; = %" follows at once

by letting n—- oo in (3 bis):  f(x}) (@541 —nm;) = — fla}).

n
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In order to prove lim %, =4" and (6), we need to compare the
convergence. speed of {x,} with that of {,}. Geometrically the
relation (2) means that #,,; is just the abscissa of the x-axis deter-
mined by the intersection of the line through the pair of points
(%p—1, f(2,1)) and (x,, f(x,)). On the other hand, the abscissa ),
is determined by the intersecting line tangent to the curve y = f(x)
at ¢ —«,. Thus from the convexity of y =f(x) we may infer"

-inductively that #, < #,,, <« (all n) and that.
Ty =Ty < Ty = Xy < By < Ty < L.
Assume now for instance z, <, _; <#,. Evidently it must follow
that @), <,,,, using the convexity again. In other words, there
can never exist three consecutive points , ,;, %,, %,.; within the
semi-open interval zJ < < %, ;. Hence the worst case regarding the
convergence speed of {z,} is seen to be

By <) < By <y < Wy <Ey Ty < By < Tg < By < oo <
< a <y <y, <Xy Loy (@ T )
Consequently we obtain lim z, = 2" and
|g,_, —%" | <2, —2"|, (v=2,8,..).
The other case f*(x,) > 0 can be treated in exactly the same way.
Hence our theorem is proved.
For the case without assuming the existence of a solution, we
have the
TaroREM 2. Let 2, be a point interior to a closed interval I and let
flwe) /(@) >0, flag) fla) <0, (zel), (7)
where « is an end-point of I. Then the sequence {z,} given by (2)

converges monctonically to a unique solution %" of (1) with z*elI.

ProoF. As before we may assume that f(z,)> 0, f"(x)> 0.
By (7) we have f(a) < 0. Thus the function f(x) has at least one
zero in the open interval («, #,) [or (%o, «)]. On the other hand, in
case there are more than one zeros in the interval, it is seen that
¥ = f(x) must attain a maximum and a minimum between o and .
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This clearly contradicts the supposition that f"(x)> 0 (zxel).
Hence in conclusion the solution of f(z) =0 is unique; and our
theorem follows from Theorem 1.

This theorem is actually an analogue of Ostrowski’s convergence
theorem for the Newton method ([10] or [1; Chap. 1, §5]). It is
known that Ostrowski obtained also the following result :

Supp;se that f(x) s twice differentiable in the interval I =
[#g: %o + 2], where

e LB o sup ) <2, 2 B < 1S @) )
S (%) zel v

Then the equation (1) has o unique solution z* (in I), toward which

the Newton process (3) converges.

This result was afterwards extended by L. V. Kantorovich
([8] or [1, Ch. 1) to the case of general functional equations
according to which the convergence speed of (3) is given by

|zt —a*| < (‘-;)n_l (%’(%:)2”"1 Bl (n=1,2,..).

x

. Thus, making use of both Theorem 1 and Ostrowski’s théorem, we
may state the following

THEOI}.EM 3. Let the conditions (5) and (8) be Sulfilled for the
closed interval I = [z, , + 2h]. Then the sequence {x,} given by
(2) converges to a unique solution z* of (1) within I. Moreover, for the
case I being defined by I — [y — 2k, 2y + 2h] we have

o - 2t l)n-l(W)zn_l
(3 =2 | < Jogey —a" | < (] T 1Bl (9)
Clearly, conditions (5) and (8) are easily satisfied whenever 2" is
neither a stationary point nor a point of inflection of f(z), and z,
is sufficiently close to z* (i.e. I is a sufficiently small interval). The
inequality (9) indicates that the convergence of {z,} is quite
rapid especially for the case 2M (Bl <|f'(zy)].

A general remark worthy of mentioning is that almost all known
theorems concerning the convergence of the Newton method can be
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extended to the case of (2). Thus for instance, corresponding to a
theorem of I.,P. Misovskih ([12] or [1; Ch. 1, §6]), we have the
following

THEOREM 4. Let the equation (1) have a solution z* to which x,
is an inatial approxvimation, and let the following conditions be fulfilled :
(D) 8" —x) <
(i) flwo)Sf -"”0 >0 (or f(@o) [ (o) < 0) 5
(i) |f'@) < B, |f'@)| <K ond flz,)f"(x)> 0 hold in the
interval
I=[x,—(1+3)r 2] (orl = [mgz,+ (1 +4])r]);
(iv) Il=BKr<2
Then the process (2) converges to the wnique solution " of (1) within

the interval 1.

In practical applications, of course, we do not know the precise
value of z°. But the number r as defined by (i) can usually be
estimated from the function f(x) itself.

Misovskih proved also the following theorem : Suppose that

S @) fr(wo) > 0 (o7 f(20) f' (@) < 0)- (10)
Let the condition
If@) < B, Ifw)l<m [f'@)f<X (11)

be fulfilled in a closed interval I =[x, — A, 7] (or I=[x,, @y 4 A]),

where
h=B:Kn<4, A>Bny. (12)

Then the Newton process (3) converges to a umique solution z* of (1)
within the interval I.

Introduce now the following condition instead of (11):

If'@)~t < B, 1f@)l <n If'@] <K f@)f >0 (1)

Thus a combined application of Misovskih’s theorem and our
Theorem 1 will yield the following result :
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TurorREM 5. The process (2) converges monotonically to a unique
solution =" of (1) with x* € I, provided that the conditsons (10), (11')
and (12) are fulfilled. ;

H. S. Sun has worked out a few numerical examples of algebraic
equations, showing that the whole labour of computations involved
in using process (2) is relatively smaller than that of using Newton’s
method, in case the approximate solutions are required to be precise
in six decimal places. |

3. An extension. We shall now formulate an extension of the
modified proeess (2) to the case of simultaneous equations involving
two unknowns.

Given simultaneous equations of the following

fl(wﬁ ¥) =0, fz(”, ?/) =0, (13)
the functions f; and f, being assumed to have continuous partial
derivatives of the first order. We may of course regard the pair of
functions f; andcf; as defining an operation P transforming the
vector (x,y) to the vector (f, f;). The equation (13) may be therefore
written in the form P (X) = 0 with X = (z, y). In accordance with
the functional analysis we know that the Fréchet derivative of P is
actually represented by the matrix operation of the linear algebra:

% %
) dx oy
P(X) = . (14)
U o
o0x ay
Accordingly we have
A(afz) ~1(af1)
P~ = , (15)

RORE
where A — (fl’fz)

) is the Jacobian determinant, Thus the Newton
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process for the functional equation P(X)=0 may be expressed
in the matrix operational form

Xp1=X,—P(X,)"1P(X,), (n=0,1,2..) (16)

where X,, = (z,, ¥,) denotes a column vector and X, = (z,, y,) is
an initial approximate solution of (18).

In applying the process (16) to numerical equations, it dsually
needs to compute the values fi(z,, y,), ( af‘) ( % ") (t=1,2;
Xy,

< v < n). This may be somewhat troublesome in case the f, are
complicated transcendental functions. Now in order to simplify
the labour of calculations involved, we may devise a new process
as follows.

Let Xo= (%, ¥,) and X; = (%, ¥,) be determined by (16). Define

Afz) flw ,yn)—fi(xn—l, yn),

Xy — Ly an
Aft j;(x -1, yn) .fn.(x -1, yn——l) s (?, — 1’ 2)
Yn— Yn-1
where n =1, 2, ..., and let
(Afl) Afl)
A__ n T n
D= v (18)

" (éé) é&)
Then (16) may be modified to the form
! Afz) Afl)
D,

Tnt1 | — | ®n | — E_ Ay Ay (fl)n ,
Yni1 Yn 1 Afz) éil_) (fohu
D Az D\ Az /a4

m=1,2..) (19

where (f;), = fi (n, Yn). Thisis equivalent to
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ma=m— 5 (52), = (ZL), o],

Yn+1= Y T+ fln { (i—‘f)n (fin— (%—-J;l)n (fz)n}

In obtaining the (n -+ 1)th approximation, we see that the
new process requires merely 4n -+ 2 quantities fi(z,, ¥,), f;(®,, ¥.),
ﬁ(xv_lf ¥,) (1 <v < n); but the Newton process (16) has to evaluate
6n + 6 quantities in advance.

(20)

4. A modification of Tchebychef’s process. One of the effective
iteration processes much more precise than Newton’s method is
given by ’

f(=,) l(f(x))z(f”(w))
Tpiy =%, — % — 2 | 2 ), {n=0,1,2,.). (21)
2T e "2\ ) e )
This is the well-known process of Tchebychef for solving algebraic
or transcendental equations. In view of the asymptotic relation

between (2) and,(3) we may naturally modify (21) to a form of
the following

f’(xn) 2 f,(wn) f’(xn) (xn- xn—l)

Tnp1 =1,

), (?’I, = 1, 2, ...),

(22)
where %, and %, are assumed to be given as in the ordinary Newton
method. Apparently this modification has the advantage that it
uses only those quantities which have appeared already in the
Newton process. As may be expected, the convergence speed of

(22) may under some general conditions be compared with that of

(21). However we have not yet got any convergence theorems for
this modified process.

Other type of convenient modification may be given by

_f@) Y f@a) \B () B
f'(@,) 2(f’(a;n) (f(TZ)) (n=0,1,2,...). (23)

But the convergence speed of this process is surely inferior if
compared with (22).

Tpp1 =%,




NEWTON’S APPROXIMATION METHOD 153

REFERENCES

1. G. 8. Sartwmorr & M. A. MerrvEzZOova : On the convergence of
some iterative processes (Russian), Izv. Kazan phys.-math. AN.
SSSR No. 5 (1954), 77-108. ]

2. H. 8. WarL: A modification of Newton’s method, American
Math. Monthly, 55 (1948), 90-94.

3. J.8. Framm : A variation of Newton’s method, American Math.
Monithly, 51 (1944), 36-38. '

4. H. J. Hawmmmton: A type of variation on Newton’s method,
American Math. Monthly, 57 (1950), 517-522.

5. E. BopEwia : On types of convergence and on the behaviour of
approximations in the neighborhood of a multiple root of an
equation, Quart. Appl. Math. 7 (1949), 325-333.

6. G.S. Saremorr: On the convergence of the hyperbolic tangent
process (Russian), Doklady Akad. Nauk SSSE 82 (1952).

7. I.Fenyo: Uber die Losung der in Banachschen Raume definierten
nichtlinearen Gleichungen, Acta Math. Acad. Sci. Hung. 5(1954),
85-93.

8. L.V.KanTorovicE : On the method of Newton for functional
equations (Russian), Doklady Akad. Nauk SSSRE 59 (1948),
1237-1240.

9. U.Y.Kaazig & E. E. Tamme : On an approximation method of-
solving functional equations (Russian), Doklady Akad. Nouk
SSSR 6(1955), 981-984.

10. A. Ostrowski: Uber die Konvergenz und die Abrundungs-
festigkeit des Newtonschen Verfahrens, Rec. Math. (Math.
Sbornik) 2 (1937), 1073-1095.

11. A. OsTROwSEI: Uber einen Fall der Konvergenz des Newton-
schen Naherungsverfahrens, Rec. Math. 3 (1938), 254-258.

12. I.P.Misovsiim: On the convergence of Newton’s method under
the Cauchy type of conditions (Russian), Prikl. Mat. & Mech.
(SSSR) 16 (1952), 756-759.

13. L.C.Hsu: An efficient process of successive approximation,
Acta Math. Acad. Sci. Hung. 9 (1958), 2901-297.

North-East People’s University
Chang-chun, China






THE UNIFORM APPROXIMATION TO
THE LIPSCHITZ CLASS OF FUNCTIONS BY A
KIND OF TRIGONOMETRICAL POLYNOMIALS

By L. C. HSU

1. Inprovingthe celebrated approximation theorem of Wejerstrass
for continuous periodic functions, it is known that de la Vallée-
Poussin has introduced an elegant singular integral of the form

_ @u)lt 1 f L[t —
V. (fiz) = (ZT_T)” oy If(t) cos® (—2—x> dt, (1)

where n!! denotes the double paced factorial, e.g. 5!! = 1.3.5;
8!l = 2.4.6.8.

By f e Lipy a (0< & <1) we shall mean that f(z) is a function of
the Lipschitz class with index «, i.e. f(x) satisfies the condition of
the type

If@) —f@") | < M| —z" "
I. P. Natanson ([1], [2]) has investigated the uniform approximation
to the Lipschitz class Lip, « of periodic functions by the Vallée-
Poussin polynomials defined by (1), and obtained the following
precise result :

If we define
Uy(«) = sup { max |V, (f;z) —f (=) | } , (2)

where the supremwm is taken over all functions of period 2w with
J e Lip, a, then for n large we have

1+ o:) pL ( 1 )
= — — )—— 4o . 3
U (a) P( s ) e T\ e ®)
The purpose of this note is to introduce a kind of trigonometrical
polynomials which may be regarded as a generalization of Vallée-

Poussin’s. We shall show that our newly defined polynomials can
in fact provide closer approximations to the functions of Lip,«.
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2. TIn our discussion use will be made of the following

LeMMA. Let ¢(x, t) be a continuous function definedeon the square
region a <z <b,a <t < band satisfying the conditions

1°, the partial derivative ¢y(x, t) exists and is continuous ;
2°, the relation |p(x, t) | < (@, x) =1 holdf fort #ex.

Then for every Lebesgue integrable function f(¢) (a <t <b) and for

o> — 1 we have
b

[ [, )] |t —z|* f(t) dth(x)P(l _;_ o() (

@

—9 1+ «)/2
7y (2, x))’
(n—o0) (4)

whenever & (a < % < b) ts a point belonging to the Lebesque set of f(¢)
with f(x) # 0.

This is a consequence of a more general result proved previously
(cf. [3], [4]). The formula (4) was also obtained by P. G. Roney
[5] (cf. [6], [7]): Clearly the lemma itself is an extension of the
classical Laplace theorem for the asymptotic integration.

3. In what follows u always denotes a positive odd integer. Let
us now introduce the following generalization of Vallée-Poussin’s
singular integral :
1 [ t—a t—xz\ 1"
Ve(f; ) = — i 5
“(f; ») 7 “{cos<‘2 )cos‘u( 5 )}f(t)dt, (5)

n
bt

the number K, being defined by

/2
K,=14 j (cos 0 cos p 0)* dé. (6)
0
It is easily found that V% (1,%) = 1 and that
8x 12
K~ "%
. ((1+M2)n) , (o) (7

‘by making use of the asymptotic formula (4).
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Evidently the integral (5) has the characteristic that its integrand
(kernel) will have violent oscillations when u is large. Moreover,
we see that (5) represents a trigonometrical polynominal of order
Hp + 1) n.

Consider the class Lip; «. We may prove the following

THEOREM. If n denotes a positive even integer and if

U(@) = sup {max [ VE(F @) — f@)] } , (8)
I z

the supremum being taken over all functions of period 2 with
f € Lip, «, then for n large we have

Us(o) =T (1‘2“‘) ( fyz)“/z\/(,,lna) +o (vln—) (9)

Proor. Notice that for each fixed  the funption

[ (157 e (59) .

is of period 2w in ¢ Thus for any function f(¢) of period 27 with

f € Lip, « we have

|Valf, @) —f(@) |

z+m

=| K1 J { cos (é——z_f)cos ,u,(t——é:—”> }n[f(t) — flz)1dt [
<K;1Mj” {cos (t-;—x) cos ‘u(t_;_a_:)}” |t — | dt

gt | oo () eos ()] e

—

Consequently we get

Us(o) < Ky j [4(0, )] ¢ dt, (10)
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(w, ) = cos (é—gd)cos M<t——2—of)

/
It is clear that the function f,(f) =|t|* (— 7 <t<7) can be
extended as a continuous function of period 27 in the whole

where

interval (— co, ). Moreover, we see fy(f) eLip1 « inasmuch as

| fo(t) I 1 =1 <= 2"]% (lt’l a, |87 <)
and generally
folt! o 2hem) — folt" 4 2lm) | =1 folt) —fo6") | < 18" — 8" & 2m(k — 1) |
Thus we also have

Us(a) > Va(fy; 0) f0(0)=K;1jw(o,t)]”ltl“dt- (11)

k4

An easy calculation gives iy, (0,0) = — } (1 + u?). Hence by com-
parison of (10) and (11) and by means of (4) we obtain
N

Us(a) — K1 Y [0, )] |¢|* de~T (1 ‘; “) (1 fﬁz)“/z V(:na)'

—a

The theorem is proved.

It is now easy to verify that (5) generally provides better
approximations than (1) can. For instance, for m =i (p+1n
(p: odd) the integrals V,(f; z) and V&(f; ») represent trigono-
metrical polynomials of the same order m. But the ratio between
their degrees of approximation is found to be

Uhla) ( I+u )
Un(a) 1+ IL ’
which is asymptotic to (1/u)*2 for e being large.

4. TFinally suppose that ft)eL(a

X <$<b). As a consequence of
our lemma (with a = 0) we see that



LIPSCHITZ CLASS OF FUNCTIONS 159
b
. 1 n
Jm o j [$lx, )T f(t) dt = f(z) - (12)

holds for every point x (¢ <z < b) belonging to the Lebesgue set of

f(t), provided that C, is defined by

b

j‘ [$la, 1) dt ~ C, (ox = C,). (13)
In particular we have
,}lfi { (1 +8,t;2)n } 12 j { cos (t%x) cos M(t-—;-”f) }nf(t) dt = f (=), (14)

-

where feL (—m <t <) and % is an interior point contained in the

Lebesgue set of f(¢).
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ON REPRESENTATION OF NUMBERS AS SUM
OF TWO SQUARES

By M. V. SUBBA RAQ

1. The classical result that 7,(n), the number of udrestricted
representations of n as the sum of two integral squares, is given by

7y (n) = 4 [d (n) — dg (n)], (L1)

where d;(n) denotes the number of divisors of » of the form ¢ (mod 4),
admits of several proofs. In this paper I propose to sketch a proof
based on the proporties of multiplicative functions?, which, it is
hoped, will be of some interest, and does not seem to have been
atternpted before.

In order to do this, we shall not consider the function ry(n) as it is
(this is not a multiplicative function of ), buta closely allied, and
in some ways, a more natural function r(n) which happens to be
multiplicative. This function 7(n) stands for the number of represen-
tations of » in the form n =22+ %% x>0, y > 0 (unlike 7y(n)
where we admit negative values of @ and y also), with the convention
that if > 0, y > 0, the representations #? + y? and %* + 22 are to
be treated as distinot, but if one of them, say y is zero, then x% 402
and 0% 4 z® are to be treated as one and the same and counted only
once. If x — y, the resulting representation z* -+ 2% will be counted
only once in any case, since ¥ is restricted to be non-negative.

Clearly ry(n) = 4r(n), since corresponding to a single represen-
tation in #(n) there are four distinct representations in 79(n) and

vice versa as shown under

{An arithmetic function f(V) is said to be multiplieative if f(M N)=f(M). f(N)
whenever (M, N)= 1.

t r(n) is the number of lattice points on the circle
22 + yz =n

in the first quadrant, z-axis being included but y-axis excluded.
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o+ P (22 +H(£Y%e>0,9>0,
2?4 0% 2 (£ x)® + 0% 0% + (£ 2)%; and 2® + 2% 2 (1) + (L 2)
Thus the problem reduces to proving that
r(n) = dy(n) — dg(n). (1.2)

We will gstablish this result by showing that each” side of this
equation is a multiplicative function of n and that these functions
have equal valueg when n is the power of any prime; it then
follows that the functions are identical for all values of .

2. The remarkable fact that d;(n) —ds(n) is a multiplicative
function of n seems to have been first noticed by Vaidyanathaswamy
[1] and can be easily verified directly. It can also be obtained as
an immediate consequence of the following important and well-known

LemMa. If f(n) and g(n) are two multiplicative functions, so also
i8 their composite defined as = f(d) g(n/d), d/n.

If in this we oput f(n) =1; and g(n) = 4 1 according as = is
+1 (mod 4), and g(n) = 0 if n is even, we see that both f(n) and g(n)
are multiplicative, and hence also dy(n) — d,(n), which is their
composite.

Next to show that r(n) is multiplicative, we introduce the function
¥(n) which, stands for the number of primitive ”’ representations
of » as sum of two squares, where we define a representation as
primitive if it has any one of the following forms: (i) 1% 4 1%,
(i) 1 4 0%, (i) 2® + 92, (@, 9) = 1,2, 5> 0. Thus (1) — $(2) = 1;
$(3) =4(4)=0; $(5) = 2; .... Now that ¥(n) is a multiplicative
function of n is a consequence of the following two well-known
results.

(i) If f(x) is a epolynomial of 2 with integral coefficients, the
number of incongruent solutions of f(x) = 0 (mod =) is a multipli-
cative function of n.

(ii) ¥(n) is equal to the number of incongruent solutions of the
congruence * +1=0 (mod n). (When n — 1 or 2, it has just one
solution, viz. £=0 or 1 respectively). [ Vide for ex. [2] p. 98, ex. 9.a].
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Since every representation of n as z® + 9%, (z, y) =d, gives rise
to a primitiye representation of nd? as (z/d)* + (y/d)?, we get

r(n) = z B(n(d?), d3/n. (2.1)
This shows that r(n)is the composite of the multiplicative functions
J(n) and A(n), where A(n) = 1 if n is a square number, and 0 other-
wise. Hence, by the lemma, 7(n) is mulbiplicative.

3. It remains to show that #(r) and d,(n) — dg(n) are equal when
n=p*, p being a prime. It is easily verified directly that when
n = pF, [dy(n)—ds(n)] gives 1 i p =2,k > 0; k+1if p =1 (mod 4)
and 1 or 0 if p = 3 (mod 4) according as % is even or odd. We get
exactly the same values for 7(r) when we evaluate it for n = o,
using (2.1), and the fact that {(p) = the number of incongruent
solutions of # + 1 = 0 (mod p), whichis = 2 or 0 according as p =
+ 1 (mod. 4) and & >0, and which, when p = 2, gives 1 if k=0or 1,
and 0 otherwise. Hence 7(n) = dy(n) — dy(n) for all values of » which
are powers of primes, and hence for all n.

My thanks are due to Prof. R. Vaidyanathaswamy for helpful
suggestions and encouragement.
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ON POSITIVE DEFINITE QUADRATIC FORMS
By P. 8. RAU

We prove from elementary determinant theory, the following
well-known .

THEOREM. A necessary and sufficient condition that a homeogeneous
quadratic function in n-variables may represent @ positive definite
Jorm ts that its discriminant and the principal cofactors of every order
of its discriminani are positive.

Proofs of this theorem are given in standard treatises by matrix
theory ; the present proof is of interest in that the result on definite
gquadratic forms involving determinants is proved by determinant
theory only by the method of induction from elementary theorems.

Proor. We verify the theorem in the case of one, two and three
variables and then deduce the general case by the method of
induction.

The theorem is true in the case of one variable, since

‘

ax? > 0« a > 0, for every x 5 0.

In the case of two variables, the homogeneous quadratic function
may be represented by § = aa? + 2hey -+ by®. S reduces to az®
when y = 0, and z %0, and to by? when z = 0, and y £0°

So, for S to represent a positive definite form it is necessary that
a> 0,b> 0. To obtain the sufficient conditions we use the identity
a8 = (az + hy)? -+ (ab — B*)y>.

This gives aS > 0« (ab — #2) > 0, for every z,y #0. Buta > 0 isa
necessary condition. So @S> 0«— S>> 0. Thus we have

S> 0«>a>0,6>0,(a—h*)>0, for every = and ¥.
In the case of three variables, the homogeneous quadratic function

may be represented by.
S = aa® + by? + e + ofyz + 292 + Zhxy.

+ Paper read at the Twenty-first Conference of the Indian Mathematical Society

Banaras, 1955
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When one of the variables takes the valuezero, S becomes a function
of the other two variables, and from the preceding case we have

6>0,6>0,6>0; ab—h>0,bc—f2>0,ca—g*>>0,

ag the necessary conditions for § to represent a positive definite
form. To obtain the sufficient conditions, we introduce

E=ax +hy +g2 n=hs+by+fa
Then we have ’

ax +hy 4 (gz —€) =0, hx+by + (fz —n)=0,
(92 + &)x + (fa + )y + (02> — 8) =0,
from which we obtain
a h (92 — €)
h b (fz —m)
(92 + £) (fz+m) (2" —08)
This gives the identity

(Gb—hz)SE(wnz—zhf'q + b &%) + A2,

Il
e

where
a h g
A= h b f
g S ¢

From the necessary conditions, a > 0, &> 0, (ab — A%) > 0, we see

that a»q% —2hén 4+ b€ is a positive definite form, and hence we
have (b —h%)S> 0«>A> 0.

That is to say,

(@a>0, 8>0, ¢>0, ]
8>0¢>1 ab—1>0,bc—f2>0,ca —g®> 0 Lforallx,y,z.
and A>0

It is remarkable that the method employed in deducing the case
o?f' three variables from that of the two variables yields to generaliza-
tion. Let us suppose that the theorem is true in the case of (n—1)

variables. A homogeneous quadratic function of the » variables
%y, g,..., T, May be represented by

K n
§= Z z Bij B3 Tjs (G = ajy).
i=1j=1
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When one of the variables, say, x, takes the value zero, § becomes
a function of the (n — 1) variables %,, %,,..., ,_, and we have that
the discriminant

a5, Giin—1)

A, =

) An—11 - Yn—1)m—1)

and the principal cofactors of every order of A,_, are > 0, as the
necessary conditions for § to represent a positive definite form.
To obtain the sufficient conditions, we introduce

=00+ . Fogm,; t=12,..,n—1
Then we have
By o+ Gy 1%y 4+ (G, — &) = 0;¢=12,...,n—1;
and
(@, 2, + &)y + oo+ (G 10%n + bn1)%py + (@7 — 8) =0,

from which we obtain

%1 - (B12 %, — 1)
G2 - (Gon Ty — £2)
‘o . =0.
Gp_11 B T . | (an—ln xn‘£n—1
' 2
(aln xn + fl) b (a -1 nx'n + ‘fn-—l) (annxﬂ - S)

This gives the identity

S.A,_, =722 -9,
where
G1 e Oy &

(s
I

Gy—11 Gp_1n—1 En1

£, . e kaq O
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and

.An

a'rm ‘

anl

Expanding the determinant 8 in products in pairs of the constituents
of the last row and the last column, we obtain

S.A,_{=A,.a2 + ”2—:1 "21 A, ¢, és ,
r=1 g=1

where 4,, is the cofactor of a,, in the expansion of A,_,. We observe
that the discriminant and the principal cofactors of every order of

n—1 n—1

the disoriminant of X 2 A4, ¢ ¢, are positive in view of the
r=1 s=1

necessary conditions if we make use of the following

Lemma. If A 15 a determinant of order n, ./l(:l’ e ”) isa

1 wees Ty

minor of order p formed from the constituents of 4y, tgy .-n s By TOWS
A
and 14, 79, ... , 7, columms of the reciprocal of A, M”(:l’ i ) 18 the
1 s By
complement@ry of the mimor of order p formed from the constituents
of theiy, ..., 5, rows andr,, s Ty columns of A, then
P
% (Ggtayp)
4(7'1, Tgywees Ty ) (= 1)t=17»t t e (7‘1: rz,...,r.z,) AP-1,
Tys %, - Tps Tgy oee s By

Thus i E; 4,, € £,is a positive definite form. Hence we have

T

4, 1.8>0+—A, >0.

Hence S > 0 < A, and the principal cofactors of every order of
A, are > 0.

This completes the proof of the theorem.

8. V. University
Tirupati



ON ENTIRE FUNCTIONS OF FINITE ORDER
By S. H. DWIVEDI

1. Let f(z) be an entire function of integral order p. Let n(r) be
the number of zeros of f(z) in |z| < r and

N — 4 +j@dz.

Let ¢(r) be any positive, continuous function such that

-]

dx
jx o <

4
S. M. Shah [2] has proved that for an entire function f(z) of
intergal order p = p (p being its genus)

n(r) (r) _
P g M)

0, (1)

where M(r) = max [f(z)].

lzl=r
2. 'We prove in this note that (1) holds if we replace n(r) by N(r).

TarorEM. If f(z) is a canonical product entire function of infegral

order and of the same genus then

L Nm )
Lo Sup 1 e 3(r)

3. For the proof of the theorem we require the following

Levma. For a canonical product f(z) we have

0 N+
logM(r)<KJ PG L) "

(1}

where p is the genus of f(z).
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Proor. We have
7’1/ ,p+1

ds
7R 1(t

log M(r) < K’

0

¢ rPLEd N()

j Lt A7)

0

(pt + pr -+ )N (t) dt
(t + 7.)2 tp+1

< K' yptl J
0

Hence

(p + 1) N(t) o+t
P 1)

log M(r) < K’

K N(@) 2+l gt

OQ———JS °’——98

Proor orF TamorEM. Since f(z) is an entire function of order
and genus p,

is convergent for m > p + 1 and divergent for m = p 4 1. Now we
have by the lemma,

¢ N@) ro+1
log M(r) <KJ m)
0

<K {r?f%gdt +¢ﬂ+1j sz)dt}- (@)

0

We shall now prove that it is impossible for any finite €' to have

1

c c N (¢ N
Nir)< 30 {rﬂjﬂ_ﬂ) dt+¢z’+lj piz)d } (3)

for all » > 7, provided 7o is taken sufficiently large.
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The proof from here onward is on the lines of R. P. Boas [1].
For the sake of completeness we reproduce it here.
Let

Codt
Fe) = | 740

To
and suppose that (3) is true for r > r,, where 7, is so large that
C Fry) < L.

Iet p+l<m<p-+2 then

{ N Fur-m N Fap-mtt € N8
I_(;”_)dugoj“ dujrgdt+0jf—dujﬂ,—£§)dt.
o 1

u $(u) $(w)

7o To w

By changing the order of integration we get

f%‘(ﬂ»ﬂduwjtpgd‘j b +GTN(”‘”T%“”’“+ |

o 1 To 7o [

(@), (v
+C j ia i j ds

P(u)

® Nt N() du
<3 F(ro) L@L) d+0 I o I T

1 7o ¢

+0j M) g fuj“u)

To

=

o °°N( )
— Q2"+ F(ro) j "'o)j dé.
1 To

Hence

r )
{1-0 Firoyry 5 —J\Kg) du < Cr§*! Fro) j tpa(-l dt.
i

Holding 7, fixed let m—p + 1. The right side is independent
of m and finite and the left side —- 0, since
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(NG .
Itﬂ+1 dt

To
is divergent. So (3) leads to contradiction.
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ADVANCES IN MATHEMATICS IN THE U.S.S.R.
By L. BRUTYAN

MATHEMATICS is one of the most ancient of sciences in the world.
At all stages of development of human society starting* with anti-
quity, it has played 4 highly important role in moulding thespiritual
and material culture of peoples both as an instrument for apprehend-
ing the regularities of the ambient world and as a means of
subjugating the forces of nature. While fulfilling this role, it has
been developed on an ever broader scale in many countries of the
world and further perfected.

What advances have been made in mathematics in the Soviet
Union ? That was the question I put to Corresponding Member of
the USSR Academy of Sciences I. N. Vekua, Assistant Director
of the Academy’s Institute of Mathematics named after V. A,
Steklov, and this is what he told me.

The study of mathematics in Russia began back in olden days.
Russia stepped out into the world mathematical arena with the
brilliant works of the Petersburg Academician Euler and the Kazan
Geometrician Lobatschevsky. The researches of Russian scientists
greatly influenced the development of mathematics throughout the
world ; however, in pre-revolutionary Russia, few were privileged
to indulge in the study of this science.

Scientific research in this field was then concentrated around the
mathematics departments of several universities. There were no
mathematical research institutions at all.

In Soviet times, when the doors of secondary schools and
institutions of higher learning were thrown wide open to young
workers and farmers, the mathematics departments increased the
number of graduates. Training of young researchers in mathematics
forged ahead at post-graduate institutions.

Of great importance for the development of Soviet mathematics
was the foundation of the Institute of Physics and Mathematics of
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the USSR Academy of Sciences, from which the Academy’s Steklov
Institute of Mathematics subsequently originated.

The Institute’s sections devoted to the theory of numbers, algebra,
differential equations, theory of functions, functional analysis,
theory of probabilities and topology, among other fields, have
made a big contribution to world mathematics.

During the past few years, Soviet scientists working in the field
of differential equations have developed methods that mathe-
maticians in all countries have made extensive use of in their
research. Much that is new has been contributed to geometry.
Soviet mathematicians have developed general methods of investi-
gating surfaces in the large on minimum assumptions as regards
their degree of smoothness, and also methods in the domain of
differential geometry intimately connected with the theory of group
representations.

A number of problems connected with the flexibility of surfaces
have been solved. Soviet scientists have worked out a theory of
algebraic systems that embraces the most general algebraic forms;
they have solved the classical converse problem of Galois’s theory
for solvable groups.

Perhaps gne of the biggest achievements of all in contemporary
mathematics was the brilliant solution of the famous 200-year old
Goldbach problem for odd numbers by Academy Member I. M.
Vinogradov, the eminent Soviet mathematician, who did it with
the help of an original method he devised.

Today there are mathematical centres not only in Moscow and
Leningrad, but also in nearly all the Union republics. In the Ukraine,
for instance, extensive research is under way on the theory of
probabilities and functional analysis; in Armenia, on approximations
in the complex region ; in Georgia, on the theory of numbers, the
theory of functions, topology and elasticity ; and in Central Asia,

on pressing problems in the fieds of the theory of probabilities and
mathematical statistics.
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In recent years, Soviet mathematicians have been ever more
eagerly tackhng problems of great practical importance (in the
fields of hydrodynamws, aerodynamics, theory of oscillations,
automatic control of production processes, utilization of nuclear
" energy, launching of ballistic rockets, artificial earth satellites, ete.).

Of tremendous importance for the advancement of m@athematics
is the development Of rapid electronic calculating machines. With
their help, mathematicians can quicky solve asnumber of highly
complicated and pressing practical probems. At the same time,
electronic caleulators will evidently have a revolutionizing effect
on the development of mathematics as a whole. They have already
given rise, for instance, to & new branch of mathematics known as
the theory of information.

The creation of modern caloulating machines and their extensive
utilization are a striking example of the successful joint effort of
big staff of mathematicians, technologists and physicists. What
is taking place is the interpenetration of sciences and methods.
Mathematicians are carrying out the calculations for highly compli-
cated engineering structures; and engineers are putting new means
into the hands of mathematicians.

A striking example of the co-operation of mathematicians and
physicists is the consummation of the work on the® tHeory of
superconductivity. The penetration of mathematics into physics
facilitated the launching of an artificial earth satellife and
fulfillment of all the highly complicated calculations involved

in its flight.






MATHEMATICAL NOTES
A note on Fermat and Mersenne’s numbers

By M. SATYANARAYANA, S. V. University, Tirupati

Ix this note it is proved that no Fermat number is a.triangula,r
number and also numbers of the form 2" — 1, where n is an odd
integer > 1 are not triangular numbers. ’

Any positive integer is said to be a triangular number if it is of
the form n(n + 1)/2, where 7 is any positive integral number.

Tt is well known that in order that any positive number @ be a
triangular number it is necessary that 1 + 8a should be a perfect
square. (See for example [Dickson: History of theory of numbers,
Vol. 2, p. 3.]). It may also be proved without difficulty that the

condition is sufficient.

We can show now that no Fermat number is a*triangular number.
Fermat’s numbers [Harpy and WRIGHT: An introduction to the
theory of mumbers] are defined by 22" 11, where n > 1.

2%+lmaﬁ%@mwnmwﬂﬁ1+@@%+DJ&9+%MHS
a perfect square. ’ . .

If possible let 9 + 22"+% =M% Pub 2° + 3=t Hence

9 — M2 —9—(M+3) (M —3)

Tt follows that :
M+3=2‘,M—3=2’, (A)

where s and [ are positive integers and s + 1=t
I cannot be equal to 0, since, if I =0, 28 =17, which isra.bsurd
since s is an integer. So it is clear that s > =1
Eliminating M from (A) we get
6 =90 — 9 =22t —1).

je. =2 o0rl=1, 21—-1=3. Hence s =3 and t = 4.
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Hence 2" 43 =4 and n =0.

Hence » cannot have any value other than zero. Herce the result.

Numbers of the form 2" — 1 are known to be Mersenne’s numbers.
We can establish now that all Mersenne’s numbers for which n is
odd and greater than one cannot be triangulor numbers.

2" — 1 can be a triangular number if 1 + 8(2* — 1), i.e. 2"+3 —7
is a perfect square.
If possible let 2743 — 7 = M2 1If nis odd, n + 3 is even. Let
n + 3 = 2k.
9% _ M2 T, ie. (24 M)(2— M) =1
% - M=1 and 2*+ M =1,
On eliminating M we get 28 -2 — 1 =7 or 2*=4,ie. K =2,n=1.

Hence all Mersenne’s numbers for which » is 0dd and greater than
one are not triangular numbers.

The general conic and the conicoid -

By P. 8. Rav, Tirupati

Ir is well known in the theory of the linear homogenous equations
that n equations in 7 + 1 unknowns always have a solution, which
is unique if (and only if) the equations are linearly independent.
We shall state it in the following form; though an immediate

consequence of the theory it is not perhaps expressly stated so in
standard works.

THEOREM 1. n equations in n +1 wunknowns always have G
(non-zero) solution. The solution is unique (up to the ratios) if
and only if every (m— 1) of these equations have a solution mnot
satisfied by the other.
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As an easy consequence one may mention the following funda-
mental result in the theory of conies in the plane :

THROREM 2. Through any 5 points in the plane there is a conie.
This conic is unique if and only if through every 4 of these points there
18 @ conic not passing through the fifth.

This follows from Theorem 1, on noting that a conic is sp;*;ciﬁed
by the ratios of the toefficients in its equation

ax? + by® + c2® + 2 fyz + 2922 + 2haty = 0.

Also the points (z;, ¥;, 2;);—1...5 lie on the conic if and only if the
coefficients a, b, ¢, f, g, b satisfy the linear homogeneous equations
@D 6+ @2 b+ @ e+ QCyz)f +Qyua)g+ (2uy)h=0.

Likewise we may state the result :

TaEOREM 3. Through 9 points in S there always passes one
quadric. This quadric is unique if and only if every 8 of these points
lie on @ conicoid not passing through the other.

Clearly the result could also be stated for the .Euelidea,n plane or
space instead of the projective spaces; and also for bigher dimen-
sional spaces. ’

I wish to thank Prof. V. Ramaswami for help in the preparation

of this note.

‘A note on odd perfect numbers

By M. Purisastri, Vizianagram

INTRODUCTION. A positive integer is called a perfect number, if the

sum of all its divisors equals twice itself. Something is known about
even perfect numbers, but it is not known whether an odd peri.'ect
number exists. In this direction Euler proved that if there exists

an odd perfect number, it must be of the form p**+!s% where

p is a prime of the form 4k + 1 and s is odd. Further it was shown
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that if there exists an odd perfect number it should have at least
six different prime factors.

In this note I give bounds for (1) the sum of the reciprocals of
the prime factors, and (2) the least prime factor, of an odd perfect
number, if it exists.

If an odd perfect number n = II p,” exists then
k

1
< zi)—‘:< 210g 5

r=1+7

(a)

ROl .

2
(b) 201<-370+2,

where we assume without loss of generality 3 < p; <p, < ... <.

Proor oF (a). The first part of the inequality in (a) follows
quickly, for, if o(n) denotes the sum of the divisor of », then

Tl (-5)

Since n is a perfect number, o(n) = 2 n, so that we get

But =
ZC k 1 k
1]; 1——7)>1—le-)—r, a,ndso;—r>§

To prove the second part of the inequality in (a) we observe that
P12 3,025, ..., p, > q;, where g, stands for the 4% prime.
Then

10 gm)> (= 3) (1= 3) o (1- &
#5(=3) (=3) - (1-3)
=511 (1-5)

where p runs through all pnmes.
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Since

( 1) :
l I 1— 2 ) =—

2 22
? r K
we get

13

Hence from (1) we get,
E
r=

1 8
2H(1‘5,)>;2°

1
But 1—2<e™? if 0<zz<1, andso

E E
1 8 . . 1 w
2exp{—z—}>1-7—2 which yields ZT—’T<210g§.

r=1 Dy re=1

k
Proor oF (b). (1)gives 2< IT _Pr_
’ r=1P, — 1

But it can be seen that

Pe <.’P1+2 Ps <P2+2 p+4
’ = y sae
ps—1 p+1 p3—1 p+1 p+3

P <p1+2k—2; and so
B—1 " p +2k—3
Py Z)1+2..’P1+4_‘_P1+2k—2_.
p—12+1 p+3 p+2k—3

But p1+2'r—2<p1—|-27'—3; giving r =1, 2, ..., kin this
p+2r-3 D +2r—4

inequality and multiplying the results thus obtained, we get
]_—k] (1”1 + 27— 2)2<p1 +2k—2‘

and

2

2 <

r=1 Z)1+2T-—3 p1—2
Hence from (2)
4D +2k—2
P—2

and (b) follows.
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Concurrent §-normals
By A. A. Gwanaposs, Madras Christian College

VAIDYANATHASWAMY'S theorem on concurrent f-normals at any
three points of a conic [R. VAIDYNATHASWAMY : ‘On the §-normals
of a con(ic’ Math. Student. 2(1933), 121-130; C. T. RATAGOPAL:
‘On the intersections of a central conic and its principal hyper-
bolas, Math. Gazeite, 35 (1951), 97-104] which is really a theorem
about triangles related to the Brocard-point theorem, is capable of
some generalization and easy proof by elementary pure geometry.

TarorEM. If P, @, R are ordinary points on @ plane analytic
ourve, then there exist one non-irivial and two trivial sets of concurrent
6-normals at P, Q, R.

Proor. Let the tangents at P, Q, R be BC, CA, AB. Then the
non-trivial point of concurrence of f-normals at P, @ and R is Q,
the second real intersection of the circles BPR and CP(Q, and the
trivial points of concurrence are the remaining intersections of the
two circles, namely, the circular points at infinity.

Nore 1. If the points @ and R are fixed but P is variable, then
Q lies on the circle 4QR.

Norm 2. The two Brocard points are the positions of Q obtained
by making P, @, R coincide with B, C,40rC, A, B.
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Concurrence of the normals
By R. RabuavENDRAN, 4. V. C. College, Mayuram

1. Let the normal %o the ellipse x—j +%§ = 1 (in rectangular
a2

Cartesians) at the point P on it, whose eccentric angle is 8, pass
through any given point Q (A, k).

Then we have

ah sin§ — bk cos § = c* sinf cos, (c* =a? — b2), (1)

If we substitute e for ¢ =cosf +isinf, then equation (1)
becomes

¢ e* + 2 (ibk — ah) €8 4- 2 (ibk +ah) e — ¢ = 0, (2)

This last equation in e, has four roots e, e, e, ¢, say, and
consequently, in general, the normals at the fouT points P,, whose
eccentric angles are 6,, such that ¢’ = ¢, pass through the point Q.

From (2), we have

e epegey=—1, (3)
and ..
2 e e, =0. {4)
Now, (3) is equivalent to the equation
0, +6,+0;+6,=2n+1)m, (5)

where 7 is an integer.
On using (3), e, €, + €5 €, = €; &, — ey’ €5} = 2i 8in (6, +6;).
So (4) becomes,
sin (6, + 0,) +sin (6, +0;) + sin (6 -+ 6,) =0. (6)
2.  We shall now prove the converse, viz.

If the eccentric angles 6y, Oy, 05 of three points on the ellipse satisfy
equation (6), then the normals at these points are concurrent.
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Given the three points P,, whose eccentric angles are 6,, find a
fourth point P,, whose eccentric angle §, satisfies equation (5).

If e, = ¢%, then (5) and (6) are equivalent to (3) and (4).
If (u, v) be the centre of mean position of the four points P;, then
we see that e, are the roots of the equation
64_4(’_‘+i.3’)e3+4(1_‘—if’)‘e—1=o. (7
a b b

[

'y

Substituting ¥ for e, and simplifying we find that 6y, 6,, 6;, 0,
are the roots of the equation

%’sine-}-zb—vcosB:sianose, (8)

which when compared with (1), shows that the normals at the
2¢¢u  2¢%w
2 )

points P, pass through the point (

Hence the result..

3. The above seéms to be the natural method of proving results
such as (5) and (6), and can be used, with advantage, in proving the
following results also.

(a) The necessary and sufficient conditions that the normals
at the four points (@ cosec 6,, b cot 6,) on the hyperbola,

% y?

a® b2

should be concurrent, are (5) and (6).

=1,

(b) The necessary and sufficient conditions that the a-normals
at the four points (a cos 6,, b sin 6,) on the ellipse, should be con-
current, are (5), and
2ab cota

&

Nore. If the tangent at a point P of a curve, makes an angle ¢
with the positive direction of the initial line, then the line PQ which

makes the angle « 4 ¢ with the positive direction of the initial
line, is called the «-normal at P.

sin (6; + 6,) + sin (8, + 65) + sin 85 +8,) = —
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() The theorem on the eccentric angles of four concyelic points
of an ellipse.

(d) Given an ellipse, and a circle, eight normals of the ellipse,
in general, touch the circle ; the sum of the eccentric angles of the
feet of these nornials, is an even multiple of « radians.

4. All the above results, except (d), are well known. The above
method of proof seems too simple to be new, but, it is not found in
any of the standard text-books of analytical gebmetry.

An extension of the operator formula
By VARRAGL, Bangalore

WE establish the following formula
Dr[ e ] = et%* (D 4 as2*~ )" v[s may be integer or not ]
which generalizes the classical formula D"[e* v] = €**(D + a)* v.
We prove it by induction.
n=1: D[ v] =e“ Dy +asz*1e™ v=e"[D+asd v
n=2: De*v]=D[eD + asa’ 1) v]=e(D + asz’ )2 .
Suppose now that the formula is true for some » say n = m.
Then D¢ v] = [ D + asz®1]" v.
Operating on this by D(= d/dx), we have
D[ p] = e[ D + ase* 1] [D + asz* 1" v.
Thus the formula is true for # =m + 1. But it is true for n =1, 2 etc.
Hence it is true for all n.

This formula was a consequence of an attempt to.generalize the
Hermite polynomial which will be published elsewhere.
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Invariants
By V. BALASUBRAMANIA SARMA, Vivekananda College, Madras

W= show that the necessary and sufficient condition for a quadri-
lateral to be inscribed in a conic S’ and for its four sides to touch
another conic S is

G —4AB0 +8A%A = 0.
[In the usual text-books this condition is shown to be necessary

only but not sufficient, see E. H. Askwith, Analytical Geometry of
the Conic Sections, § 363.]

Proor. Let 8 = (abefgh) (xyz)2 =0, 8’ = (a'b' ¢’ f'g' B') (myz)? = 0.
Let P be any point on §* and the tangent from P to § meet 8’ in B.
Let the other tangent from B to S meet 8’ in ¢ and the tangent
from C to 8 meet §’ in @, and BP in A. Take ABC as the triangle
of reference. Let the transformed equations be written as § =
(@befgh) (wyz)? = 0; &' =a'a® +2f'yz + 29’ 22 + 21’ 5y = 0, where
%, Y, 2 refer to new“coordinates and @, b, ... &', ¥’ ... are different from
the given ones. Now the equation to PQis ¢’ 2 +2hy+2g"z2=0.
This will touch S if 2 F g'h’ + Gg9'a’ +Ha'b' =0, where A, B,
... are the minors of a,b in

a kb g
hob f |, 0=2(Ff + Q¢ + Hh)since BO— F* — a A, obo.
g9 f ¢
and 4=B=0=0;
AV =Ff*+ B¢ L B* K2 3G H(g' W — o' f) +
+2HFNf +2F G g,
=S(Ff'? —2GHa'f"
A H @
A= H B F|=2FGH; N=2fgK —af
¢ F 0' ‘
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The relation 82 — 4 A 4’ + 8 AZA’ becomes
16 GHf'(2 Fg'h' 4+ Gg'a’' + Ha'h').
If P@ touches § we get the necessary condition.
Conversely, if 8 —4A00 +8A2A =0, we geb
16 GHFQ Py + Gg'a’ +Ha'l) =0.
Either @Hf' =0o0r 2 Fg'h’ +Gg'a’ +Hd'h =0.

In the former case the conics degenerate and in the latter P¢
touches §.

A note on invariants
By V. BALASUBRAMANIA SARMA, Vivekanada College, Madras.

The note by K. A. Viswanathan [Math. Studept 25 (1957) p. 43]
on invaniant§ assumes that ab — B2 £ 0. It fails when ab — k2 =0,
Here is the general case. '

If S = az® + 2hay + by® + 292 + 2fy + ¢ and S’ after trans-
formation, with the same origin, then § + A (a2 + 2 zy cos @ + ¢7)
becomes & + A (v'2 + 22"y’ cosw + y'9).

The values of A which make the first expression equated to zero a
line-pair, make the second equated to zero also a line-pair. Hence
. g '
A _ 68 @ and since ¢ = ¢’ we get the result. It is
A ¢ sin® o
easy to see that we get the same for a change of origin also.

we geb
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Algebra and Irigonometry (for students of pre-university course)
By Veppa Annapurniah, 5/1063, Assam gardens, Vishakapatnam
(1957), pp. xi + 160, Rs. 3.50.

THIs book is written for students of pre-university course of one
year after the matriculation and follows the usual syllabus of
elementary algebra and trigonometry. The treatpent of the subject
matter although generally satisfactory is marred at a number of
places by mathematically inaccurate statements and by a wrong
use of accepted terminology. Bach chapter contains a number of
illustrative examples and exercises. A consistent inclusion of graded
straightforward exercises in each chapter would enhance the

utility of this book.
J. A. SippIQr

Modern trigonometry. By C. Brixly and R. V. Andree, Henry Holt
and Co, New York (1955), pp. xii 4 209.

TaE book consists of nine chapters, the first six dealing with trigo-
nometric functions of angles, logarithms, trigonometric tables,
trigonometric identities and equations. The next two deal with
polar coordinates and complex numbers. The last chapter introduces
the reader to more advanced topics like matrix multiplication,
mébius strip, four colour problem, quaternions and finite geometry.
The book ends with a reading list, answers and tables.

The choice of the subject as also of problems has been made
keeping in view the requirements of not only pure mathematicians,
but of engineers and scienbists.

The authors have rightly laid emphasis on principles rather
than rules and have tried to make the subject interesting by
frequent incursions in the domain of higher mathematics. They
deserve congratulations for having produced a good book which
can be profitably used by the junior students in colleges.

J. A, SippiQ1
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The University teaching of social sciences : Statistics: Survey prepared
by P. C. Mahalanobis, Unesco (1957), pp. 209, § 2-75.

Tuis survey has been prepared on behalf of the International
Statistical Institute, Hague, with the help of reports by leading
statisticians of twenty-five countries. This is divided into two parts :
the genera] survey and the survey of individual countries. Part One
deals, among other things, with objectives in teaching statistics,
education and traiping in statistics, organization, curricula, research
and priorities. Part Two treats about facilities for teaching, degrees
and diplomas, careers, teaching methods, research and syllabi in
each of the countries. The survey points out the importance of
statistics in various branches of science, industry, trade, agriculture
ete.

Though statistics is taught in all universities and institutes
there is very little co-ordination among them, some emphasizing
the theoretical aspect and others the applied aspect only. This
survey helps to c%-ordina,te the two aspects and contains in such
a small compass a lot of details supported with figures for all the
countries. The credit goes to the patience and industry of several
contributors and more so to Professor Mahalanobis who has tried
to keep up the uniformity of treatment while preserving the
originaliio;y of the individual reports which are basically divergent.
This book should be in the hands of everybody interested in
statistics. -

A. R. Koraw

Tiloyapannaiti ka Gfanita (in Hindi), By Lakshmichandra Jain,
M.Sc. Published by Jain Sanskriti Sanrakshak Sangh, Sholapur.

THE title of the book means ““the mathematics of the
Tiloyapannatti’’. As the author states, the Jain religious book
entitled Tiloyapannatti deals with cosmogony and not primarily
with mathematics. Yet the book deals mathematically with many
problems and so it is important from the point of view of the history
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of mathemastics. Tj‘ne date of the book has not been discussed, but
from the brief introduction it may be guessed that the book was
written after the time of Mahavira (850 A.D.).

The original book deals with the concept of the infinite at
great length. One’ingenious way (in a simplified form) is as follows :
Assume vessels of huge dimensions, of bottoms equa] to India
itself, and imagine ome of these filled with mustard seeds. Imagine
now the number of vessels to be equal to the number of the mustard
seeds in the first vessel, and each vessel filled with mustard seeds.
The process is to be repeated a large number of times, and then you
would get a ‘‘ jaghanya paritasankhyata * (transfinite number).

On the other hand extremely minute quantities are also taken
into account. For example, one finger’s breadth (angula) is
successively related to smaller units, each being one-eigth of the
preceding, the smallest unit being 8~'2 of one finger’s breadth.

The method of using a sort of logarithm is of great interest.
The number of times a given number of the form 2", where = is an
integer, can be divided by 2 is utilised to simplify caleulations, and
it should be noted that the former is simply the logarithm of the
given number to the base 2.

Various geometric shapes of huge dimensions are ,assumed as
models of the universe and their volumes are evaluated, often in
terms of living beings who can be contained.

Arithmetical and geometrical progressions and many astrono-
nomical problems have also been considered.

The author of the volume under review has explained, with the
help of modern mathematics, most of the problems considered in
the original book. He has frankly admitted his difficulty in explaining
the remaining ones. He has cited in the footnotes parallel passages
from various histories of mathematics and mathematical works.
The author is to be congratulated on his successfully completing a

difficult task.
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At the same time it is to be regretted tl;at there are many
misprints in the book. Many technical words of the original text
have been used without any explanation of their néleanings. The
glossary at the end of the book giving English equivalents of the
Sanskrit technicél words used is inadequate. The lettering on the
figures is shabby and occasionally illegible. While the numerals in
most ﬁgui*es are in Devanagari, in some they are in Roman.
Devanagari letters have often been used in the order of the corres-
ponding letters of the English alphabet, and not in their own
natural order. At times the construction of the Hindi sentences is
also faulty. It is hoped that these minor defects would be removed
in the next edition.

GORAKH Prasap
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Tue followiny have been admitted to the life-membership in
the Society : G. L. Chandratreya, D. P. Gupta, D. R. Kaprekar,
Mrs. Prakash, and R. Manohar.

The following persons have been admitted to membership in
the Society.

Miss N. Buragohain, A. K. Bhattachari, (. P. Bhutani, G.
Bandyopadyay, N. Das, D. K. Dhaon, M. M. Gaind, J. M. Gandhi,
A. A. Gnanados, M. R. Gopal, N. D. Gupta, R. K. Jaggi, A. C. Jain,
P. C. Jain (Alwar), P. C. Jain (Delhi), B. G. Jogal, L. N. Kaul,
Krishna Rao, 8: Lelamma, A. G. Lele, 1. S. Luthar, M. Markandesh-
wara Rao, K. P. Mathew, 8. 8. Murdeshwar, R. S. Nanda, T. V. L.
Narasimha-Sastry, R. Parthasarathi, J. M. Patnaik, V. Ramachandra
Rao, P. Ramamurti, S. L. Rathna, M. Ray, J.S. Rustagi, Sampat
Kumarachar, N. Sankaran, V. Seshagiri, N. Scthuraman, S. K.
Sharma, Avater Singh, V. P. Singh, Viswanath Singh, I. Sinha,
P. K. Srinivasan, A. B. L. Srivastava, A. C. Sritastava, I. Unnisa,
W. Unnisa, A. M. Vaidya, T. Venkareddy, B. G. Verma, D. N.
Verma, P. D. S. Verma. '

The following members of American Mathematical Society have
been admitted to membership in the Society under re.ciprocity
agreement : C. E. Aull, J. C. Bradford, €. J. Cillary, H. Kurss,
Y. Lehner, Sister R. M. Mulligan, Chung Ki Pank, J. B. O’Toole.

We regret to report the death of Sir V. Ramesam, retired High
Court Judge, Madras, and one of the oldest members of the Society.

The Narasinga Rao medals awarded by the Society for 1957 and
1958 have boen given to Dr. C. 8. Seshadri of Tata Institute, Bombay,
for his paper on ° Multiplicative meromorphic functions’ and to
Dr. V. Venugopal Rao of Baroda University for his paper on

“The lattice point problem.’

It is proposed to award a cash prize of Rs. 1,000/- called the
‘Racine Prize for Mathematics’ for the best research paper In
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mathematics published before 31 December 1961 by an Indian
under 30 years on that date. Further particulars can be had from
Dr. X. G. Ramanathan, School of Mathematics, a'f’i'a,ta Institute
of Fundamental Research, Apollo Pier Road, Bombay-1.

The fourth Coengress on Theoretical and applied mechanics was
held at the Bengal Engineering College, Howrah, from December
28 to 31, 1958. The President was Dr. 8. R. Sen Gupta, Director,
Indian Institute of Technology, Kharagpur. About 250 delegates
including those from different parts of the world attended tho
session. Besides the reading of papers, there were two half-hour
addresses and two popular lectures. The next meeting will be in
Roorkee in December 1959.

The Golden Jubilee of the Calcutta Mathematical Society was
celebrated in Calcutte in the last week of December 1958 under
the presidentship of Prof. S. N. Bose.

The forty-sixth Session of the Indian Science Congress was held
in Delhi from January 20-27, 1959, under the auspices of the Delhi
University. The Président of the Mathematics Section was Professor
M. Ray of Agra University.

Dr. B. N. Prasad has been appointed the Head of the Department
of Mathematics at the Allahabad University.

The Allahabad Mathematical Sosiety, with Prof. B. N. Prasad
as its President, has started a half-yearly periodical, T'he Indian

Jowrnal of Mathematics. The first number has come out and we
welcome this Journal.

Dr. V. K. Balachandran has been appointed Reader in Mathe-
matics at the University of Madras and Dr. R. Manchar has
been appointed Associated Professor of Mathematics at the
Panjab Engineering College, Chandigarh.

Shri M. S. Ramanujan has been awarded the D. Sc. degree by the
Annamalai University, for his thesis ‘ Contributions to the study of
general matriz methods of summability with special reference to Haus-
dorff and quasi- Hausdorff methods ”.
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Shri R. Ramachandran has been awarded the Ph. D. degree
by the University of Madras.

The Soclet;\ has accepted the invitations of the Allahabad Univer-
sity to hold its annual conference at Allahabad in December 1959
and that of the Unlversnsy of Nagpur to hold the 1960 session at
Nagpur.

Professor V. Ganapathy Iyer has been elected President of the
Mathematics Section of the Indian Science Congress, January
1960 session in Bombay.

Professor K. Chandrasekharan has been awarded the title of .
““Padma Shri” by the President of India; we have pleasure in
congratulating him.

The Mathematics Seminar, Delhi, will hold the Second Summer
School of Mathematics at Hans Raj College, University of Delhi
from 11th May 1959 for about a month. The following threc
main series of lectures are proposed.

i. TIn Pure Mathematics it has been decided to concentrate on
basic concepts of Set theory, Modern Algebra and Topology.

ii. In Applied Mathematics the basic subject of study would
be Magneto-Hydrodynamics.

iii. General lectures on modern applications of mathematics,
History, Teaching and Research in mathematics.

Dr. Ram Behari, of University of Delhi, was invited to act as
Chairman of a Session of the Section of Differential Geometry
at the International Congress of Mathematicians held in Edinburgh
from August 14-21, 1958. He read a paper on ““Some propertbes and
applicatons of Bisenhart’s generalized Riemann space”. He was also
invited to deliver lectures at the United States National Science
Foundation Summer Institutes held at the University of Notre
Dame, and Oberline College, Ohio, U.S.A. Prof. R. L. Wilder,
President of the American Mathematical Society for 1955-56,
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addressed. a wolcome to.him on behalf of i;h‘e\ . Mathematical
Community of his country. While at Oberlin, lie was invited to
a meeling of the City Council and was accorded. a wifcome by the
Mayor.

Dr. B.'N. Prasad reprosented the Trdian Secience Congfess at

the recent meeting of the British Association for the advancement
of scicneerin Bngland. He also attended the Inﬁernatmnwl Congress

and read, a paper. ©



